ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2706
Committed: Thu Apr 13 04:47:47 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 50291 byte(s)
Log Message:
adding constrained hamiltonian for rigidbody

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2694 Newton¡¯s third law states that
33     \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
121 tim 2692 motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224 tim 2700 Statistical Mechanics concepts and theorem presented in this
225     dissertation.
226 tim 2692
227 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 tim 2692
229 tim 2700 Mathematically, phase space is the space which represents all
230     possible states. Each possible state of the system corresponds to
231     one unique point in the phase space. For mechanical systems, the
232     phase space usually consists of all possible values of position and
233     momentum variables. Consider a dynamic system in a cartesian space,
234     where each of the $6f$ coordinates and momenta is assigned to one of
235     $6f$ mutually orthogonal axes, the phase space of this system is a
236     $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237     \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238     momenta is a phase space vector.
239    
240     A microscopic state or microstate of a classical system is
241     specification of the complete phase space vector of a system at any
242     instant in time. An ensemble is defined as a collection of systems
243     sharing one or more macroscopic characteristics but each being in a
244     unique microstate. The complete ensemble is specified by giving all
245     systems or microstates consistent with the common macroscopic
246     characteristics of the ensemble. Although the state of each
247     individual system in the ensemble could be precisely described at
248     any instance in time by a suitable phase space vector, when using
249     ensembles for statistical purposes, there is no need to maintain
250     distinctions between individual systems, since the numbers of
251     systems at any time in the different states which correspond to
252     different regions of the phase space are more interesting. Moreover,
253     in the point of view of statistical mechanics, one would prefer to
254     use ensembles containing a large enough population of separate
255     members so that the numbers of systems in such different states can
256     be regarded as changing continuously as we traverse different
257     regions of the phase space. The condition of an ensemble at any time
258     can be regarded as appropriately specified by the density $\rho$
259     with which representative points are distributed over the phase
260     space. The density of distribution for an ensemble with $f$ degrees
261     of freedom is defined as,
262     \begin{equation}
263     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264     \label{introEquation:densityDistribution}
265     \end{equation}
266     Governed by the principles of mechanics, the phase points change
267     their value which would change the density at any time at phase
268     space. Hence, the density of distribution is also to be taken as a
269     function of the time.
270    
271     The number of systems $\delta N$ at time $t$ can be determined by,
272     \begin{equation}
273     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274     \label{introEquation:deltaN}
275     \end{equation}
276     Assuming a large enough population of systems are exploited, we can
277     sufficiently approximate $\delta N$ without introducing
278     discontinuity when we go from one region in the phase space to
279     another. By integrating over the whole phase space,
280     \begin{equation}
281     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282     \label{introEquation:totalNumberSystem}
283     \end{equation}
284     gives us an expression for the total number of the systems. Hence,
285     the probability per unit in the phase space can be obtained by,
286     \begin{equation}
287     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289     \label{introEquation:unitProbability}
290     \end{equation}
291     With the help of Equation(\ref{introEquation:unitProbability}) and
292     the knowledge of the system, it is possible to calculate the average
293     value of any desired quantity which depends on the coordinates and
294     momenta of the system. Even when the dynamics of the real system is
295     complex, or stochastic, or even discontinuous, the average
296     properties of the ensemble of possibilities as a whole may still
297     remain well defined. For a classical system in thermal equilibrium
298     with its environment, the ensemble average of a mechanical quantity,
299     $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300     phase space of the system,
301     \begin{equation}
302     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305     \label{introEquation:ensembelAverage}
306     \end{equation}
307    
308     There are several different types of ensembles with different
309     statistical characteristics. As a function of macroscopic
310     parameters, such as temperature \textit{etc}, partition function can
311     be used to describe the statistical properties of a system in
312     thermodynamic equilibrium.
