ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2716
Committed: Mon Apr 17 20:39:26 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 66811 byte(s)
Log Message:
Adding Hydrodynamics

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2694 Newton¡¯s third law states that
33     \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
121 tim 2692 motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224 tim 2700 Statistical Mechanics concepts and theorem presented in this
225     dissertation.
226 tim 2692
227 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 tim 2692
229 tim 2700 Mathematically, phase space is the space which represents all
230     possible states. Each possible state of the system corresponds to
231     one unique point in the phase space. For mechanical systems, the
232     phase space usually consists of all possible values of position and
233     momentum variables. Consider a dynamic system in a cartesian space,
234     where each of the $6f$ coordinates and momenta is assigned to one of
235     $6f$ mutually orthogonal axes, the phase space of this system is a
236     $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237     \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238     momenta is a phase space vector.
239    
240     A microscopic state or microstate of a classical system is
241     specification of the complete phase space vector of a system at any
242     instant in time. An ensemble is defined as a collection of systems
243     sharing one or more macroscopic characteristics but each being in a
244     unique microstate. The complete ensemble is specified by giving all
245     systems or microstates consistent with the common macroscopic
246     characteristics of the ensemble. Although the state of each
247     individual system in the ensemble could be precisely described at
248     any instance in time by a suitable phase space vector, when using
249     ensembles for statistical purposes, there is no need to maintain
250     distinctions between individual systems, since the numbers of
251     systems at any time in the different states which correspond to
252     different regions of the phase space are more interesting. Moreover,
253     in the point of view of statistical mechanics, one would prefer to
254     use ensembles containing a large enough population of separate
255     members so that the numbers of systems in such different states can
256     be regarded as changing continuously as we traverse different
257     regions of the phase space. The condition of an ensemble at any time
258     can be regarded as appropriately specified by the density $\rho$
259     with which representative points are distributed over the phase
260     space. The density of distribution for an ensemble with $f$ degrees
261     of freedom is defined as,
262     \begin{equation}
263     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264     \label{introEquation:densityDistribution}
265     \end{equation}
266     Governed by the principles of mechanics, the phase points change
267     their value which would change the density at any time at phase
268     space. Hence, the density of distribution is also to be taken as a
269     function of the time.
270    
271     The number of systems $\delta N$ at time $t$ can be determined by,
272     \begin{equation}
273     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274     \label{introEquation:deltaN}
275     \end{equation}
276     Assuming a large enough population of systems are exploited, we can
277     sufficiently approximate $\delta N$ without introducing
278     discontinuity when we go from one region in the phase space to
279     another. By integrating over the whole phase space,
280     \begin{equation}
281     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282     \label{introEquation:totalNumberSystem}
283     \end{equation}
284     gives us an expression for the total number of the systems. Hence,
285     the probability per unit in the phase space can be obtained by,
286     \begin{equation}
287     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289     \label{introEquation:unitProbability}
290     \end{equation}
291     With the help of Equation(\ref{introEquation:unitProbability}) and
292     the knowledge of the system, it is possible to calculate the average
293     value of any desired quantity which depends on the coordinates and
294     momenta of the system. Even when the dynamics of the real system is
295     complex, or stochastic, or even discontinuous, the average
296     properties of the ensemble of possibilities as a whole may still
297     remain well defined. For a classical system in thermal equilibrium
298     with its environment, the ensemble average of a mechanical quantity,
299     $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300     phase space of the system,
301     \begin{equation}
302     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305     \label{introEquation:ensembelAverage}
306     \end{equation}
307    
308     There are several different types of ensembles with different
309     statistical characteristics. As a function of macroscopic
310     parameters, such as temperature \textit{etc}, partition function can
311     be used to describe the statistical properties of a system in
312     thermodynamic equilibrium.
313    
314     As an ensemble of systems, each of which is known to be thermally
315     isolated and conserve energy, Microcanonical ensemble(NVE) has a
316     partition function like,
317     \begin{equation}
318 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 tim 2700 \end{equation}
320     A canonical ensemble(NVT)is an ensemble of systems, each of which
321     can share its energy with a large heat reservoir. The distribution
322     of the total energy amongst the possible dynamical states is given
323     by the partition function,
324     \begin{equation}
325     \Omega (N,V,T) = e^{ - \beta A}
326     \label{introEquation:NVTPartition}
327     \end{equation}
328     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329     TS$. Since most experiment are carried out under constant pressure
330     condition, isothermal-isobaric ensemble(NPT) play a very important
331     role in molecular simulation. The isothermal-isobaric ensemble allow
332     the system to exchange energy with a heat bath of temperature $T$
333     and to change the volume as well. Its partition function is given as
334     \begin{equation}
335     \Delta (N,P,T) = - e^{\beta G}.
336     \label{introEquation:NPTPartition}
337     \end{equation}
338     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339    
340     \subsection{\label{introSection:liouville}Liouville's theorem}
341    
342     The Liouville's theorem is the foundation on which statistical
343     mechanics rests. It describes the time evolution of phase space
344     distribution function. In order to calculate the rate of change of
345     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346     consider the two faces perpendicular to the $q_1$ axis, which are
347     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348     leaving the opposite face is given by the expression,
349     \begin{equation}
350     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353     \ldots \delta p_f .
354     \end{equation}
355     Summing all over the phase space, we obtain
356     \begin{equation}
357     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363     \end{equation}
364     Differentiating the equations of motion in Hamiltonian formalism
365     (\ref{introEquation:motionHamiltonianCoordinate},
366     \ref{introEquation:motionHamiltonianMomentum}), we can show,
367     \begin{equation}
368     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370     \end{equation}
371     which cancels the first terms of the right hand side. Furthermore,
372     divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373     p_f $ in both sides, we can write out Liouville's theorem in a
374     simple form,
375     \begin{equation}
376     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379     \label{introEquation:liouvilleTheorem}
380     \end{equation}
381    
382     Liouville's theorem states that the distribution function is
383     constant along any trajectory in phase space. In classical
384     statistical mechanics, since the number of particles in the system
385     is huge, we may be able to believe the system is stationary,
386     \begin{equation}
387     \frac{{\partial \rho }}{{\partial t}} = 0.
