ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2719
Committed: Tue Apr 18 22:38:19 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 74035 byte(s)
Log Message:
Finish Generalized Langevin Dynamics

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2694 Newton¡¯s third law states that
33     \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
121 tim 2692 motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224 tim 2700 Statistical Mechanics concepts and theorem presented in this
225     dissertation.
226 tim 2692
227 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 tim 2692
229 tim 2700 Mathematically, phase space is the space which represents all
230     possible states. Each possible state of the system corresponds to
231     one unique point in the phase space. For mechanical systems, the
232     phase space usually consists of all possible values of position and
233     momentum variables. Consider a dynamic system in a cartesian space,
234     where each of the $6f$ coordinates and momenta is assigned to one of
235     $6f$ mutually orthogonal axes, the phase space of this system is a
236     $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237     \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238     momenta is a phase space vector.
239    
240     A microscopic state or microstate of a classical system is
241     specification of the complete phase space vector of a system at any
242     instant in time. An ensemble is defined as a collection of systems
243     sharing one or more macroscopic characteristics but each being in a
244     unique microstate. The complete ensemble is specified by giving all
245     systems or microstates consistent with the common macroscopic
246     characteristics of the ensemble. Although the state of each
247     individual system in the ensemble could be precisely described at
248     any instance in time by a suitable phase space vector, when using
249     ensembles for statistical purposes, there is no need to maintain
250     distinctions between individual systems, since the numbers of
251     systems at any time in the different states which correspond to
252     different regions of the phase space are more interesting. Moreover,
253     in the point of view of statistical mechanics, one would prefer to
254     use ensembles containing a large enough population of separate
255     members so that the numbers of systems in such different states can
256     be regarded as changing continuously as we traverse different
257     regions of the phase space. The condition of an ensemble at any time
258     can be regarded as appropriately specified by the density $\rho$
259     with which representative points are distributed over the phase
260     space. The density of distribution for an ensemble with $f$ degrees
261     of freedom is defined as,
262     \begin{equation}
263     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264     \label{introEquation:densityDistribution}
265     \end{equation}
266     Governed by the principles of mechanics, the phase points change
267     their value which would change the density at any time at phase
268     space. Hence, the density of distribution is also to be taken as a
269     function of the time.
270    
271     The number of systems $\delta N$ at time $t$ can be determined by,
272     \begin{equation}
273     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274     \label{introEquation:deltaN}
275     \end{equation}
276     Assuming a large enough population of systems are exploited, we can
277     sufficiently approximate $\delta N$ without introducing
278     discontinuity when we go from one region in the phase space to
279     another. By integrating over the whole phase space,
280     \begin{equation}
281     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282     \label{introEquation:totalNumberSystem}
283     \end{equation}
284     gives us an expression for the total number of the systems. Hence,
285     the probability per unit in the phase space can be obtained by,
286     \begin{equation}
287     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289     \label{introEquation:unitProbability}
290     \end{equation}
291     With the help of Equation(\ref{introEquation:unitProbability}) and
292     the knowledge of the system, it is possible to calculate the average
293     value of any desired quantity which depends on the coordinates and
294     momenta of the system. Even when the dynamics of the real system is
295     complex, or stochastic, or even discontinuous, the average
296     properties of the ensemble of possibilities as a whole may still
297     remain well defined. For a classical system in thermal equilibrium
298     with its environment, the ensemble average of a mechanical quantity,
299     $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300     phase space of the system,
301     \begin{equation}
302     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305     \label{introEquation:ensembelAverage}
306     \end{equation}
307    
308     There are several different types of ensembles with different
309     statistical characteristics. As a function of macroscopic
310     parameters, such as temperature \textit{etc}, partition function can
311     be used to describe the statistical properties of a system in
312     thermodynamic equilibrium.