313    
314     As an ensemble of systems, each of which is known to be thermally
315     isolated and conserve energy, Microcanonical ensemble(NVE) has a
316     partition function like,
317     \begin{equation}
318 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 tim 2700 \end{equation}
320     A canonical ensemble(NVT)is an ensemble of systems, each of which
321     can share its energy with a large heat reservoir. The distribution
322     of the total energy amongst the possible dynamical states is given
323     by the partition function,
324     \begin{equation}
325     \Omega (N,V,T) = e^{ - \beta A}
326     \label{introEquation:NVTPartition}
327     \end{equation}
328     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329     TS$. Since most experiment are carried out under constant pressure
330     condition, isothermal-isobaric ensemble(NPT) play a very important
331     role in molecular simulation. The isothermal-isobaric ensemble allow
332     the system to exchange energy with a heat bath of temperature $T$
333     and to change the volume as well. Its partition function is given as
334     \begin{equation}
335     \Delta (N,P,T) = - e^{\beta G}.
336     \label{introEquation:NPTPartition}
337     \end{equation}
338     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339    
340     \subsection{\label{introSection:liouville}Liouville's theorem}
341    
342     The Liouville's theorem is the foundation on which statistical
343     mechanics rests. It describes the time evolution of phase space
344     distribution function. In order to calculate the rate of change of
345     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346     consider the two faces perpendicular to the $q_1$ axis, which are
347     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348     leaving the opposite face is given by the expression,
349     \begin{equation}
350     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353     \ldots \delta p_f .
354     \end{equation}
355     Summing all over the phase space, we obtain
356     \begin{equation}
357     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363     \end{equation}
364     Differentiating the equations of motion in Hamiltonian formalism
365     (\ref{introEquation:motionHamiltonianCoordinate},
366     \ref{introEquation:motionHamiltonianMomentum}), we can show,
367     \begin{equation}
368     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370     \end{equation}
371     which cancels the first terms of the right hand side. Furthermore,
372     divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373     p_f $ in both sides, we can write out Liouville's theorem in a
374     simple form,
375     \begin{equation}
376     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379     \label{introEquation:liouvilleTheorem}
380     \end{equation}
381    
382     Liouville's theorem states that the distribution function is
383     constant along any trajectory in phase space. In classical
384     statistical mechanics, since the number of particles in the system
385     is huge, we may be able to believe the system is stationary,
386     \begin{equation}
387     \frac{{\partial \rho }}{{\partial t}} = 0.
388     \label{introEquation:stationary}
389     \end{equation}
390     In such stationary system, the density of distribution $\rho$ can be
391     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392     distribution,
393     \begin{equation}
394     \rho \propto e^{ - \beta H}
395     \label{introEquation:densityAndHamiltonian}
396     \end{equation}
397    
398 tim 2702 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399     Lets consider a region in the phase space,
400     \begin{equation}
401     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402     \end{equation}
403     If this region is small enough, the density $\rho$ can be regarded
404     as uniform over the whole phase space. Thus, the number of phase
405     points inside this region is given by,
406     \begin{equation}
407     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408     dp_1 } ..dp_f.
409     \end{equation}
410    
411     \begin{equation}
412     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413     \frac{d}{{dt}}(\delta v) = 0.
414     \end{equation}
415     With the help of stationary assumption
416     (\ref{introEquation:stationary}), we obtain the principle of the
417     \emph{conservation of extension in phase space},
418     \begin{equation}
419     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420     ...dq_f dp_1 } ..dp_f = 0.
421     \label{introEquation:volumePreserving}
422     \end{equation}
423    
424     \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425    
426 tim 2700 Liouville's theorem can be expresses in a variety of different forms
427     which are convenient within different contexts. For any two function
428     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429     bracket ${F, G}$ is defined as
430     \begin{equation}
431     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434     q_i }}} \right)}.
435     \label{introEquation:poissonBracket}
436     \end{equation}
437     Substituting equations of motion in Hamiltonian formalism(
438     \ref{introEquation:motionHamiltonianCoordinate} ,
439     \ref{introEquation:motionHamiltonianMomentum} ) into
440     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441     theorem using Poisson bracket notion,
442     \begin{equation}
443     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444     {\rho ,H} \right\}.