388     \label{introEquation:stationary}
389     \end{equation}
390     In such stationary system, the density of distribution $\rho$ can be
391     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392     distribution,
393     \begin{equation}
394     \rho \propto e^{ - \beta H}
395     \label{introEquation:densityAndHamiltonian}
396     \end{equation}
397    
398 tim 2702 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399     Lets consider a region in the phase space,
400     \begin{equation}
401     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402     \end{equation}
403     If this region is small enough, the density $\rho$ can be regarded
404     as uniform over the whole phase space. Thus, the number of phase
405     points inside this region is given by,
406     \begin{equation}
407     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408     dp_1 } ..dp_f.
409     \end{equation}
410    
411     \begin{equation}
412     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413     \frac{d}{{dt}}(\delta v) = 0.
414     \end{equation}
415     With the help of stationary assumption
416     (\ref{introEquation:stationary}), we obtain the principle of the
417     \emph{conservation of extension in phase space},
418     \begin{equation}
419     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420     ...dq_f dp_1 } ..dp_f = 0.
421     \label{introEquation:volumePreserving}
422     \end{equation}
423    
424     \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425    
426 tim 2700 Liouville's theorem can be expresses in a variety of different forms
427     which are convenient within different contexts. For any two function
428     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429     bracket ${F, G}$ is defined as
430     \begin{equation}
431     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434     q_i }}} \right)}.
435     \label{introEquation:poissonBracket}
436     \end{equation}
437     Substituting equations of motion in Hamiltonian formalism(
438     \ref{introEquation:motionHamiltonianCoordinate} ,
439     \ref{introEquation:motionHamiltonianMomentum} ) into
440     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441     theorem using Poisson bracket notion,
442     \begin{equation}
443     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444     {\rho ,H} \right\}.
445     \label{introEquation:liouvilleTheromInPoissin}
446     \end{equation}
447     Moreover, the Liouville operator is defined as
448     \begin{equation}
449     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452     \label{introEquation:liouvilleOperator}
453     \end{equation}
454     In terms of Liouville operator, Liouville's equation can also be
455     expressed as
456     \begin{equation}
457     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458     \label{introEquation:liouvilleTheoremInOperator}
459     \end{equation}
460    
461 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 tim 2692
463 tim 2695 Various thermodynamic properties can be calculated from Molecular
464     Dynamics simulation. By comparing experimental values with the
465     calculated properties, one can determine the accuracy of the
466     simulation and the quality of the underlying model. However, both of
467     experiment and computer simulation are usually performed during a
468     certain time interval and the measurements are averaged over a
469     period of them which is different from the average behavior of
470     many-body system in Statistical Mechanics. Fortunately, Ergodic
471     Hypothesis is proposed to make a connection between time average and
472     ensemble average. It states that time average and average over the
473     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474     \begin{equation}
475 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 tim 2695 \end{equation}
479 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481     distribution function. If an observation is averaged over a
482     sufficiently long time (longer than relaxation time), all accessible
483     microstates in phase space are assumed to be equally probed, giving
484     a properly weighted statistical average. This allows the researcher
485     freedom of choice when deciding how best to measure a given
486     observable. In case an ensemble averaged approach sounds most
487     reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488     utilized. Or if the system lends itself to a time averaging
489     approach, the Molecular Dynamics techniques in
490     Sec.~\ref{introSection:molecularDynamics} will be the best
491     choice\cite{Frenkel1996}.
492 tim 2694
493 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494     A variety of numerical integrators were proposed to simulate the
495     motions. They usually begin with an initial conditionals and move
496     the objects in the direction governed by the differential equations.
497     However, most of them ignore the hidden physical law contained
498     within the equations. Since 1990, geometric integrators, which
499     preserve various phase-flow invariants such as symplectic structure,
500     volume and time reversal symmetry, are developed to address this
501     issue. The velocity verlet method, which happens to be a simple
502     example of symplectic integrator, continues to gain its popularity
503     in molecular dynamics community. This fact can be partly explained
504     by its geometric nature.
505    
506     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507     A \emph{manifold} is an abstract mathematical space. It locally
508     looks like Euclidean space, but when viewed globally, it may have
509     more complicate structure. A good example of manifold is the surface
510     of Earth. It seems to be flat locally, but it is round if viewed as
511     a whole. A \emph{differentiable manifold} (also known as
512     \emph{smooth manifold}) is a manifold with an open cover in which
513     the covering neighborhoods are all smoothly isomorphic to one
514     another. In other words,it is possible to apply calculus on
515     \emph{differentiable manifold}. A \emph{symplectic manifold} is
516     defined as a pair $(M, \omega)$ which consisting of a
517     \emph{differentiable manifold} $M$ and a close, non-degenerated,
518     bilinear symplectic form, $\omega$. A symplectic form on a vector
519     space $V$ is a function $\omega(x, y)$ which satisfies
520     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522     $\omega(x, x) = 0$. Cross product operation in vector field is an
523     example of symplectic form.
524    
525     One of the motivations to study \emph{symplectic manifold} in
526     Hamiltonian Mechanics is that a symplectic manifold can represent
527     all possible configurations of the system and the phase space of the
528     system can be described by it's cotangent bundle. Every symplectic
529     manifold is even dimensional. For instance, in Hamilton equations,
530     coordinate and momentum always appear in pairs.
531    
532     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533     \[
534     f : M \rightarrow N
535     \]
536     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538     Canonical transformation is an example of symplectomorphism in
539 tim 2698 classical mechanics.
540 tim 2697
541 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 tim 2697
543 tim 2698 For a ordinary differential system defined as
544     \begin{equation}
545     \dot x = f(x)
546     \end{equation}
547     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548     \begin{equation}
549 tim 2699 f(r) = J\nabla _x H(r).