313    
314     As an ensemble of systems, each of which is known to be thermally
315     isolated and conserve energy, Microcanonical ensemble(NVE) has a
316     partition function like,
317     \begin{equation}
318 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 tim 2700 \end{equation}
320     A canonical ensemble(NVT)is an ensemble of systems, each of which
321     can share its energy with a large heat reservoir. The distribution
322     of the total energy amongst the possible dynamical states is given
323     by the partition function,
324     \begin{equation}
325     \Omega (N,V,T) = e^{ - \beta A}
326     \label{introEquation:NVTPartition}
327     \end{equation}
328     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329     TS$. Since most experiment are carried out under constant pressure
330     condition, isothermal-isobaric ensemble(NPT) play a very important
331     role in molecular simulation. The isothermal-isobaric ensemble allow
332     the system to exchange energy with a heat bath of temperature $T$
333     and to change the volume as well. Its partition function is given as
334     \begin{equation}
335     \Delta (N,P,T) = - e^{\beta G}.
336     \label{introEquation:NPTPartition}
337     \end{equation}
338     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339    
340     \subsection{\label{introSection:liouville}Liouville's theorem}
341    
342     The Liouville's theorem is the foundation on which statistical
343     mechanics rests. It describes the time evolution of phase space
344     distribution function. In order to calculate the rate of change of
345     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346     consider the two faces perpendicular to the $q_1$ axis, which are
347     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348     leaving the opposite face is given by the expression,
349     \begin{equation}
350     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353     \ldots \delta p_f .
354     \end{equation}
355     Summing all over the phase space, we obtain
356     \begin{equation}
357     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363     \end{equation}
364     Differentiating the equations of motion in Hamiltonian formalism
365     (\ref{introEquation:motionHamiltonianCoordinate},
366     \ref{introEquation:motionHamiltonianMomentum}), we can show,
367     \begin{equation}
368     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370     \end{equation}
371     which cancels the first terms of the right hand side. Furthermore,
372     divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373     p_f $ in both sides, we can write out Liouville's theorem in a
374     simple form,
375     \begin{equation}
376     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379     \label{introEquation:liouvilleTheorem}
380     \end{equation}
381    
382     Liouville's theorem states that the distribution function is
383     constant along any trajectory in phase space. In classical
384     statistical mechanics, since the number of particles in the system
385     is huge, we may be able to believe the system is stationary,
386     \begin{equation}
387     \frac{{\partial \rho }}{{\partial t}} = 0.
388     \label{introEquation:stationary}
389     \end{equation}
390     In such stationary system, the density of distribution $\rho$ can be
391     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392     distribution,
393     \begin{equation}
394     \rho \propto e^{ - \beta H}
395     \label{introEquation:densityAndHamiltonian}
396     \end{equation}
397    
398 tim 2702 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399     Lets consider a region in the phase space,
400     \begin{equation}
401     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402     \end{equation}
403     If this region is small enough, the density $\rho$ can be regarded
404     as uniform over the whole phase space. Thus, the number of phase
405     points inside this region is given by,
406     \begin{equation}
407     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408     dp_1 } ..dp_f.
409     \end{equation}
410    
411     \begin{equation}
412     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413     \frac{d}{{dt}}(\delta v) = 0.
414     \end{equation}
415     With the help of stationary assumption
416     (\ref{introEquation:stationary}), we obtain the principle of the
417     \emph{conservation of extension in phase space},
418     \begin{equation}
419     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420     ...dq_f dp_1 } ..dp_f = 0.
421     \label{introEquation:volumePreserving}
422     \end{equation}
423    
424     \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425    
426 tim 2700 Liouville's theorem can be expresses in a variety of different forms
427     which are convenient within different contexts. For any two function
428     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429     bracket ${F, G}$ is defined as
430     \begin{equation}
431     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434     q_i }}} \right)}.
435     \label{introEquation:poissonBracket}
436     \end{equation}
437     Substituting equations of motion in Hamiltonian formalism(
438     \ref{introEquation:motionHamiltonianCoordinate} ,
439     \ref{introEquation:motionHamiltonianMomentum} ) into
440     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441     theorem using Poisson bracket notion,
442     \begin{equation}
443     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444     {\rho ,H} \right\}.