445     \label{introEquation:liouvilleTheromInPoissin}
446     \end{equation}
447     Moreover, the Liouville operator is defined as
448     \begin{equation}
449     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452     \label{introEquation:liouvilleOperator}
453     \end{equation}
454     In terms of Liouville operator, Liouville's equation can also be
455     expressed as
456     \begin{equation}
457     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458     \label{introEquation:liouvilleTheoremInOperator}
459     \end{equation}
460    
461 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 tim 2692
463 tim 2695 Various thermodynamic properties can be calculated from Molecular
464     Dynamics simulation. By comparing experimental values with the
465     calculated properties, one can determine the accuracy of the
466     simulation and the quality of the underlying model. However, both of
467     experiment and computer simulation are usually performed during a
468     certain time interval and the measurements are averaged over a
469     period of them which is different from the average behavior of
470     many-body system in Statistical Mechanics. Fortunately, Ergodic
471     Hypothesis is proposed to make a connection between time average and
472     ensemble average. It states that time average and average over the
473     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474     \begin{equation}
475 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 tim 2695 \end{equation}
479 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481     distribution function. If an observation is averaged over a
482     sufficiently long time (longer than relaxation time), all accessible
483     microstates in phase space are assumed to be equally probed, giving
484     a properly weighted statistical average. This allows the researcher
485     freedom of choice when deciding how best to measure a given
486     observable. In case an ensemble averaged approach sounds most
487     reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488     utilized. Or if the system lends itself to a time averaging
489     approach, the Molecular Dynamics techniques in
490     Sec.~\ref{introSection:molecularDynamics} will be the best
491     choice\cite{Frenkel1996}.
492 tim 2694
493 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494     A variety of numerical integrators were proposed to simulate the
495     motions. They usually begin with an initial conditionals and move
496     the objects in the direction governed by the differential equations.
497     However, most of them ignore the hidden physical law contained
498     within the equations. Since 1990, geometric integrators, which
499     preserve various phase-flow invariants such as symplectic structure,
500     volume and time reversal symmetry, are developed to address this
501     issue. The velocity verlet method, which happens to be a simple
502     example of symplectic integrator, continues to gain its popularity
503     in molecular dynamics community. This fact can be partly explained
504     by its geometric nature.
505    
506     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507     A \emph{manifold} is an abstract mathematical space. It locally
508     looks like Euclidean space, but when viewed globally, it may have
509     more complicate structure. A good example of manifold is the surface
510     of Earth. It seems to be flat locally, but it is round if viewed as
511     a whole. A \emph{differentiable manifold} (also known as
512     \emph{smooth manifold}) is a manifold with an open cover in which
513     the covering neighborhoods are all smoothly isomorphic to one
514     another. In other words,it is possible to apply calculus on
515     \emph{differentiable manifold}. A \emph{symplectic manifold} is
516     defined as a pair $(M, \omega)$ which consisting of a
517     \emph{differentiable manifold} $M$ and a close, non-degenerated,
518     bilinear symplectic form, $\omega$. A symplectic form on a vector
519     space $V$ is a function $\omega(x, y)$ which satisfies
520     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522     $\omega(x, x) = 0$. Cross product operation in vector field is an
523     example of symplectic form.
524    
525     One of the motivations to study \emph{symplectic manifold} in
526     Hamiltonian Mechanics is that a symplectic manifold can represent
527     all possible configurations of the system and the phase space of the
528     system can be described by it's cotangent bundle. Every symplectic
529     manifold is even dimensional. For instance, in Hamilton equations,
530     coordinate and momentum always appear in pairs.
531    
532     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533     \[
534     f : M \rightarrow N
535     \]
536     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538     Canonical transformation is an example of symplectomorphism in
539 tim 2698 classical mechanics.
540 tim 2697
541 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 tim 2697
543 tim 2698 For a ordinary differential system defined as
544     \begin{equation}
545     \dot x = f(x)
546     \end{equation}
547     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548     \begin{equation}
549 tim 2699 f(r) = J\nabla _x H(r).