550 tim 2698 \end{equation}
551     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552     matrix
553     \begin{equation}
554     J = \left( {\begin{array}{*{20}c}
555     0 & I \\
556     { - I} & 0 \\
557     \end{array}} \right)
558     \label{introEquation:canonicalMatrix}
559     \end{equation}
560     where $I$ is an identity matrix. Using this notation, Hamiltonian
561     system can be rewritten as,
562     \begin{equation}
563     \frac{d}{{dt}}x = J\nabla _x H(x)
564     \label{introEquation:compactHamiltonian}
565     \end{equation}In this case, $f$ is
566     called a \emph{Hamiltonian vector field}.
567 tim 2697
568 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569     \begin{equation}
570     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571     \end{equation}
572     The most obvious change being that matrix $J$ now depends on $x$.
573    
574 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
575    
576 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
577     \begin{equation}
578     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579     \end{equation}
580     The exact flow(solution) $\varphi_\tau$ is defined by
581     \[
582     x(t+\tau) =\varphi_\tau(x(t))
583     \]
584     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 tim 2702 space to itself. The flow has the continuous group property,
586 tim 2698 \begin{equation}
587 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
588     + \tau _2 } .
589     \end{equation}
590     In particular,
591     \begin{equation}
592     \varphi _\tau \circ \varphi _{ - \tau } = I
593     \end{equation}
594     Therefore, the exact flow is self-adjoint,
595     \begin{equation}
596     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
597     \end{equation}
598     The exact flow can also be written in terms of the of an operator,
599     \begin{equation}
600     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602     \label{introEquation:exponentialOperator}
603     \end{equation}
604    
605     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606     Instead, we use a approximate map, $\psi_\tau$, which is usually
607     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608     the Taylor series of $\psi_\tau$ agree to order $p$,
609     \begin{equation}
610 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611     \end{equation}
612    
613 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
614    
615 tim 2698 The hidden geometric properties of ODE and its flow play important
616 tim 2702 roles in numerical studies. Many of them can be found in systems
617     which occur naturally in applications.
618    
619     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620     a \emph{symplectic} flow if it satisfies,
621 tim 2698 \begin{equation}
622 tim 2703 {\varphi '}^T J \varphi ' = J.
623 tim 2698 \end{equation}
624     According to Liouville's theorem, the symplectic volume is invariant
625     under a Hamiltonian flow, which is the basis for classical
626 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627     field on a symplectic manifold can be shown to be a
628     symplectomorphism. As to the Poisson system,
629 tim 2698 \begin{equation}
630 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
631 tim 2698 \end{equation}
632 tim 2702 is the property must be preserved by the integrator.
633    
634     It is possible to construct a \emph{volume-preserving} flow for a
635     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636     \det d\varphi = 1$. One can show easily that a symplectic flow will
637     be volume-preserving.
638    
639     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640     will result in a new system,
641 tim 2698 \[
642     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643     \]
644     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645     In other words, the flow of this vector field is reversible if and
646 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
647 tim 2698
648 tim 2705 A \emph{first integral}, or conserved quantity of a general
649     differential function is a function $ G:R^{2d} \to R^d $ which is
650     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651     \[
652     \frac{{dG(x(t))}}{{dt}} = 0.
653     \]
654     Using chain rule, one may obtain,
655     \[
656     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657     \]
658     which is the condition for conserving \emph{first integral}. For a
659     canonical Hamiltonian system, the time evolution of an arbitrary
660     smooth function $G$ is given by,
661     \begin{equation}
662     \begin{array}{c}
663     \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664     = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665     \end{array}
666     \label{introEquation:firstIntegral1}
667     \end{equation}
668     Using poisson bracket notion, Equation
669     \ref{introEquation:firstIntegral1} can be rewritten as
670     \[
671     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672     \]
673     Therefore, the sufficient condition for $G$ to be the \emph{first
674     integral} of a Hamiltonian system is
675     \[
676     \left\{ {G,H} \right\} = 0.
677     \]
678     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
680     0$.
681    
682    
683     When designing any numerical methods, one should always try to
684 tim 2702 preserve the structural properties of the original ODE and its flow.
685    
686 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687     A lot of well established and very effective numerical methods have
688     been successful precisely because of their symplecticities even
689     though this fact was not recognized when they were first
690     constructed. The most famous example is leapfrog methods in
691     molecular dynamics. In general, symplectic integrators can be
692     constructed using one of four different methods.
693     \begin{enumerate}
694     \item Generating functions
695     \item Variational methods
696     \item Runge-Kutta methods
697     \item Splitting methods
698     \end{enumerate}
699 tim 2698
700 tim 2699 Generating function tends to lead to methods which are cumbersome
701 tim 2702 and difficult to use. In dissipative systems, variational methods
702     can capture the decay of energy accurately. Since their
703     geometrically unstable nature against non-Hamiltonian perturbations,
704     ordinary implicit Runge-Kutta methods are not suitable for
705     Hamiltonian system. Recently, various high-order explicit
706     Runge--Kutta methods have been developed to overcome this
707 tim 2703 instability. However, due to computational penalty involved in
708     implementing the Runge-Kutta methods, they do not attract too much
709     attention from Molecular Dynamics community. Instead, splitting have
710     been widely accepted since they exploit natural decompositions of
711     the system\cite{Tuckerman92}.
712 tim 2702
713     \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714    
715     The main idea behind splitting methods is to decompose the discrete
716     $\varphi_h$ as a composition of simpler flows,
717 tim 2699 \begin{equation}
718     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
719     \varphi _{h_n }
720     \label{introEquation:FlowDecomposition}
721     \end{equation}
722     where each of the sub-flow is chosen such that each represent a
723 tim 2702 simpler integration of the system.
