ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2697
Committed: Fri Apr 7 05:03:54 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 22926 byte(s)
Log Message:
adding introduction to geometric integrators

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30     $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31     $F_ji$ be the force that particle $j$ exerts on particle $i$.
32     Newton¡¯s third law states that
33     \begin{equation}
34     F_ij = -F_ji
35     \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120     for a holonomic system of $f$ degrees of freedom, the equations of
121     motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215     q_i }}} \right) = 0}
216     \label{introEquation:conserveHalmitonian}
217     \end{equation}
218    
219 tim 2694 When studying Hamiltonian system, it is more convenient to use
220     notation
221     \begin{equation}
222     r = r(q,p)^T
223     \end{equation}
224     and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225     \begin{equation}
226     J = \left( {\begin{array}{*{20}c}
227     0 & I \\
228     { - I} & 0 \\
229     \end{array}} \right)
230     \label{introEquation:canonicalMatrix}
231     \end{equation}
232 tim 2695 where $I$ is a $n \times n$ identity matrix and $J$ is a
233     skew-symmetric matrix ($ J^T = - J $). Thus, Hamiltonian system
234     can be rewritten as,
235 tim 2694 \begin{equation}
236     \frac{d}{{dt}}r = J\nabla _r H(r)
237     \label{introEquation:compactHamiltonian}
238     \end{equation}
239 tim 2692
240 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
241     Mechanics}
242 tim 2692
243 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
244 tim 2692 simulation are governed by the principle of Statistical Mechanics.
245     The following section will give a brief introduction to some of the
246     Statistical Mechanics concepts presented in this dissertation.
247    
248 tim 2696 \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
249 tim 2692
250 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
251 tim 2692
252 tim 2695 Various thermodynamic properties can be calculated from Molecular
253     Dynamics simulation. By comparing experimental values with the
254     calculated properties, one can determine the accuracy of the
255     simulation and the quality of the underlying model. However, both of
256     experiment and computer simulation are usually performed during a
257     certain time interval and the measurements are averaged over a
258     period of them which is different from the average behavior of
259     many-body system in Statistical Mechanics. Fortunately, Ergodic
260     Hypothesis is proposed to make a connection between time average and
261     ensemble average. It states that time average and average over the
262     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
263     \begin{equation}
264     \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
265     \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
266     {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
267     \end{equation}
268     where $\langle A \rangle_t$ is an equilibrium value of a physical
269     quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
270     function. If an observation is averaged over a sufficiently long
271     time (longer than relaxation time), all accessible microstates in
272     phase space are assumed to be equally probed, giving a properly
273     weighted statistical average. This allows the researcher freedom of
274     choice when deciding how best to measure a given observable. In case
275     an ensemble averaged approach sounds most reasonable, the Monte
276     Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
277     system lends itself to a time averaging approach, the Molecular
278     Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
279 tim 2696 will be the best choice\cite{Frenkel1996}.
280 tim 2694
281 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
282     A variety of numerical integrators were proposed to simulate the
283     motions. They usually begin with an initial conditionals and move
284     the objects in the direction governed by the differential equations.
285     However, most of them ignore the hidden physical law contained
286     within the equations. Since 1990, geometric integrators, which
287     preserve various phase-flow invariants such as symplectic structure,
288     volume and time reversal symmetry, are developed to address this
289     issue. The velocity verlet method, which happens to be a simple
290     example of symplectic integrator, continues to gain its popularity
291     in molecular dynamics community. This fact can be partly explained
292     by its geometric nature.
293    
294     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
295     A \emph{manifold} is an abstract mathematical space. It locally
296     looks like Euclidean space, but when viewed globally, it may have
297     more complicate structure. A good example of manifold is the surface
298     of Earth. It seems to be flat locally, but it is round if viewed as
299     a whole. A \emph{differentiable manifold} (also known as
300     \emph{smooth manifold}) is a manifold with an open cover in which
301     the covering neighborhoods are all smoothly isomorphic to one
302     another. In other words,it is possible to apply calculus on
303     \emph{differentiable manifold}. A \emph{symplectic manifold} is
304     defined as a pair $(M, \omega)$ which consisting of a
305     \emph{differentiable manifold} $M$ and a close, non-degenerated,
306     bilinear symplectic form, $\omega$. A symplectic form on a vector
307     space $V$ is a function $\omega(x, y)$ which satisfies
308     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
309     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
310     $\omega(x, x) = 0$. Cross product operation in vector field is an
311     example of symplectic form.
312    
313     One of the motivations to study \emph{symplectic manifold} in
314     Hamiltonian Mechanics is that a symplectic manifold can represent
315     all possible configurations of the system and the phase space of the
316     system can be described by it's cotangent bundle. Every symplectic
317     manifold is even dimensional. For instance, in Hamilton equations,
318     coordinate and momentum always appear in pairs.
319    
320     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
321     \[
322     f : M \rightarrow N
323     \]
324     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
325     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
326     Canonical transformation is an example of symplectomorphism in
327     classical mechanics. According to Liouville's theorem, the
328     Hamiltonian \emph{flow} or \emph{symplectomorphism} generated by the
329     Hamiltonian vector filed preserves the volume form on the phase
330     space, which is the basis of classical statistical mechanics.