445     \label{introEquation:liouvilleTheromInPoissin}
446     \end{equation}
447     Moreover, the Liouville operator is defined as
448     \begin{equation}
449     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452     \label{introEquation:liouvilleOperator}
453     \end{equation}
454     In terms of Liouville operator, Liouville's equation can also be
455     expressed as
456     \begin{equation}
457     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458     \label{introEquation:liouvilleTheoremInOperator}
459     \end{equation}
460    
461 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 tim 2692
463 tim 2695 Various thermodynamic properties can be calculated from Molecular
464     Dynamics simulation. By comparing experimental values with the
465     calculated properties, one can determine the accuracy of the
466     simulation and the quality of the underlying model. However, both of
467     experiment and computer simulation are usually performed during a
468     certain time interval and the measurements are averaged over a
469     period of them which is different from the average behavior of
470     many-body system in Statistical Mechanics. Fortunately, Ergodic
471     Hypothesis is proposed to make a connection between time average and
472     ensemble average. It states that time average and average over the
473     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474     \begin{equation}
475 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 tim 2695 \end{equation}
479 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481     distribution function. If an observation is averaged over a
482     sufficiently long time (longer than relaxation time), all accessible
483     microstates in phase space are assumed to be equally probed, giving
484     a properly weighted statistical average. This allows the researcher
485     freedom of choice when deciding how best to measure a given
486     observable. In case an ensemble averaged approach sounds most
487     reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488     utilized. Or if the system lends itself to a time averaging
489     approach, the Molecular Dynamics techniques in
490     Sec.~\ref{introSection:molecularDynamics} will be the best
491     choice\cite{Frenkel1996}.
492 tim 2694
493 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494     A variety of numerical integrators were proposed to simulate the
495     motions. They usually begin with an initial conditionals and move
496     the objects in the direction governed by the differential equations.
497     However, most of them ignore the hidden physical law contained
498     within the equations. Since 1990, geometric integrators, which
499     preserve various phase-flow invariants such as symplectic structure,
500     volume and time reversal symmetry, are developed to address this
501     issue. The velocity verlet method, which happens to be a simple
502     example of symplectic integrator, continues to gain its popularity
503     in molecular dynamics community. This fact can be partly explained
504     by its geometric nature.
505    
506     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507     A \emph{manifold} is an abstract mathematical space. It locally
508     looks like Euclidean space, but when viewed globally, it may have
509     more complicate structure. A good example of manifold is the surface
510     of Earth. It seems to be flat locally, but it is round if viewed as
511     a whole. A \emph{differentiable manifold} (also known as
512     \emph{smooth manifold}) is a manifold with an open cover in which
513     the covering neighborhoods are all smoothly isomorphic to one
514     another. In other words,it is possible to apply calculus on
515     \emph{differentiable manifold}. A \emph{symplectic manifold} is
516     defined as a pair $(M, \omega)$ which consisting of a
517     \emph{differentiable manifold} $M$ and a close, non-degenerated,
518     bilinear symplectic form, $\omega$. A symplectic form on a vector
519     space $V$ is a function $\omega(x, y)$ which satisfies
520     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522     $\omega(x, x) = 0$. Cross product operation in vector field is an
523     example of symplectic form.
524    
525     One of the motivations to study \emph{symplectic manifold} in
526     Hamiltonian Mechanics is that a symplectic manifold can represent
527     all possible configurations of the system and the phase space of the
528     system can be described by it's cotangent bundle. Every symplectic
529     manifold is even dimensional. For instance, in Hamilton equations,
530     coordinate and momentum always appear in pairs.
531    
532     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533     \[
534     f : M \rightarrow N
535     \]
536     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538     Canonical transformation is an example of symplectomorphism in
539 tim 2698 classical mechanics.
540 tim 2697
541 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 tim 2697
543 tim 2698 For a ordinary differential system defined as
544     \begin{equation}
545     \dot x = f(x)
546     \end{equation}
547     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548     \begin{equation}
549 tim 2699 f(r) = J\nabla _x H(r).
550 tim 2698 \end{equation}
551     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552     matrix
553     \begin{equation}
554     J = \left( {\begin{array}{*{20}c}
555     0 & I \\
556     { - I} & 0 \\
557     \end{array}} \right)
558     \label{introEquation:canonicalMatrix}
559     \end{equation}
560     where $I$ is an identity matrix. Using this notation, Hamiltonian
561     system can be rewritten as,
562     \begin{equation}
563     \frac{d}{{dt}}x = J\nabla _x H(x)
564     \label{introEquation:compactHamiltonian}
565     \end{equation}In this case, $f$ is
566     called a \emph{Hamiltonian vector field}.