724    
725     Suppose that a Hamiltonian system takes the form,
726     \[
727     H = H_1 + H_2.
728     \]
729     Here, $H_1$ and $H_2$ may represent different physical processes of
730     the system. For instance, they may relate to kinetic and potential
731     energy respectively, which is a natural decomposition of the
732     problem. If $H_1$ and $H_2$ can be integrated using exact flows
733     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734     order is then given by the Lie-Trotter formula
735 tim 2699 \begin{equation}
736 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
737     \label{introEquation:firstOrderSplitting}
738     \end{equation}
739     where $\varphi _h$ is the result of applying the corresponding
740     continuous $\varphi _i$ over a time $h$. By definition, as
741     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742     must follow that each operator $\varphi_i(t)$ is a symplectic map.
743     It is easy to show that any composition of symplectic flows yields a
744     symplectic map,
745     \begin{equation}
746 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
748 tim 2699 \label{introEquation:SymplecticFlowComposition}
749     \end{equation}
750 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751     splitting in this context automatically generates a symplectic map.
752 tim 2699
753 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754     introduces local errors proportional to $h^2$, while Strang
755     splitting gives a second-order decomposition,
756     \begin{equation}
757     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
758 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 tim 2702 \end{equation}
760     which has a local error proportional to $h^3$. Sprang splitting's
761     popularity in molecular simulation community attribute to its
762     symmetric property,
763     \begin{equation}
764     \varphi _h^{ - 1} = \varphi _{ - h}.
765 tim 2703 \label{introEquation:timeReversible}
766 tim 2702 \end{equation}
767    
768     \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769     The classical equation for a system consisting of interacting
770     particles can be written in Hamiltonian form,
771     \[
772     H = T + V
773     \]
774     where $T$ is the kinetic energy and $V$ is the potential energy.
775     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776     obtains the following:
777     \begin{align}
778     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780     \label{introEquation:Lp10a} \\%
781     %
782     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784     \label{introEquation:Lp10b}
785     \end{align}
786     where $F(t)$ is the force at time $t$. This integration scheme is
787     known as \emph{velocity verlet} which is
788     symplectic(\ref{introEquation:SymplecticFlowComposition}),
789     time-reversible(\ref{introEquation:timeReversible}) and
790     volume-preserving (\ref{introEquation:volumePreserving}). These
791     geometric properties attribute to its long-time stability and its
792     popularity in the community. However, the most commonly used
793     velocity verlet integration scheme is written as below,
794     \begin{align}
795     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797     %
798     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799     \label{introEquation:Lp9b}\\%
800     %
801     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803     \end{align}
804     From the preceding splitting, one can see that the integration of
805     the equations of motion would follow:
806     \begin{enumerate}
807     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808    
809     \item Use the half step velocities to move positions one whole step, $\Delta t$.
810    
811     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812    
813     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814     \end{enumerate}
815    
816     Simply switching the order of splitting and composing, a new
817     integrator, the \emph{position verlet} integrator, can be generated,
818     \begin{align}
819     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821     \label{introEquation:positionVerlet1} \\%
822     %
823 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 tim 2702 q(\Delta t)} \right]. %
825     \label{introEquation:positionVerlet1}
826     \end{align}
827    
828     \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829    
830     Baker-Campbell-Hausdorff formula can be used to determine the local
831     error of splitting method in terms of commutator of the
832     operators(\ref{introEquation:exponentialOperator}) associated with
833     the sub-flow. For operators $hX$ and $hY$ which are associate to
834     $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835     \begin{equation}
836     \exp (hX + hY) = \exp (hZ)
837     \end{equation}
838     where
839     \begin{equation}
840     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
842     \end{equation}
843     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844     \[
845     [X,Y] = XY - YX .
846     \]
847     Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848     can obtain
849 tim 2703 \begin{eqnarray*}
850 tim 2702 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 tim 2703 [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852     & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853     \ldots )
854     \end{eqnarray*}
855 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856     error of Spring splitting is proportional to $h^3$. The same
857     procedure can be applied to general splitting, of the form
858     \begin{equation}
859     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
860     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
861     \end{equation}
862     Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863     order method. Yoshida proposed an elegant way to compose higher
864     order methods based on symmetric splitting. Given a symmetric second
865     order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866     method can be constructed by composing,
867     \[
868     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
869     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
870     \]
871     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874     \begin{equation}
875     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
876     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
877     \end{equation}
878     , if the weights are chosen as
879     \[
880     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882     \]
883    
884 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885    
886     As a special discipline of molecular modeling, Molecular dynamics
887     has proven to be a powerful tool for studying the functions of
888     biological systems, providing structural, thermodynamic and
889     dynamical information.
890    
891     \subsection{\label{introSec:mdInit}Initialization}
892    
893 tim 2705 \subsection{\label{introSec:forceEvaluation}Force Evaluation}
894    
895 tim 2694 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
896    
897 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
898 tim 2692
899 tim 2705 Rigid bodies are frequently involved in the modeling of different
900     areas, from engineering, physics, to chemistry. For example,
901     missiles and vehicle are usually modeled by rigid bodies. The
902     movement of the objects in 3D gaming engine or other physics
903     simulator is governed by the rigid body dynamics. In molecular
904     simulation, rigid body is used to simplify the model in
905     protein-protein docking study{\cite{Gray03}}.
906 tim 2694
907 tim 2705 It is very important to develop stable and efficient methods to
908     integrate the equations of motion of orientational degrees of
909     freedom. Euler angles are the nature choice to describe the
910     rotational degrees of freedom. However, due to its singularity, the
911     numerical integration of corresponding equations of motion is very
912     inefficient and inaccurate. Although an alternative integrator using
913     different sets of Euler angles can overcome this difficulty\cite{},
914     the computational penalty and the lost of angular momentum
915     conservation still remain. A singularity free representation
916     utilizing quaternions was developed by Evans in 1977. Unfortunately,
917     this approach suffer from the nonseparable Hamiltonian resulted from
918     quaternion representation, which prevents the symplectic algorithm
919     to be utilized. Another different approach is to apply holonomic
920     constraints to the atoms belonging to the rigid body. Each atom
921     moves independently under the normal forces deriving from potential
922     energy and constraint forces which are used to guarantee the
923     rigidness. However, due to their iterative nature, SHAKE and Rattle
924     algorithm converge very slowly when the number of constraint
925     increases.