550 tim 2698 \end{equation}
551     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552     matrix
553     \begin{equation}
554     J = \left( {\begin{array}{*{20}c}
555     0 & I \\
556     { - I} & 0 \\
557     \end{array}} \right)
558     \label{introEquation:canonicalMatrix}
559     \end{equation}
560     where $I$ is an identity matrix. Using this notation, Hamiltonian
561     system can be rewritten as,
562     \begin{equation}
563     \frac{d}{{dt}}x = J\nabla _x H(x)
564     \label{introEquation:compactHamiltonian}
565     \end{equation}In this case, $f$ is
566     called a \emph{Hamiltonian vector field}.
567 tim 2697
568 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569     \begin{equation}
570     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571     \end{equation}
572     The most obvious change being that matrix $J$ now depends on $x$.
573     The free rigid body is an example of Poisson system (actually a
574     Lie-Poisson system) with Hamiltonian function of angular kinetic
575     energy.
576     \begin{equation}
577     J(\pi ) = \left( {\begin{array}{*{20}c}
578     0 & {\pi _3 } & { - \pi _2 } \\
579     { - \pi _3 } & 0 & {\pi _1 } \\
580     {\pi _2 } & { - \pi _1 } & 0 \\
581     \end{array}} \right)
582     \end{equation}
583    
584     \begin{equation}
585     H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586     }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587     \end{equation}
588    
589 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
590    
591 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
592     \begin{equation}
593     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
594     \end{equation}
595     The exact flow(solution) $\varphi_\tau$ is defined by
596     \[
597     x(t+\tau) =\varphi_\tau(x(t))
598     \]
599     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
600 tim 2702 space to itself. The flow has the continuous group property,
601 tim 2698 \begin{equation}
602 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
603     + \tau _2 } .
604     \end{equation}
605     In particular,
606     \begin{equation}
607     \varphi _\tau \circ \varphi _{ - \tau } = I
608     \end{equation}
609     Therefore, the exact flow is self-adjoint,
610     \begin{equation}
611     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
612     \end{equation}
613     The exact flow can also be written in terms of the of an operator,
614     \begin{equation}
615     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
616     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
617     \label{introEquation:exponentialOperator}
618     \end{equation}
619    
620     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
621     Instead, we use a approximate map, $\psi_\tau$, which is usually
622     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
623     the Taylor series of $\psi_\tau$ agree to order $p$,
624     \begin{equation}
625 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
626     \end{equation}
627    
628 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
629    
630 tim 2698 The hidden geometric properties of ODE and its flow play important
631 tim 2702 roles in numerical studies. Many of them can be found in systems
632     which occur naturally in applications.
633    
634     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
635     a \emph{symplectic} flow if it satisfies,
636 tim 2698 \begin{equation}
637 tim 2703 {\varphi '}^T J \varphi ' = J.
638 tim 2698 \end{equation}
639     According to Liouville's theorem, the symplectic volume is invariant
640     under a Hamiltonian flow, which is the basis for classical
641 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
642     field on a symplectic manifold can be shown to be a
643     symplectomorphism. As to the Poisson system,
644 tim 2698 \begin{equation}
645 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
646 tim 2698 \end{equation}
647 tim 2702 is the property must be preserved by the integrator.
648    
649     It is possible to construct a \emph{volume-preserving} flow for a
650     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
651     \det d\varphi = 1$. One can show easily that a symplectic flow will
652     be volume-preserving.
653    
654     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
655     will result in a new system,
656 tim 2698 \[
657     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
658     \]
659     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
660     In other words, the flow of this vector field is reversible if and
661 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
662 tim 2698
663 tim 2705 A \emph{first integral}, or conserved quantity of a general
664     differential function is a function $ G:R^{2d} \to R^d $ which is
665     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
666     \[
667     \frac{{dG(x(t))}}{{dt}} = 0.
