ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2699
Committed: Mon Apr 10 05:35:55 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 27576 byte(s)
Log Message:
adding splitting method

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30     $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31     $F_ji$ be the force that particle $j$ exerts on particle $i$.
32     Newton¡¯s third law states that
33     \begin{equation}
34     F_ij = -F_ji
35     \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120     for a holonomic system of $f$ degrees of freedom, the equations of
121     motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224     Statistical Mechanics concepts presented in this dissertation.
225    
226 tim 2696 \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 tim 2692
228 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
229 tim 2692
230 tim 2695 Various thermodynamic properties can be calculated from Molecular
231     Dynamics simulation. By comparing experimental values with the
232     calculated properties, one can determine the accuracy of the
233     simulation and the quality of the underlying model. However, both of
234     experiment and computer simulation are usually performed during a
235     certain time interval and the measurements are averaged over a
236     period of them which is different from the average behavior of
237     many-body system in Statistical Mechanics. Fortunately, Ergodic
238     Hypothesis is proposed to make a connection between time average and
239     ensemble average. It states that time average and average over the
240     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
241     \begin{equation}
242     \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
243     \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
244     {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
245     \end{equation}
246     where $\langle A \rangle_t$ is an equilibrium value of a physical
247     quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
248     function. If an observation is averaged over a sufficiently long
249     time (longer than relaxation time), all accessible microstates in
250     phase space are assumed to be equally probed, giving a properly
251     weighted statistical average. This allows the researcher freedom of
252     choice when deciding how best to measure a given observable. In case
253     an ensemble averaged approach sounds most reasonable, the Monte
254     Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
255     system lends itself to a time averaging approach, the Molecular
256     Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
257 tim 2696 will be the best choice\cite{Frenkel1996}.
258 tim 2694
259 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
260     A variety of numerical integrators were proposed to simulate the
261     motions. They usually begin with an initial conditionals and move
262     the objects in the direction governed by the differential equations.
263     However, most of them ignore the hidden physical law contained
264     within the equations. Since 1990, geometric integrators, which
265     preserve various phase-flow invariants such as symplectic structure,
266     volume and time reversal symmetry, are developed to address this
267     issue. The velocity verlet method, which happens to be a simple
268     example of symplectic integrator, continues to gain its popularity
269     in molecular dynamics community. This fact can be partly explained
270     by its geometric nature.
271    
272     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
273     A \emph{manifold} is an abstract mathematical space. It locally
274     looks like Euclidean space, but when viewed globally, it may have
275     more complicate structure. A good example of manifold is the surface
276     of Earth. It seems to be flat locally, but it is round if viewed as
277     a whole. A \emph{differentiable manifold} (also known as
278     \emph{smooth manifold}) is a manifold with an open cover in which
279     the covering neighborhoods are all smoothly isomorphic to one
280     another. In other words,it is possible to apply calculus on
281     \emph{differentiable manifold}. A \emph{symplectic manifold} is
282     defined as a pair $(M, \omega)$ which consisting of a
283     \emph{differentiable manifold} $M$ and a close, non-degenerated,
284     bilinear symplectic form, $\omega$. A symplectic form on a vector
285     space $V$ is a function $\omega(x, y)$ which satisfies
286     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
287     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
288     $\omega(x, x) = 0$. Cross product operation in vector field is an
289     example of symplectic form.
290    
291     One of the motivations to study \emph{symplectic manifold} in
292     Hamiltonian Mechanics is that a symplectic manifold can represent
293     all possible configurations of the system and the phase space of the
294     system can be described by it's cotangent bundle. Every symplectic
295     manifold is even dimensional. For instance, in Hamilton equations,
296     coordinate and momentum always appear in pairs.
297    
298     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
299     \[
300     f : M \rightarrow N
301     \]
302     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304     Canonical transformation is an example of symplectomorphism in
305 tim 2698 classical mechanics.
306 tim 2697
307 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
308 tim 2697
309 tim 2698 For a ordinary differential system defined as
310     \begin{equation}
311     \dot x = f(x)
312     \end{equation}
313     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
314     \begin{equation}
315 tim 2699 f(r) = J\nabla _x H(r).
316 tim 2698 \end{equation}
317     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318     matrix
319     \begin{equation}
320     J = \left( {\begin{array}{*{20}c}
321     0 & I \\
322     { - I} & 0 \\
323     \end{array}} \right)
324     \label{introEquation:canonicalMatrix}
325     \end{equation}
326     where $I$ is an identity matrix. Using this notation, Hamiltonian
327     system can be rewritten as,
328     \begin{equation}
329     \frac{d}{{dt}}x = J\nabla _x H(x)
330     \label{introEquation:compactHamiltonian}
331     \end{equation}In this case, $f$ is
332     called a \emph{Hamiltonian vector field}.