926 tim 2694
927 tim 2705 The break through in geometric literature suggests that, in order to
928     develop a long-term integration scheme, one should preserve the
929     symplectic structure of the flow. Introducing conjugate momentum to
930     rotation matrix $A$ and re-formulating Hamiltonian's equation, a
931     symplectic integrator, RSHAKE, was proposed to evolve the
932     Hamiltonian system in a constraint manifold by iteratively
933     satisfying the orthogonality constraint $A_t A = 1$. An alternative
934     method using quaternion representation was developed by Omelyan.
935     However, both of these methods are iterative and inefficient. In
936     this section, we will present a symplectic Lie-Poisson integrator
937 tim 2707 for rigid body developed by Dullweber and his
938 tim 2713 coworkers\cite{Dullweber1997} in depth.
939 tim 2705
940 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
942     function
943 tim 2706 \begin{equation}
944     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
946     \label{introEquation:RBHamiltonian}
947     \end{equation}
948     Here, $q$ and $Q$ are the position and rotation matrix for the
949     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
950     $J$, a diagonal matrix, is defined by
951     \[
952     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
953     \]
954     where $I_{ii}$ is the diagonal element of the inertia tensor. This
955     constrained Hamiltonian equation subjects to a holonomic constraint,
956     \begin{equation}
957     Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
958     \end{equation}
959     which is used to ensure rotation matrix's orthogonality.
960     Differentiating \ref{introEquation:orthogonalConstraint} and using
961     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962     \begin{equation}
963 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
964 tim 2706 \label{introEquation:RBFirstOrderConstraint}
965     \end{equation}
966    
967     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
968     \ref{introEquation:motionHamiltonianMomentum}), one can write down
969     the equations of motion,
970     \[
971     \begin{array}{c}
972     \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973     \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974     \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
975 tim 2707 \frac{{dP}}{{dt}} = - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976 tim 2706 \end{array}
977     \]
978    
979 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
980     We can use constraint force provided by lagrange multiplier on the
981     normal manifold to keep the motion on constraint space. Or we can
982     simply evolve the system in constraint manifold. The two method are
983     proved to be equivalent. The holonomic constraint and equations of
984     motions define a constraint manifold for rigid body
985     \[
986     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
987     \right\}.
988     \]
989 tim 2706
990 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
991     $T_{\star}SO(3)$. However, it turns out that under symplectic
992     transformation, the cotangent space and the phase space are
993     diffeomorphic. Introducing
994 tim 2706 \[
995 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996 tim 2706 \]
997 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
998     can be re-formulated as a Hamiltonian system on the cotangent space
999     \[
1000     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1002     \]
1003 tim 2706
1004 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1005     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1006     given as
1007     \begin{equation}
1008     X_i^{lab} = Q X_i + q.
1009     \end{equation}
1010     Therefore, potential energy $V(q,Q)$ is defined by
1011     \[
1012     V(q,Q) = V(Q X_0 + q).
1013     \]
1014 tim 2713 Hence, the force and torque are given by
1015 tim 2707 \[
1016 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 tim 2707 \]
1018 tim 2713 and
1019 tim 2707 \[
1020     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021     \]
1022 tim 2713 respectively.
1023 tim 2695
1024 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1025     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1026     rewrite the equations of motion,
1027     \begin{equation}
1028     \begin{array}{l}
1029     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1030     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1031     \end{array}
1032     \label{introEqaution:RBMotionPI}
1033     \end{equation}
1034     , as well as holonomic constraints,
1035     \[
1036     \begin{array}{l}
1037     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1038     Q^T Q = 1 \\
1039     \end{array}
1040     \]
1041 tim 2692
1042 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043     so(3)^ \star$, the hat-map isomorphism,
1044     \begin{equation}
1045     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046     {\begin{array}{*{20}c}
1047     0 & { - v_3 } & {v_2 } \\
1048     {v_3 } & 0 & { - v_1 } \\
1049     { - v_2 } & {v_1 } & 0 \\
1050     \end{array}} \right),
1051     \label{introEquation:hatmapIsomorphism}
1052     \end{equation}
1053     will let us associate the matrix products with traditional vector
1054     operations
1055     \[
1056     \hat vu = v \times u
1057     \]
1058    
1059     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060     matrix,
1061     \begin{equation}
1062     (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ \bullet ^T
1063     ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1064     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1065     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066     \end{equation}
1067     Since $\Lambda$ is symmetric, the last term of Equation
1068 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069     multiplier $\Lambda$ is absent from the equations of motion. This
1070     unique property eliminate the requirement of iterations which can
1071     not be avoided in other methods\cite{}.
1072 tim 2707
1073 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1074     angular momentum on body frame
1075     \begin{equation}
1076     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1077     F_i (r,Q)} \right) \times X_i }.
1078     \label{introEquation:bodyAngularMotion}
1079     \end{equation}
1080 tim 2707 In the same manner, the equation of motion for rotation matrix is
1081     given by
1082     \[
1083 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1084 tim 2707 \]
1085    
1086 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087     Lie-Poisson Integrator for Free Rigid Body}
1088 tim 2707
1089 tim 2713 If there is not external forces exerted on the rigid body, the only
1090     contribution to the rotational is from the kinetic potential (the
1091     first term of \ref{ introEquation:bodyAngularMotion}). The free
1092     rigid body is an example of Lie-Poisson system with Hamiltonian
1093     function
1094     \begin{equation}
1095     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096     \label{introEquation:rotationalKineticRB}
1097     \end{equation}
1098     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099     Lie-Poisson structure matrix,
1100     \begin{equation}
1101     J(\pi ) = \left( {\begin{array}{*{20}c}
1102     0 & {\pi _3 } & { - \pi _2 } \\
1103     { - \pi _3 } & 0 & {\pi _1 } \\
1104     {\pi _2 } & { - \pi _1 } & 0 \\
1105     \end{array}} \right)
1106     \end{equation}
1107     Thus, the dynamics of free rigid body is governed by
1108     \begin{equation}
1109     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1110     \end{equation}
1111 tim 2707
1112 tim 2713 One may notice that each $T_i^r$ in Equation
1113     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114     instance, the equations of motion due to $T_1^r$ are given by
1115     \begin{equation}
1116     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117     \label{introEqaution:RBMotionSingleTerm}
1118     \end{equation}
1119     where
1120     \[ R_1 = \left( {\begin{array}{*{20}c}
1121     0 & 0 & 0 \\
1122     0 & 0 & {\pi _1 } \\
1123     0 & { - \pi _1 } & 0 \\
1124     \end{array}} \right).