668     \]
669     Using chain rule, one may obtain,
670     \[
671     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
672     \]
673     which is the condition for conserving \emph{first integral}. For a
674     canonical Hamiltonian system, the time evolution of an arbitrary
675     smooth function $G$ is given by,
676     \begin{equation}
677     \begin{array}{c}
678     \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
679     = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
680     \end{array}
681     \label{introEquation:firstIntegral1}
682     \end{equation}
683     Using poisson bracket notion, Equation
684     \ref{introEquation:firstIntegral1} can be rewritten as
685     \[
686     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
687     \]
688     Therefore, the sufficient condition for $G$ to be the \emph{first
689     integral} of a Hamiltonian system is
690     \[
691     \left\{ {G,H} \right\} = 0.
692     \]
693     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
694     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
695     0$.
696    
697    
698     When designing any numerical methods, one should always try to
699 tim 2702 preserve the structural properties of the original ODE and its flow.
700    
701 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
702     A lot of well established and very effective numerical methods have
703     been successful precisely because of their symplecticities even
704     though this fact was not recognized when they were first
705     constructed. The most famous example is leapfrog methods in
706     molecular dynamics. In general, symplectic integrators can be
707     constructed using one of four different methods.
708     \begin{enumerate}
709     \item Generating functions
710     \item Variational methods
711     \item Runge-Kutta methods
712     \item Splitting methods
713     \end{enumerate}
714 tim 2698
715 tim 2699 Generating function tends to lead to methods which are cumbersome
716 tim 2702 and difficult to use. In dissipative systems, variational methods
717     can capture the decay of energy accurately. Since their
718     geometrically unstable nature against non-Hamiltonian perturbations,
719     ordinary implicit Runge-Kutta methods are not suitable for
720     Hamiltonian system. Recently, various high-order explicit
721     Runge--Kutta methods have been developed to overcome this
722 tim 2703 instability. However, due to computational penalty involved in
723     implementing the Runge-Kutta methods, they do not attract too much
724     attention from Molecular Dynamics community. Instead, splitting have
725     been widely accepted since they exploit natural decompositions of
726     the system\cite{Tuckerman92}.
727 tim 2702
728     \subsubsection{\label{introSection:splittingMethod}Splitting Method}
729    
730     The main idea behind splitting methods is to decompose the discrete
731     $\varphi_h$ as a composition of simpler flows,
732 tim 2699 \begin{equation}
733     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
734     \varphi _{h_n }
735     \label{introEquation:FlowDecomposition}
736     \end{equation}
737     where each of the sub-flow is chosen such that each represent a
738 tim 2702 simpler integration of the system.
739    
740     Suppose that a Hamiltonian system takes the form,
741     \[
742     H = H_1 + H_2.
743     \]
744     Here, $H_1$ and $H_2$ may represent different physical processes of
745     the system. For instance, they may relate to kinetic and potential
746     energy respectively, which is a natural decomposition of the
747     problem. If $H_1$ and $H_2$ can be integrated using exact flows
748     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
749     order is then given by the Lie-Trotter formula
750 tim 2699 \begin{equation}
751 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
752     \label{introEquation:firstOrderSplitting}
753     \end{equation}
754     where $\varphi _h$ is the result of applying the corresponding
755     continuous $\varphi _i$ over a time $h$. By definition, as
756     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
757     must follow that each operator $\varphi_i(t)$ is a symplectic map.
758     It is easy to show that any composition of symplectic flows yields a
759     symplectic map,
760     \begin{equation}
761 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
762 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
763 tim 2699 \label{introEquation:SymplecticFlowComposition}
764     \end{equation}
765 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
766     splitting in this context automatically generates a symplectic map.
767 tim 2699
768 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
769     introduces local errors proportional to $h^2$, while Strang
770     splitting gives a second-order decomposition,
771     \begin{equation}
772     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
773 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
774 tim 2702 \end{equation}
775     which has a local error proportional to $h^3$. Sprang splitting's
776     popularity in molecular simulation community attribute to its
777     symmetric property,
778     \begin{equation}
779     \varphi _h^{ - 1} = \varphi _{ - h}.