567 tim 2697
568 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569     \begin{equation}
570     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571     \end{equation}
572     The most obvious change being that matrix $J$ now depends on $x$.
573    
574 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
575    
576 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
577     \begin{equation}
578     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579     \end{equation}
580     The exact flow(solution) $\varphi_\tau$ is defined by
581     \[
582     x(t+\tau) =\varphi_\tau(x(t))
583     \]
584     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 tim 2702 space to itself. The flow has the continuous group property,
586 tim 2698 \begin{equation}
587 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
588     + \tau _2 } .
589     \end{equation}
590     In particular,
591     \begin{equation}
592     \varphi _\tau \circ \varphi _{ - \tau } = I
593     \end{equation}
594     Therefore, the exact flow is self-adjoint,
595     \begin{equation}
596     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
597     \end{equation}
598     The exact flow can also be written in terms of the of an operator,
599     \begin{equation}
600     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602     \label{introEquation:exponentialOperator}
603     \end{equation}
604    
605     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606     Instead, we use a approximate map, $\psi_\tau$, which is usually
607     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608     the Taylor series of $\psi_\tau$ agree to order $p$,
609     \begin{equation}
610 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611     \end{equation}
612    
613 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
614    
615 tim 2698 The hidden geometric properties of ODE and its flow play important
616 tim 2702 roles in numerical studies. Many of them can be found in systems
617     which occur naturally in applications.
618    
619     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620     a \emph{symplectic} flow if it satisfies,
621 tim 2698 \begin{equation}
622 tim 2703 {\varphi '}^T J \varphi ' = J.
623 tim 2698 \end{equation}
624     According to Liouville's theorem, the symplectic volume is invariant
625     under a Hamiltonian flow, which is the basis for classical
626 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627     field on a symplectic manifold can be shown to be a
628     symplectomorphism. As to the Poisson system,
629 tim 2698 \begin{equation}
630 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
631 tim 2698 \end{equation}
632 tim 2702 is the property must be preserved by the integrator.
633    
634     It is possible to construct a \emph{volume-preserving} flow for a
635     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636     \det d\varphi = 1$. One can show easily that a symplectic flow will
637     be volume-preserving.
638    
639     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640     will result in a new system,
641 tim 2698 \[
642     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643     \]
644     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645     In other words, the flow of this vector field is reversible if and
646 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
647 tim 2698
648 tim 2705 A \emph{first integral}, or conserved quantity of a general
649     differential function is a function $ G:R^{2d} \to R^d $ which is
650     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651     \[
652     \frac{{dG(x(t))}}{{dt}} = 0.
653     \]
654     Using chain rule, one may obtain,
655     \[
656     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657     \]
658     which is the condition for conserving \emph{first integral}. For a
659     canonical Hamiltonian system, the time evolution of an arbitrary
660     smooth function $G$ is given by,
661     \begin{equation}
662     \begin{array}{c}
663     \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664     = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665     \end{array}
666     \label{introEquation:firstIntegral1}
667     \end{equation}
668     Using poisson bracket notion, Equation
669     \ref{introEquation:firstIntegral1} can be rewritten as
670     \[
671     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672     \]
673     Therefore, the sufficient condition for $G$ to be the \emph{first
674     integral} of a Hamiltonian system is
675     \[
676     \left\{ {G,H} \right\} = 0.
677     \]
678     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
680     0$.
681    
682    
683     When designing any numerical methods, one should always try to
684 tim 2702 preserve the structural properties of the original ODE and its flow.
685    
686 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687     A lot of well established and very effective numerical methods have
688     been successful precisely because of their symplecticities even
689     though this fact was not recognized when they were first
690     constructed. The most famous example is leapfrog methods in
691     molecular dynamics. In general, symplectic integrators can be
692     constructed using one of four different methods.