1125     \]
1126     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 tim 2707 \[
1128 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129     Q(0)e^{\Delta tR_1 }
1130 tim 2707 \]
1131 tim 2713 with
1132 tim 2707 \[
1133 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1134     0 & 0 & 0 \\
1135     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1136     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1137     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 tim 2707 \]
1139 tim 2713 To reduce the cost of computing expensive functions in e^{\Delta
1140     tR_1 }, we can use Cayley transformation,
1141     \[
1142     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143     )
1144     \]
1145 tim 2707
1146 tim 2713 The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147     manner.
1148    
1149     In order to construct a second-order symplectic method, we split the
1150     angular kinetic Hamiltonian function can into five terms
1151 tim 2707 \[
1152 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154     (\pi _1 )
1155     \].
1156     Concatenating flows corresponding to these five terms, we can obtain
1157     an symplectic integrator,
1158     \[
1159     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1160 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1161     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1162 tim 2713 _1 }.
1163 tim 2707 \]
1164    
1165 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166     $F(\pi )$ and $G(\pi )$ is defined by
1167 tim 2707 \[
1168 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1169     )
1170     \]
1171     If the Poisson bracket of a function $F$ with an arbitrary smooth
1172     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173     conserved quantity in Poisson system. We can easily verify that the
1174     norm of the angular momentum, $\parallel \pi
1175     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177     then by the chain rule
1178     \[
1179     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180     }}{2})\pi
1181     \]
1182     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1183     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1184     Lie-Poisson integrator is found to be extremely efficient and stable
1185     which can be explained by the fact the small angle approximation is
1186     used and the norm of the angular momentum is conserved.
1187    
1188     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189     Splitting for Rigid Body}
1190    
1191     The Hamiltonian of rigid body can be separated in terms of kinetic
1192     energy and potential energy,
1193     \[
1194     H = T(p,\pi ) + V(q,Q)
1195     \]
1196     The equations of motion corresponding to potential energy and
1197     kinetic energy are listed in the below table,
1198     \begin{center}
1199     \begin{tabular}{|l|l|}
1200     \hline
1201     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202     Potential & Kinetic \\
1203     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1207     \hline
1208     \end{tabular}
1209     \end{center}
1210     A second-order symplectic method is now obtained by the composition
1211     of the flow maps,
1212     \[
1213     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1214     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1215     \]
1216     Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217     which corresponding to force and torque respectively,
1218     \[
1219 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1220 tim 2713 _{\Delta t/2,\tau }.
1221 tim 2707 \]
1222 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224     order inside \varphi _{\Delta t/2,V} does not matter.
1225 tim 2707
1226 tim 2713 Furthermore, kinetic potential can be separated to translational
1227     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228     \begin{equation}
1229     T(p,\pi ) =T^t (p) + T^r (\pi ).
1230     \end{equation}
1231     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233     corresponding flow maps are given by
1234     \[
1235     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1236     _{\Delta t,T^r }.
1237     \]
1238     Finally, we obtain the overall symplectic flow maps for free moving
1239     rigid body
1240     \begin{equation}
1241     \begin{array}{c}
1242     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1243     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1244     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1245     \end{array}
1246     \label{introEquation:overallRBFlowMaps}
1247     \end{equation}
1248 tim 2707
1249 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1251     mimics a simple heat bath with stochastic and dissipative forces,
1252     has been applied in a variety of studies. This section will review
1253     the theory of Langevin dynamics simulation. A brief derivation of
1254     generalized Langevin Dynamics will be given first. Follow that, we
1255     will discuss the physical meaning of the terms appearing in the
1256     equation as well as the calculation of friction tensor from
1257     hydrodynamics theory.