780 tim 2703 \label{introEquation:timeReversible}
781 tim 2702 \end{equation}
782    
783     \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
784     The classical equation for a system consisting of interacting
785     particles can be written in Hamiltonian form,
786     \[
787     H = T + V
788     \]
789     where $T$ is the kinetic energy and $V$ is the potential energy.
790     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
791     obtains the following:
792     \begin{align}
793     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
794     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
795     \label{introEquation:Lp10a} \\%
796     %
797     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
798     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
799     \label{introEquation:Lp10b}
800     \end{align}
801     where $F(t)$ is the force at time $t$. This integration scheme is
802     known as \emph{velocity verlet} which is
803     symplectic(\ref{introEquation:SymplecticFlowComposition}),
804     time-reversible(\ref{introEquation:timeReversible}) and
805     volume-preserving (\ref{introEquation:volumePreserving}). These
806     geometric properties attribute to its long-time stability and its
807     popularity in the community. However, the most commonly used
808     velocity verlet integration scheme is written as below,
809     \begin{align}
810     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
811     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
812     %
813     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
814     \label{introEquation:Lp9b}\\%
815     %
816     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
817     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
818     \end{align}
819     From the preceding splitting, one can see that the integration of
820     the equations of motion would follow:
821     \begin{enumerate}
822     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
823    
824     \item Use the half step velocities to move positions one whole step, $\Delta t$.
825    
826     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
827    
828     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
829     \end{enumerate}
830    
831     Simply switching the order of splitting and composing, a new
832     integrator, the \emph{position verlet} integrator, can be generated,
833     \begin{align}
834     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
835     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
836     \label{introEquation:positionVerlet1} \\%
837     %
838 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
839 tim 2702 q(\Delta t)} \right]. %
840     \label{introEquation:positionVerlet1}
841     \end{align}
842    
843     \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
844    
845     Baker-Campbell-Hausdorff formula can be used to determine the local
846     error of splitting method in terms of commutator of the
847     operators(\ref{introEquation:exponentialOperator}) associated with
848     the sub-flow. For operators $hX$ and $hY$ which are associate to
849     $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
850     \begin{equation}
851     \exp (hX + hY) = \exp (hZ)
852     \end{equation}
853     where
854     \begin{equation}
855     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
856     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
857     \end{equation}
858     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
859     \[
860     [X,Y] = XY - YX .
861     \]
862     Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
863     can obtain
864 tim 2703 \begin{eqnarray*}
865 tim 2702 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
866 tim 2703 [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
867     & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
868     \ldots )
869     \end{eqnarray*}
870 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
871     error of Spring splitting is proportional to $h^3$. The same
872     procedure can be applied to general splitting, of the form
873     \begin{equation}
874     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
875     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
876     \end{equation}
877     Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
878     order method. Yoshida proposed an elegant way to compose higher
879     order methods based on symmetric splitting. Given a symmetric second
880     order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
881     method can be constructed by composing,
882     \[
883     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
884     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
885     \]
886     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
887     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
888     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
889     \begin{equation}
890     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
891     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
892     \end{equation}
893     , if the weights are chosen as
894     \[
895     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
896     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
897     \]
898    
899 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
900    
901     As a special discipline of molecular modeling, Molecular dynamics
902     has proven to be a powerful tool for studying the functions of
903     biological systems, providing structural, thermodynamic and
904     dynamical information.
905    
906     \subsection{\label{introSec:mdInit}Initialization}
907    
908 tim 2705 \subsection{\label{introSec:forceEvaluation}Force Evaluation}
909    
910 tim 2694 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
911    
912 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
913 tim 2692
914 tim 2705 Rigid bodies are frequently involved in the modeling of different
915     areas, from engineering, physics, to chemistry. For example,
916     missiles and vehicle are usually modeled by rigid bodies. The
917     movement of the objects in 3D gaming engine or other physics
918     simulator is governed by the rigid body dynamics. In molecular
919     simulation, rigid body is used to simplify the model in
920     protein-protein docking study{\cite{Gray03}}.