331    
332     \subsection{\label{introSection:exactFlow}The Exact Flow of ODE}
333    
334     \subsection{\label{introSection:hamiltonianSplitting}Hamiltonian Splitting}
335    
336 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
337    
338     As a special discipline of molecular modeling, Molecular dynamics
339     has proven to be a powerful tool for studying the functions of
340     biological systems, providing structural, thermodynamic and
341     dynamical information.
342    
343     \subsection{\label{introSec:mdInit}Initialization}
344    
345     \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
346    
347 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
348 tim 2692
349 tim 2694 A rigid body is a body in which the distance between any two given
350     points of a rigid body remains constant regardless of external
351     forces exerted on it. A rigid body therefore conserves its shape
352     during its motion.
353    
354     Applications of dynamics of rigid bodies.
355    
356 tim 2695 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
357 tim 2694
358 tim 2695 \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
359    
360     \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
361    
362 tim 2694 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
363    
364 tim 2693 \section{\label{introSection:correlationFunctions}Correlation Functions}
365 tim 2692
366 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
367    
368 tim 2696 \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
369    
370 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
371 tim 2685
372 tim 2696 \begin{equation}
373     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
374     \label{introEquation:bathGLE}
375     \end{equation}
376     where $H_B$ is harmonic bath Hamiltonian,
377     \[
378     H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
379     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
380     \]
381     and $\Delta U$ is bilinear system-bath coupling,
382     \[
383     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
384     \]
385     Completing the square,
386     \[
387     H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
388     {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
389     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
390     w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
391     1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
392     \]
393     and putting it back into Eq.~\ref{introEquation:bathGLE},
394     \[
395     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
396     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
397     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
398     w_\alpha ^2 }}x} \right)^2 } \right\}}
399     \]
400     where
401     \[
402     W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
403     }}{{2m_\alpha w_\alpha ^2 }}} x^2
404     \]
405     Since the first two terms of the new Hamiltonian depend only on the
406     system coordinates, we can get the equations of motion for
407     Generalized Langevin Dynamics by Hamilton's equations
408     \ref{introEquation:motionHamiltonianCoordinate,
409     introEquation:motionHamiltonianMomentum},
410     \begin{align}
411     \dot p &= - \frac{{\partial H}}{{\partial x}}
412     &= m\ddot x
413     &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
414     \label{introEq:Lp5}
415     \end{align}
416     , and
417     \begin{align}
418     \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
419     &= m\ddot x_\alpha
420     &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
421     \end{align}
422    
423     \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
424    
425     \[
426     L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
427     \]
428    
429     \[
430     L(x + y) = L(x) + L(y)
431     \]
432    
433     \[
434     L(ax) = aL(x)
435     \]
436    
437     \[
438     L(\dot x) = pL(x) - px(0)
439     \]
440    
441     \[
442     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
443     \]
444    
445     \[
446     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
447     \]
448    
449     Some relatively important transformation,
450     \[
451     L(\cos at) = \frac{p}{{p^2 + a^2 }}
452     \]
453    
454     \[
455     L(\sin at) = \frac{a}{{p^2 + a^2 }}
456     \]
457    
458     \[
459     L(1) = \frac{1}{p}
460     \]
461    
462     First, the bath coordinates,
463     \[
464     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
465     _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
466     }}L(x)
467     \]
468     \[
469     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
470     px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
471     \]
472     Then, the system coordinates,
473     \begin{align}
474     mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
475     \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
476     }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
477     (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
478     }}\omega _\alpha ^2 L(x)} \right\}}
479     %
480     &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
481     \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
482     - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
483     - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
484     \end{align}
485     Then, the inverse transform,
486    
487     \begin{align}
488     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
489     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
490     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
491     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
492     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
493     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
494     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
495     %
496     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
497     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
498     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
499     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
500     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
501     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
502     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
503     (\omega _\alpha t)} \right\}}
504     \end{align}
505    
506     \begin{equation}
507     m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
508     (t)\dot x(t - \tau )d\tau } + R(t)
509     \label{introEuqation:GeneralizedLangevinDynamics}
510     \end{equation}
511     %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
512     %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
513     \[
514     \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
515     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
516     \]
517     For an infinite harmonic bath, we can use the spectral density and
518     an integral over frequencies.
519    
520     \[
521     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
522     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
523     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
524     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
525     \]
526     The random forces depend only on initial conditions.
527    
528     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
529     So we can define a new set of coordinates,
530     \[
531     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
532     ^2 }}x(0)
533     \]
534     This makes
535     \[
536     R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
537     \]
538     And since the $q$ coordinates are harmonic oscillators,
539     \[
540     \begin{array}{l}
541     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
542     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
543     \end{array}
544     \]
545    
546     \begin{align}
547     \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
548     {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
549     (t)q_\beta (0)} \right\rangle } }
550     %
551     &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
552     \right\rangle \cos (\omega _\alpha t)}
553     %
554     &= kT\xi (t)
555     \end{align}
556    
557     \begin{equation}
558     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
559     \label{introEquation:secondFluctuationDissipation}
560     \end{equation}
561    
562     \section{\label{introSection:hydroynamics}Hydrodynamics}
563    
564     \subsection{\label{introSection:frictionTensor} Friction Tensor}
565     \subsection{\label{introSection:analyticalApproach}Analytical
566     Approach}
567    
568     \subsection{\label{introSection:approximationApproach}Approximation
569     Approach}
570    
571     \subsection{\label{introSection:centersRigidBody}Centers of Rigid
572     Body}