693     \begin{enumerate}
694     \item Generating functions
695     \item Variational methods
696     \item Runge-Kutta methods
697     \item Splitting methods
698     \end{enumerate}
699 tim 2698
700 tim 2699 Generating function tends to lead to methods which are cumbersome
701 tim 2702 and difficult to use. In dissipative systems, variational methods
702     can capture the decay of energy accurately. Since their
703     geometrically unstable nature against non-Hamiltonian perturbations,
704     ordinary implicit Runge-Kutta methods are not suitable for
705     Hamiltonian system. Recently, various high-order explicit
706     Runge--Kutta methods have been developed to overcome this
707 tim 2703 instability. However, due to computational penalty involved in
708     implementing the Runge-Kutta methods, they do not attract too much
709     attention from Molecular Dynamics community. Instead, splitting have
710     been widely accepted since they exploit natural decompositions of
711     the system\cite{Tuckerman92}.
712 tim 2702
713     \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714    
715     The main idea behind splitting methods is to decompose the discrete
716     $\varphi_h$ as a composition of simpler flows,
717 tim 2699 \begin{equation}
718     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
719     \varphi _{h_n }
720     \label{introEquation:FlowDecomposition}
721     \end{equation}
722     where each of the sub-flow is chosen such that each represent a
723 tim 2702 simpler integration of the system.
724    
725     Suppose that a Hamiltonian system takes the form,
726     \[
727     H = H_1 + H_2.
728     \]
729     Here, $H_1$ and $H_2$ may represent different physical processes of
730     the system. For instance, they may relate to kinetic and potential
731     energy respectively, which is a natural decomposition of the
732     problem. If $H_1$ and $H_2$ can be integrated using exact flows
733     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734     order is then given by the Lie-Trotter formula
735 tim 2699 \begin{equation}
736 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
737     \label{introEquation:firstOrderSplitting}
738     \end{equation}
739     where $\varphi _h$ is the result of applying the corresponding
740     continuous $\varphi _i$ over a time $h$. By definition, as
741     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742     must follow that each operator $\varphi_i(t)$ is a symplectic map.
743     It is easy to show that any composition of symplectic flows yields a
744     symplectic map,
745     \begin{equation}
746 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
748 tim 2699 \label{introEquation:SymplecticFlowComposition}
749     \end{equation}
750 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751     splitting in this context automatically generates a symplectic map.
752 tim 2699
753 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754     introduces local errors proportional to $h^2$, while Strang
755     splitting gives a second-order decomposition,
756     \begin{equation}
757     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
758 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 tim 2702 \end{equation}
760     which has a local error proportional to $h^3$. Sprang splitting's
761     popularity in molecular simulation community attribute to its
762     symmetric property,
763     \begin{equation}
764     \varphi _h^{ - 1} = \varphi _{ - h}.
765 tim 2703 \label{introEquation:timeReversible}
766 tim 2702 \end{equation}
767    
768     \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769     The classical equation for a system consisting of interacting
770     particles can be written in Hamiltonian form,
771     \[
772     H = T + V
773     \]
774     where $T$ is the kinetic energy and $V$ is the potential energy.
775     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776     obtains the following:
777     \begin{align}
778     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780     \label{introEquation:Lp10a} \\%
781     %
782     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784     \label{introEquation:Lp10b}
785     \end{align}
786     where $F(t)$ is the force at time $t$. This integration scheme is
787     known as \emph{velocity verlet} which is
788     symplectic(\ref{introEquation:SymplecticFlowComposition}),
789     time-reversible(\ref{introEquation:timeReversible}) and
790     volume-preserving (\ref{introEquation:volumePreserving}). These
791     geometric properties attribute to its long-time stability and its
792     popularity in the community. However, the most commonly used
793     velocity verlet integration scheme is written as below,
794     \begin{align}
795     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797     %
798     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799     \label{introEquation:Lp9b}\\%
800     %
801     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803     \end{align}
804     From the preceding splitting, one can see that the integration of
805     the equations of motion would follow:
806     \begin{enumerate}
807     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808    
809     \item Use the half step velocities to move positions one whole step, $\Delta t$.