921 tim 2694
922 tim 2705 It is very important to develop stable and efficient methods to
923     integrate the equations of motion of orientational degrees of
924     freedom. Euler angles are the nature choice to describe the
925     rotational degrees of freedom. However, due to its singularity, the
926     numerical integration of corresponding equations of motion is very
927     inefficient and inaccurate. Although an alternative integrator using
928     different sets of Euler angles can overcome this difficulty\cite{},
929     the computational penalty and the lost of angular momentum
930     conservation still remain. A singularity free representation
931     utilizing quaternions was developed by Evans in 1977. Unfortunately,
932     this approach suffer from the nonseparable Hamiltonian resulted from
933     quaternion representation, which prevents the symplectic algorithm
934     to be utilized. Another different approach is to apply holonomic
935     constraints to the atoms belonging to the rigid body. Each atom
936     moves independently under the normal forces deriving from potential
937     energy and constraint forces which are used to guarantee the
938     rigidness. However, due to their iterative nature, SHAKE and Rattle
939     algorithm converge very slowly when the number of constraint
940     increases.
941 tim 2694
942 tim 2705 The break through in geometric literature suggests that, in order to
943     develop a long-term integration scheme, one should preserve the
944     symplectic structure of the flow. Introducing conjugate momentum to
945     rotation matrix $A$ and re-formulating Hamiltonian's equation, a
946     symplectic integrator, RSHAKE, was proposed to evolve the
947     Hamiltonian system in a constraint manifold by iteratively
948     satisfying the orthogonality constraint $A_t A = 1$. An alternative
949     method using quaternion representation was developed by Omelyan.
950     However, both of these methods are iterative and inefficient. In
951     this section, we will present a symplectic Lie-Poisson integrator
952     for rigid body developed by Dullweber and his coworkers\cite{}.
953    
954 tim 2695 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955 tim 2694
956 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
957    
958     \begin{equation}
959     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
960     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
961     \label{introEquation:RBHamiltonian}
962     \end{equation}
963     Here, $q$ and $Q$ are the position and rotation matrix for the
964     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
965     $J$, a diagonal matrix, is defined by
966     \[
967     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
968     \]
969     where $I_{ii}$ is the diagonal element of the inertia tensor. This
970     constrained Hamiltonian equation subjects to a holonomic constraint,
971     \begin{equation}
972     Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
973     \end{equation}
974     which is used to ensure rotation matrix's orthogonality.
975     Differentiating \ref{introEquation:orthogonalConstraint} and using
976     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
977     \begin{equation}
978     Q^t PJ^{ - 1} + J^{ - 1} P^t Q = 0 . \\
979     \label{introEquation:RBFirstOrderConstraint}
980     \end{equation}
981    
982     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
983     \ref{introEquation:motionHamiltonianMomentum}), one can write down
984     the equations of motion,
985     \[
986     \begin{array}{c}
987     \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
988     \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
989     \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
990     \frac{{dP}}{{dt}} = - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
991     \end{array}
992     \]
993    
994    
995     \[
996     M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1} + J^{ - 1} P^t Q = 0}
997     \right\} .