333 tim 2697
334 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
335     \begin{equation}
336     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
337     \end{equation}
338     The most obvious change being that matrix $J$ now depends on $x$.
339     The free rigid body is an example of Poisson system (actually a
340     Lie-Poisson system) with Hamiltonian function of angular kinetic
341     energy.
342     \begin{equation}
343     J(\pi ) = \left( {\begin{array}{*{20}c}
344     0 & {\pi _3 } & { - \pi _2 } \\
345     { - \pi _3 } & 0 & {\pi _1 } \\
346     {\pi _2 } & { - \pi _1 } & 0 \\
347     \end{array}} \right)
348     \end{equation}
349    
350     \begin{equation}
351     H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352     }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353     \end{equation}
354    
355     \subsection{\label{introSection:geometricProperties}Geometric Properties}
356     Let $x(t)$ be the exact solution of the ODE system,
357     \begin{equation}
358     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
359     \end{equation}
360     The exact flow(solution) $\varphi_\tau$ is defined by
361     \[
362     x(t+\tau) =\varphi_\tau(x(t))
363     \]
364     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365     space to itself. In most cases, it is not easy to find the exact
366     flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367     which is usually called integrator. The order of an integrator
368     $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369     order $p$,
370     \begin{equation}
371     \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
372     \end{equation}
373    
374     The hidden geometric properties of ODE and its flow play important
375 tim 2699 roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
376     vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
377 tim 2698 \begin{equation}
378 tim 2699 '\varphi^T J '\varphi = J.
379 tim 2698 \end{equation}
380     According to Liouville's theorem, the symplectic volume is invariant
381     under a Hamiltonian flow, which is the basis for classical
382 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
383     field on a symplectic manifold can be shown to be a
384     symplectomorphism. As to the Poisson system,
385 tim 2698 \begin{equation}
386 tim 2699 '\varphi ^T J '\varphi = J \circ \varphi
387 tim 2698 \end{equation}
388     is the property must be preserved by the integrator. It is possible
389     to construct a \emph{volume-preserving} flow for a source free($
390     \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi =
391     1$. Changing the variables $y = h(x)$ in a
392     ODE\ref{introEquation:ODE} will result in a new system,
393     \[
394     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
395     \]
396     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
397     In other words, the flow of this vector field is reversible if and
398     only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $. When
399     designing any numerical methods, one should always try to preserve
400     the structural properties of the original ODE and its flow.
401    
402 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
403     A lot of well established and very effective numerical methods have
404     been successful precisely because of their symplecticities even
405     though this fact was not recognized when they were first
406     constructed. The most famous example is leapfrog methods in
407     molecular dynamics. In general, symplectic integrators can be
408     constructed using one of four different methods.
409     \begin{enumerate}
410     \item Generating functions
411     \item Variational methods
412     \item Runge-Kutta methods
413     \item Splitting methods
414     \end{enumerate}
415 tim 2698
416 tim 2699 Generating function tends to lead to methods which are cumbersome
417     and difficult to use\cite{}. In dissipative systems, variational
418     methods can capture the decay of energy accurately\cite{}. Since
419     their geometrically unstable nature against non-Hamiltonian
420     perturbations, ordinary implicit Runge-Kutta methods are not
421     suitable for Hamiltonian system. Recently, various high-order
422     explicit Runge--Kutta methods have been developed to overcome this
423     instability \cite{}. However, due to computational penalty involved
424     in implementing the Runge-Kutta methods, they do not attract too
425     much attention from Molecular Dynamics community. Instead, splitting
426     have been widely accepted since they exploit natural decompositions
427     of the system\cite{Tuckerman92}. The main idea behind splitting
428     methods is to decompose the discrete $\varphi_h$ as a composition of
429     simpler flows,
430     \begin{equation}
431     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
432     \varphi _{h_n }
433     \label{introEquation:FlowDecomposition}
434     \end{equation}
435     where each of the sub-flow is chosen such that each represent a
436     simpler integration of the system. Let $\phi$ and $\psi$ both be
437     symplectic maps, it is easy to show that any composition of
438     symplectic flows yields a symplectic map,
439     \begin{equation}
440     (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
441     '\phi ' = \phi '^T J\phi ' = J.
442     \label{introEquation:SymplecticFlowComposition}
443     \end{equation}
444     Suppose that a Hamiltonian system has a form with $H = T + V$
445    
446    
447    
448 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
449    
450     As a special discipline of molecular modeling, Molecular dynamics
451     has proven to be a powerful tool for studying the functions of
452     biological systems, providing structural, thermodynamic and
453     dynamical information.
454    
455     \subsection{\label{introSec:mdInit}Initialization}
456    
457     \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
458    
459 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
460 tim 2692
461 tim 2694 A rigid body is a body in which the distance between any two given
462     points of a rigid body remains constant regardless of external
463     forces exerted on it. A rigid body therefore conserves its shape
464     during its motion.