810    
811     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812    
813     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814     \end{enumerate}
815    
816     Simply switching the order of splitting and composing, a new
817     integrator, the \emph{position verlet} integrator, can be generated,
818     \begin{align}
819     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821     \label{introEquation:positionVerlet1} \\%
822     %
823 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 tim 2702 q(\Delta t)} \right]. %
825 tim 2719 \label{introEquation:positionVerlet2}
826 tim 2702 \end{align}
827    
828     \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829    
830     Baker-Campbell-Hausdorff formula can be used to determine the local
831     error of splitting method in terms of commutator of the
832     operators(\ref{introEquation:exponentialOperator}) associated with
833     the sub-flow. For operators $hX$ and $hY$ which are associate to
834     $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835     \begin{equation}
836     \exp (hX + hY) = \exp (hZ)
837     \end{equation}
838     where
839     \begin{equation}
840     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
842     \end{equation}
843     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844     \[
845     [X,Y] = XY - YX .
846     \]
847     Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848     can obtain
849 tim 2703 \begin{eqnarray*}
850 tim 2702 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 tim 2703 [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852     & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853     \ldots )
854     \end{eqnarray*}
855 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856     error of Spring splitting is proportional to $h^3$. The same
857     procedure can be applied to general splitting, of the form
858     \begin{equation}
859     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
860     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
861     \end{equation}
862     Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863     order method. Yoshida proposed an elegant way to compose higher
864     order methods based on symmetric splitting. Given a symmetric second
865     order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866     method can be constructed by composing,
867     \[
868     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
869     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
870     \]
871     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874     \begin{equation}
875     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
876     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
877     \end{equation}
878     , if the weights are chosen as
879     \[
880     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882     \]
883    
884 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885    
886     As a special discipline of molecular modeling, Molecular dynamics
887     has proven to be a powerful tool for studying the functions of
888     biological systems, providing structural, thermodynamic and
889     dynamical information.
890    
891 tim 2719 One of the principal tools for modeling proteins, nucleic acids and
892     their complexes. Stability of proteins Folding of proteins.
893     Molecular recognition by:proteins, DNA, RNA, lipids, hormones STP,
894     etc. Enzyme reactions Rational design of biologically active
895     molecules (drug design) Small and large-scale conformational
896     changes. determination and construction of 3D structures (homology,
897     Xray diffraction, NMR) Dynamic processes such as ion transport in
898     biological systems.
899    
900     Macroscopic properties are related to microscopic behavior.
901    
902     Time dependent (and independent) microscopic behavior of a molecule
903     can be calculated by molecular dynamics simulations.
904    
905 tim 2694 \subsection{\label{introSec:mdInit}Initialization}
906    
907 tim 2705 \subsection{\label{introSec:forceEvaluation}Force Evaluation}
908    
909 tim 2694 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
910    
911 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
912 tim 2692
913 tim 2705 Rigid bodies are frequently involved in the modeling of different
914     areas, from engineering, physics, to chemistry. For example,
915     missiles and vehicle are usually modeled by rigid bodies. The
916     movement of the objects in 3D gaming engine or other physics
917     simulator is governed by the rigid body dynamics. In molecular
918     simulation, rigid body is used to simplify the model in
919     protein-protein docking study{\cite{Gray03}}.
920 tim 2694
921 tim 2705 It is very important to develop stable and efficient methods to
922     integrate the equations of motion of orientational degrees of
923     freedom. Euler angles are the nature choice to describe the
924     rotational degrees of freedom. However, due to its singularity, the
925     numerical integration of corresponding equations of motion is very
926     inefficient and inaccurate. Although an alternative integrator using
927     different sets of Euler angles can overcome this difficulty\cite{},
928     the computational penalty and the lost of angular momentum
929     conservation still remain. A singularity free representation
930     utilizing quaternions was developed by Evans in 1977. Unfortunately,
931     this approach suffer from the nonseparable Hamiltonian resulted from
932     quaternion representation, which prevents the symplectic algorithm
933     to be utilized. Another different approach is to apply holonomic
934     constraints to the atoms belonging to the rigid body. Each atom
935     moves independently under the normal forces deriving from potential
936     energy and constraint forces which are used to guarantee the
937     rigidness. However, due to their iterative nature, SHAKE and Rattle
938     algorithm converge very slowly when the number of constraint
939     increases.