998     \]
999    
1000 tim 2695 \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1001    
1002 tim 2706 \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1003 tim 2695
1004 tim 2692
1005 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006    
1007 tim 2696 \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1008    
1009 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1010 tim 2685
1011 tim 2696 \begin{equation}
1012     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1013     \label{introEquation:bathGLE}
1014     \end{equation}
1015     where $H_B$ is harmonic bath Hamiltonian,
1016     \[
1017     H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1018     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
1019     \]
1020     and $\Delta U$ is bilinear system-bath coupling,
1021     \[
1022     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1023     \]
1024     Completing the square,
1025     \[
1026     H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
1027     {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1028     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1029     w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
1030     1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
1031     \]
1032     and putting it back into Eq.~\ref{introEquation:bathGLE},
1033     \[
1034     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1035     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1036     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1037     w_\alpha ^2 }}x} \right)^2 } \right\}}
1038     \]
1039     where
1040     \[
1041     W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1042     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1043     \]
1044     Since the first two terms of the new Hamiltonian depend only on the
1045     system coordinates, we can get the equations of motion for
1046     Generalized Langevin Dynamics by Hamilton's equations
1047     \ref{introEquation:motionHamiltonianCoordinate,
1048     introEquation:motionHamiltonianMomentum},
1049     \begin{align}
1050     \dot p &= - \frac{{\partial H}}{{\partial x}}
1051     &= m\ddot x
1052     &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
1053 tim 2702 \label{introEquation:Lp5}
1054 tim 2696 \end{align}
1055     , and
1056     \begin{align}
1057     \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
1058     &= m\ddot x_\alpha
1059     &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
1060     \end{align}
1061    
1062     \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1063    
1064     \[
1065     L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
1066     \]
1067    
1068     \[
1069     L(x + y) = L(x) + L(y)
1070     \]
1071    
1072     \[
1073     L(ax) = aL(x)
1074     \]
1075    
1076     \[
1077     L(\dot x) = pL(x) - px(0)
1078     \]
1079    
1080     \[
1081     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1082     \]
1083    
1084     \[
1085     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1086     \]
1087    
1088     Some relatively important transformation,
1089     \[
1090     L(\cos at) = \frac{p}{{p^2 + a^2 }}
1091     \]
1092    
1093     \[
1094     L(\sin at) = \frac{a}{{p^2 + a^2 }}
1095     \]
1096    
1097     \[
1098     L(1) = \frac{1}{p}
1099     \]
1100    
1101     First, the bath coordinates,
1102     \[
1103     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
1104     _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
1105     }}L(x)
1106     \]
1107     \[
1108     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
1109     px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
1110     \]
1111     Then, the system coordinates,
1112     \begin{align}
1113     mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1114     \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1115     }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
1116     (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1117     }}\omega _\alpha ^2 L(x)} \right\}}
1118     %
1119     &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1120     \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
1121     - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
1122     - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
1123     \end{align}
1124     Then, the inverse transform,
1125    
1126     \begin{align}
1127     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1128     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1129     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1130     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1131     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1132     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1133     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1134     %
1135     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1136     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1137     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1138     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1139     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1140     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1141     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1142     (\omega _\alpha t)} \right\}}
1143     \end{align}
1144    
1145     \begin{equation}
1146     m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1147     (t)\dot x(t - \tau )d\tau } + R(t)
1148     \label{introEuqation:GeneralizedLangevinDynamics}
1149     \end{equation}
1150     %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1151     %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
1152     \[
1153     \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1154     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1155     \]
1156     For an infinite harmonic bath, we can use the spectral density and
1157     an integral over frequencies.
1158    
1159     \[
1160     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1161     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1162     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1163     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
1164     \]
1165     The random forces depend only on initial conditions.
1166    
1167     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1168     So we can define a new set of coordinates,
1169     \[
1170     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1171     ^2 }}x(0)
1172     \]
1173     This makes
1174     \[
1175     R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
1176     \]
1177     And since the $q$ coordinates are harmonic oscillators,
1178     \[
1179     \begin{array}{l}
1180     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1181     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1182     \end{array}
1183     \]
1184    
1185     \begin{align}
1186     \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
1187     {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
1188     (t)q_\beta (0)} \right\rangle } }
1189     %
1190     &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1191     \right\rangle \cos (\omega _\alpha t)}
1192     %
1193     &= kT\xi (t)
1194     \end{align}
1195    
1196     \begin{equation}
1197     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1198     \label{introEquation:secondFluctuationDissipation}
1199     \end{equation}
1200    
1201     \section{\label{introSection:hydroynamics}Hydrodynamics}
1202    
1203     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1204     \subsection{\label{introSection:analyticalApproach}Analytical
1205     Approach}
1206    
1207     \subsection{\label{introSection:approximationApproach}Approximation
1208     Approach}
1209    
1210     \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1211     Body}
1212 tim 2706
1213     \section{\label{introSection:correlationFunctions}Correlation Functions}