1258 tim 2685
1259 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260 tim 2685
1261 tim 2696 \begin{equation}
1262     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1263     \label{introEquation:bathGLE}
1264     \end{equation}
1265     where $H_B$ is harmonic bath Hamiltonian,
1266     \[
1267     H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1268     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
1269     \]
1270     and $\Delta U$ is bilinear system-bath coupling,
1271     \[
1272     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1273     \]
1274     Completing the square,
1275     \[
1276     H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
1277     {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1278     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1279     w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
1280     1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
1281     \]
1282     and putting it back into Eq.~\ref{introEquation:bathGLE},
1283     \[
1284     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1285     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1286     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1287     w_\alpha ^2 }}x} \right)^2 } \right\}}
1288     \]
1289     where
1290     \[
1291     W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1292     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1293     \]
1294     Since the first two terms of the new Hamiltonian depend only on the
1295     system coordinates, we can get the equations of motion for
1296     Generalized Langevin Dynamics by Hamilton's equations
1297     \ref{introEquation:motionHamiltonianCoordinate,
1298     introEquation:motionHamiltonianMomentum},
1299     \begin{align}
1300     \dot p &= - \frac{{\partial H}}{{\partial x}}
1301     &= m\ddot x
1302     &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
1303 tim 2702 \label{introEquation:Lp5}
1304 tim 2696 \end{align}
1305     , and
1306     \begin{align}
1307     \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
1308     &= m\ddot x_\alpha
1309     &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
1310     \end{align}
1311    
1312     \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1313    
1314     \[
1315     L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
1316     \]
1317    
1318     \[
1319     L(x + y) = L(x) + L(y)
1320     \]
1321    
1322     \[
1323     L(ax) = aL(x)
1324     \]
1325    
1326     \[
1327     L(\dot x) = pL(x) - px(0)
1328     \]
1329    
1330     \[
1331     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1332     \]
1333    
1334     \[
1335     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1336     \]
1337    
1338     Some relatively important transformation,
1339     \[
1340     L(\cos at) = \frac{p}{{p^2 + a^2 }}
1341     \]
1342    
1343     \[
1344     L(\sin at) = \frac{a}{{p^2 + a^2 }}
1345     \]
1346    
1347     \[
1348     L(1) = \frac{1}{p}
1349     \]
1350    
1351     First, the bath coordinates,
1352     \[
1353     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
1354     _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
1355     }}L(x)
1356     \]
1357     \[
1358     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
1359     px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
1360     \]
1361     Then, the system coordinates,
1362     \begin{align}
1363     mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1364     \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1365     }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
1366     (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1367     }}\omega _\alpha ^2 L(x)} \right\}}
1368     %
1369     &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1370     \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
1371     - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
1372     - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
1373     \end{align}
1374     Then, the inverse transform,
1375    
1376     \begin{align}
1377     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1378     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1379     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1380     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1381     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1382     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1383     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1384     %
1385     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1386     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1387     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1388     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1389     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1390     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1391     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1392     (\omega _\alpha t)} \right\}}
1393     \end{align}
1394    
1395     \begin{equation}
1396     m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1397     (t)\dot x(t - \tau )d\tau } + R(t)
1398     \label{introEuqation:GeneralizedLangevinDynamics}
1399     \end{equation}
1400     %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1401     %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
1402     \[
1403     \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1404     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1405     \]
1406     For an infinite harmonic bath, we can use the spectral density and
1407     an integral over frequencies.
1408    
1409     \[
1410     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1411     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1412     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1413     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
1414     \]
1415     The random forces depend only on initial conditions.
1416    
1417     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1418     So we can define a new set of coordinates,
1419     \[
1420     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1421     ^2 }}x(0)
1422     \]
1423     This makes
1424     \[
1425     R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
1426     \]
1427     And since the $q$ coordinates are harmonic oscillators,
1428     \[
1429     \begin{array}{l}
1430     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1431     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1432     \end{array}
1433     \]
1434    
1435     \begin{align}
1436     \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
1437     {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
1438     (t)q_\beta (0)} \right\rangle } }
1439     %
1440     &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1441     \right\rangle \cos (\omega _\alpha t)}
1442     %
1443     &= kT\xi (t)
1444     \end{align}
1445    
1446     \begin{equation}
1447     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1448     \label{introEquation:secondFluctuationDissipation}
1449     \end{equation}
1450    
1451     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 tim 2716 Theoretically, the friction kernel can be determined using velocity
1453     autocorrelation function. However, this approach become impractical
1454     when the system become more and more complicate. Instead, various
1455     approaches based on hydrodynamics have been developed to calculate
1456     the friction coefficients. The friction effect is isotropic in
1457     Equation, \zeta can be taken as a scalar. In general, friction
1458     tensor \Xi is a $6\times 6$ matrix given by
1459     \[
1460     \Xi = \left( {\begin{array}{*{20}c}
1461     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1462     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1463     \end{array}} \right).
1464     \]
1465     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466     tensor and rotational friction tensor respectively, while ${\Xi^{tr}
1467     }$ is translation-rotation coupling tensor and $ {\Xi^{rt} }$ is
1468     rotation-translation coupling tensor.
1469 tim 2696
1470 tim 2716 \[
1471     \left( \begin{array}{l}
1472     F_t \\
1473     \tau \\
1474     \end{array} \right) = - \left( {\begin{array}{*{20}c}
1475     {\Xi ^{tt} } & {\Xi ^{rt} } \\
1476     {\Xi ^{tr} } & {\Xi ^{rr} } \\
1477     \end{array}} \right)\left( \begin{array}{l}
1478     v \\
1479     w \\
1480     \end{array} \right)
1481     \]
1482 tim 2696
1483 tim 2716 \subsubsection{\label{introSection:analyticalApproach}The Friction Tensor for Regular Shape}
1484     For a spherical particle, the translational and rotational friction
1485     constant can be calculated from Stoke's law,
1486     \[
1487     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1488     {6\pi \eta R} & 0 & 0 \\
1489     0 & {6\pi \eta R} & 0 \\
1490     0 & 0 & {6\pi \eta R} \\
1491     \end{array}} \right)
1492     \]
1493     and
1494     \[
1495     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1496     {8\pi \eta R^3 } & 0 & 0 \\
1497     0 & {8\pi \eta R^3 } & 0 \\
1498     0 & 0 & {8\pi \eta R^3 } \\
1499     \end{array}} \right)
1500     \]
1501     where $\eta$ is the viscosity of the solvent and $R$ is the
1502     hydrodynamics radius.
1503 tim 2706
1504 tim 2716 Other non-spherical particles have more complex properties.