940 tim 2694
941 tim 2705 The break through in geometric literature suggests that, in order to
942     develop a long-term integration scheme, one should preserve the
943     symplectic structure of the flow. Introducing conjugate momentum to
944 tim 2719 rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
945 tim 2705 symplectic integrator, RSHAKE, was proposed to evolve the
946     Hamiltonian system in a constraint manifold by iteratively
947 tim 2719 satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
948 tim 2705 method using quaternion representation was developed by Omelyan.
949     However, both of these methods are iterative and inefficient. In
950     this section, we will present a symplectic Lie-Poisson integrator
951 tim 2707 for rigid body developed by Dullweber and his
952 tim 2713 coworkers\cite{Dullweber1997} in depth.
953 tim 2705
954 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
955 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
956     function
957 tim 2706 \begin{equation}
958     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
959     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
960     \label{introEquation:RBHamiltonian}
961     \end{equation}
962     Here, $q$ and $Q$ are the position and rotation matrix for the
963     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
964     $J$, a diagonal matrix, is defined by
965     \[
966     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
967     \]
968     where $I_{ii}$ is the diagonal element of the inertia tensor. This
969     constrained Hamiltonian equation subjects to a holonomic constraint,
970     \begin{equation}
971     Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
972     \end{equation}
973     which is used to ensure rotation matrix's orthogonality.
974     Differentiating \ref{introEquation:orthogonalConstraint} and using
975     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
976     \begin{equation}
977 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
978 tim 2706 \label{introEquation:RBFirstOrderConstraint}
979     \end{equation}
980    
981     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
982     \ref{introEquation:motionHamiltonianMomentum}), one can write down
983     the equations of motion,
984     \[
985     \begin{array}{c}
986     \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
987     \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
988     \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
989 tim 2707 \frac{{dP}}{{dt}} = - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
990 tim 2706 \end{array}
991     \]
992    
993 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
994     We can use constraint force provided by lagrange multiplier on the
995     normal manifold to keep the motion on constraint space. Or we can
996     simply evolve the system in constraint manifold. The two method are
997     proved to be equivalent. The holonomic constraint and equations of
998     motions define a constraint manifold for rigid body
999     \[
1000     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1001     \right\}.
1002     \]
1003 tim 2706
1004 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1005     $T_{\star}SO(3)$. However, it turns out that under symplectic
1006     transformation, the cotangent space and the phase space are
1007     diffeomorphic. Introducing
1008 tim 2706 \[
1009 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1010 tim 2706 \]
1011 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1012     can be re-formulated as a Hamiltonian system on the cotangent space
1013     \[
1014     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1015     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1016     \]
1017 tim 2706
1018 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1019     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1020     given as
1021     \begin{equation}
1022     X_i^{lab} = Q X_i + q.
1023     \end{equation}
1024     Therefore, potential energy $V(q,Q)$ is defined by
1025     \[
1026     V(q,Q) = V(Q X_0 + q).
1027     \]
1028 tim 2713 Hence, the force and torque are given by
1029 tim 2707 \[
1030 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1031 tim 2707 \]
1032 tim 2713 and
1033 tim 2707 \[
1034     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1035     \]
1036 tim 2713 respectively.
1037 tim 2695
1038 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1039     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1040     rewrite the equations of motion,
1041     \begin{equation}
1042     \begin{array}{l}
1043     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1044     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1045     \end{array}
1046     \label{introEqaution:RBMotionPI}
1047     \end{equation}
1048     , as well as holonomic constraints,
1049     \[
1050     \begin{array}{l}
1051     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1052     Q^T Q = 1 \\
1053     \end{array}
1054     \]
1055 tim 2692
1056 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1057     so(3)^ \star$, the hat-map isomorphism,
1058     \begin{equation}
1059     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1060     {\begin{array}{*{20}c}
1061     0 & { - v_3 } & {v_2 } \\
1062     {v_3 } & 0 & { - v_1 } \\
1063     { - v_2 } & {v_1 } & 0 \\
1064     \end{array}} \right),
1065     \label{introEquation:hatmapIsomorphism}
1066     \end{equation}
1067     will let us associate the matrix products with traditional vector
1068     operations
1069     \[
1070     \hat vu = v \times u
1071     \]
1072    
1073     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1074     matrix,
1075     \begin{equation}
1076     (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ \bullet ^T
1077     ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1078     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1079     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1080     \end{equation}
1081     Since $\Lambda$ is symmetric, the last term of Equation
1082 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1083     multiplier $\Lambda$ is absent from the equations of motion. This
1084     unique property eliminate the requirement of iterations which can
1085     not be avoided in other methods\cite{}.