465    
466     Applications of dynamics of rigid bodies.
467    
468 tim 2695 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
469 tim 2694
470 tim 2695 \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
471    
472     \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
473    
474 tim 2694 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
475    
476 tim 2693 \section{\label{introSection:correlationFunctions}Correlation Functions}
477 tim 2692
478 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
479    
480 tim 2696 \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
481    
482 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
483 tim 2685
484 tim 2696 \begin{equation}
485     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
486     \label{introEquation:bathGLE}
487     \end{equation}
488     where $H_B$ is harmonic bath Hamiltonian,
489     \[
490     H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
491     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
492     \]
493     and $\Delta U$ is bilinear system-bath coupling,
494     \[
495     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
496     \]
497     Completing the square,
498     \[
499     H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
500     {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
501     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
502     w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
503     1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
504     \]
505     and putting it back into Eq.~\ref{introEquation:bathGLE},
506     \[
507     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
508     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
509     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
510     w_\alpha ^2 }}x} \right)^2 } \right\}}
511     \]
512     where
513     \[
514     W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
515     }}{{2m_\alpha w_\alpha ^2 }}} x^2
516     \]
517     Since the first two terms of the new Hamiltonian depend only on the
518     system coordinates, we can get the equations of motion for
519     Generalized Langevin Dynamics by Hamilton's equations
520     \ref{introEquation:motionHamiltonianCoordinate,
521     introEquation:motionHamiltonianMomentum},
522     \begin{align}
523     \dot p &= - \frac{{\partial H}}{{\partial x}}
524     &= m\ddot x
525     &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
526     \label{introEq:Lp5}
527     \end{align}
528     , and
529     \begin{align}
530     \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
531     &= m\ddot x_\alpha
532     &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
533     \end{align}
534    
535     \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
536    
537     \[
538     L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
539     \]
540    
541     \[
542     L(x + y) = L(x) + L(y)
543     \]
544    
545     \[
546     L(ax) = aL(x)
547     \]
548    
549     \[
550     L(\dot x) = pL(x) - px(0)
551     \]
552    
553     \[
554     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
555     \]
556    
557     \[
558     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
559     \]
560    
561     Some relatively important transformation,
562     \[
563     L(\cos at) = \frac{p}{{p^2 + a^2 }}
564     \]
565    
566     \[
567     L(\sin at) = \frac{a}{{p^2 + a^2 }}
568     \]
569    
570     \[
571     L(1) = \frac{1}{p}
572     \]
573    
574     First, the bath coordinates,
575     \[
576     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
577     _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
578     }}L(x)
579     \]
580     \[
581     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
582     px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
583     \]
584     Then, the system coordinates,
585     \begin{align}
586     mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
587     \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
588     }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
589     (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
590     }}\omega _\alpha ^2 L(x)} \right\}}
591     %
592     &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
593     \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
594     - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
595     - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
596     \end{align}
597     Then, the inverse transform,
598    
599     \begin{align}
600     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
601     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
602     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
603     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
604     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
605     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
606     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
607     %
608     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
609     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
610     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
611     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
612     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
613     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
614     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
615     (\omega _\alpha t)} \right\}}
616     \end{align}
617    
618     \begin{equation}
619     m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
620     (t)\dot x(t - \tau )d\tau } + R(t)
621     \label{introEuqation:GeneralizedLangevinDynamics}
622     \end{equation}
623     %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
624     %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
625     \[
626     \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
627     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
628     \]
629     For an infinite harmonic bath, we can use the spectral density and
630     an integral over frequencies.
631    
632     \[
633     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
634     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
635     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
636     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
637     \]
638     The random forces depend only on initial conditions.
639    
640     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
641     So we can define a new set of coordinates,
642     \[
643     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
644     ^2 }}x(0)
645     \]
646     This makes
647     \[
648     R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
649     \]
650     And since the $q$ coordinates are harmonic oscillators,
651     \[
652     \begin{array}{l}
653     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
654     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
655     \end{array}
656     \]
657    
658     \begin{align}
659     \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
660     {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
661     (t)q_\beta (0)} \right\rangle } }
662     %
663     &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
664     \right\rangle \cos (\omega _\alpha t)}
665     %
666     &= kT\xi (t)
667     \end{align}
668    
669     \begin{equation}
670     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
671     \label{introEquation:secondFluctuationDissipation}
672     \end{equation}
673    
674     \section{\label{introSection:hydroynamics}Hydrodynamics}
675    
676     \subsection{\label{introSection:frictionTensor} Friction Tensor}
677     \subsection{\label{introSection:analyticalApproach}Analytical
678     Approach}
679    
680     \subsection{\label{introSection:approximationApproach}Approximation
681     Approach}
682    
683     \subsection{\label{introSection:centersRigidBody}Centers of Rigid
684     Body}