1505    
1506     \[
1507     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1508     } }}{b}
1509     \]
1510    
1511    
1512     \[
1513     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1514     }}{a}
1515     \]
1516    
1517     \[
1518     \begin{array}{l}
1519     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1520     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1521     \end{array}
1522     \]
1523    
1524     \[
1525     \begin{array}{l}
1526     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1527     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1528     \end{array}
1529     \]
1530    
1531    
1532     \subsubsection{\label{introSection:approximationApproach}The Friction Tensor for Arbitrary Shape}
1533     Unlike spherical and other regular shaped molecules, there is not
1534     analytical solution for friction tensor of any arbitrary shaped
1535     rigid molecules. The ellipsoid of revolution model and general
1536     triaxial ellipsoid model have been used to approximate the
1537     hydrodynamic properties of rigid bodies. However, since the mapping
1538     from all possible ellipsoidal space, $r$-space, to all possible
1539     combination of rotational diffusion coefficients, $D$-space is not
1540     unique\cite{Wegener79} as well as the intrinsic coupling between
1541     translational and rotational motion of rigid body\cite{}, general
1542     ellipsoid is not always suitable for modeling arbitrarily shaped
1543     rigid molecule. A number of studies have been devoted to determine
1544     the friction tensor for irregularly shaped rigid bodies using more
1545     advanced method\cite{} where the molecule of interest was modeled by
1546     combinations of spheres(beads)\cite{} and the hydrodynamics
1547     properties of the molecule can be calculated using the hydrodynamic
1548     interaction tensor. Let us consider a rigid assembly of $N$ beads
1549     immersed in a continuous medium. Due to hydrodynamics interaction,
1550     the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1551     unperturbed velocity $v_i$,
1552     \[
1553     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1554     \]
1555     where $F_i$ is the frictional force, and $T_{ij}$ is the
1556     hydrodynamic interaction tensor. The friction force of $i$th bead is
1557     proportional to its ``net'' velocity
1558     \begin{equation}
1559     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1560     \label{introEquation:tensorExpression}
1561     \end{equation}
1562     This equation is the basis for deriving the hydrodynamic tensor. In
1563     1930, Oseen and Burgers gave a simple solution to Equation
1564     \ref{introEquation:tensorExpression}
1565     \begin{equation}
1566     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1567     R_{ij}^T }}{{R_{ij}^2 }}} \right).
1568     \label{introEquation:oseenTensor}
1569     \end{equation}
1570     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1571     A second order expression for element of different size was
1572     introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1573     la Torre and Bloomfield,
1574     \begin{equation}
1575     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1576     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1577     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1578     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1579     \label{introEquation:RPTensorNonOverlapped}
1580     \end{equation}
1581     Both of the Equation \ref{introEquation:oseenTensor} and Equation
1582     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1583     \ge \sigma _i + \sigma _j$. An alternative expression for
1584     overlapping beads with the same radius, $\sigma$, is given by
1585     \begin{equation}
1586     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1587     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1588     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1589     \label{introEquation:RPTensorOverlapped}
1590     \end{equation}
1591    
1592     %Bead Modeling
1593    
1594     \[
1595     B = \left( {\begin{array}{*{20}c}
1596     {T_{11} } & \ldots & {T_{1N} } \\
1597     \vdots & \ddots & \vdots \\
1598     {T_{N1} } & \cdots & {T_{NN} } \\
1599     \end{array}} \right)
1600     \]
1601    
1602     \[
1603     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1604     {C_{11} } & \ldots & {C_{1N} } \\
1605     \vdots & \ddots & \vdots \\
1606     {C_{N1} } & \cdots & {C_{NN} } \\
1607     \end{array}} \right)
1608     \]
1609    
1610     \begin{equation}
1611     \begin{array}{l}
1612     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1613     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1614     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1615     \end{array}
1616     \end{equation}
1617     where
1618     \[
1619     U_i = \left( {\begin{array}{*{20}c}
1620     0 & { - z_i } & {y_i } \\
1621     {z_i } & 0 & { - x_i } \\
1622     { - y_i } & {x_i } & 0 \\
1623     \end{array}} \right)
1624     \]
1625    
1626     \[
1627     r_{OR} = \left( \begin{array}{l}
1628     x_{OR} \\
1629     y_{OR} \\
1630     z_{OR} \\
1631     \end{array} \right) = \left( {\begin{array}{*{20}c}
1632     {\Xi _{yy}^{rr} + \Xi _{zz}^{rr} } & { - \Xi _{xy}^{rr} } & { - \Xi _{xz}^{rr} } \\
1633     { - \Xi _{yx}^{rr} } & {\Xi _{zz}^{rr} + \Xi _{xx}^{rr} } & { - \Xi _{yz}^{rr} } \\
1634     { - \Xi _{zx}^{rr} } & { - \Xi _{yz}^{rr} } & {\Xi _{xx}^{rr} + \Xi _{yy}^{rr} } \\
1635     \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1636     \Xi _{yz}^{tr} - \Xi _{zy}^{tr} \\
1637     \Xi _{zx}^{tr} - \Xi _{xz}^{tr} \\
1638     \Xi _{xy}^{tr} - \Xi _{yx}^{tr} \\
1639     \end{array} \right)
1640     \]
1641    
1642     \[
1643     U_{OR} = \left( {\begin{array}{*{20}c}
1644     0 & { - z_{OR} } & {y_{OR} } \\
1645     {z_i } & 0 & { - x_{OR} } \\
1646     { - y_{OR} } & {x_{OR} } & 0 \\
1647     \end{array}} \right)
1648     \]
1649    
1650     \[
1651     \begin{array}{l}
1652     \Xi _R^{tt} = \Xi _{}^{tt} \\
1653     \Xi _R^{tr} = \Xi _R^{rt} = \Xi _{}^{tr} - U_{OR} \Xi _{}^{tt} \\
1654     \Xi _R^{rr} = \Xi _{}^{rr} - U_{OR} \Xi _{}^{tt} U_{OR} + \Xi _{}^{tr} U_{OR} - U_{OR} \Xi _{}^{tr} ^{^T } \\
1655     \end{array}
1656     \]
1657    
1658     \[
1659     D_R = \left( {\begin{array}{*{20}c}
1660     {D_R^{tt} } & {D_R^{rt} } \\
1661     {D_R^{tr} } & {D_R^{rr} } \\
1662     \end{array}} \right) = k_b T\left( {\begin{array}{*{20}c}
1663     {\Xi _R^{tt} } & {\Xi _R^{rt} } \\
1664     {\Xi _R^{tr} } & {\Xi _R^{rr} } \\
1665     \end{array}} \right)^{ - 1}
1666     \]
1667    
1668    
1669     %Approximation Methods
1670    
1671     %\section{\label{introSection:correlationFunctions}Correlation Functions}