1086 tim 2707
1087 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1088     angular momentum on body frame
1089     \begin{equation}
1090     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1091     F_i (r,Q)} \right) \times X_i }.
1092     \label{introEquation:bodyAngularMotion}
1093     \end{equation}
1094 tim 2707 In the same manner, the equation of motion for rotation matrix is
1095     given by
1096     \[
1097 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1098 tim 2707 \]
1099    
1100 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1101     Lie-Poisson Integrator for Free Rigid Body}
1102 tim 2707
1103 tim 2713 If there is not external forces exerted on the rigid body, the only
1104     contribution to the rotational is from the kinetic potential (the
1105     first term of \ref{ introEquation:bodyAngularMotion}). The free
1106     rigid body is an example of Lie-Poisson system with Hamiltonian
1107     function
1108     \begin{equation}
1109     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1110     \label{introEquation:rotationalKineticRB}
1111     \end{equation}
1112     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1113     Lie-Poisson structure matrix,
1114     \begin{equation}
1115     J(\pi ) = \left( {\begin{array}{*{20}c}
1116     0 & {\pi _3 } & { - \pi _2 } \\
1117     { - \pi _3 } & 0 & {\pi _1 } \\
1118     {\pi _2 } & { - \pi _1 } & 0 \\
1119     \end{array}} \right)
1120     \end{equation}
1121     Thus, the dynamics of free rigid body is governed by
1122     \begin{equation}
1123     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1124     \end{equation}
1125 tim 2707
1126 tim 2713 One may notice that each $T_i^r$ in Equation
1127     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1128     instance, the equations of motion due to $T_1^r$ are given by
1129     \begin{equation}
1130     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1131     \label{introEqaution:RBMotionSingleTerm}
1132     \end{equation}
1133     where
1134     \[ R_1 = \left( {\begin{array}{*{20}c}
1135     0 & 0 & 0 \\
1136     0 & 0 & {\pi _1 } \\
1137     0 & { - \pi _1 } & 0 \\
1138     \end{array}} \right).
1139     \]
1140     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1141 tim 2707 \[
1142 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1143     Q(0)e^{\Delta tR_1 }
1144 tim 2707 \]
1145 tim 2713 with
1146 tim 2707 \[
1147 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1148     0 & 0 & 0 \\
1149     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1150     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1151     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1152 tim 2707 \]
1153 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1154     tR_1 }$, we can use Cayley transformation,
1155 tim 2713 \[
1156     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1157     )
1158     \]
1159 tim 2707
1160 tim 2713 The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1161     manner.
1162    
1163     In order to construct a second-order symplectic method, we split the
1164     angular kinetic Hamiltonian function can into five terms
1165 tim 2707 \[
1166 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1167     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1168     (\pi _1 )
1169     \].
1170     Concatenating flows corresponding to these five terms, we can obtain
1171     an symplectic integrator,
1172     \[
1173     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1174 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1175     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1176 tim 2713 _1 }.
1177 tim 2707 \]
1178    
1179 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1180     $F(\pi )$ and $G(\pi )$ is defined by
1181 tim 2707 \[
1182 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1183     )
1184     \]
1185     If the Poisson bracket of a function $F$ with an arbitrary smooth
1186     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1187     conserved quantity in Poisson system. We can easily verify that the
1188     norm of the angular momentum, $\parallel \pi
1189     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1190     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1191     then by the chain rule
1192     \[
1193     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1194     }}{2})\pi
1195     \]
1196     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1197     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1198     Lie-Poisson integrator is found to be extremely efficient and stable
1199     which can be explained by the fact the small angle approximation is
1200     used and the norm of the angular momentum is conserved.
1201    
1202     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1203     Splitting for Rigid Body}
1204    
1205     The Hamiltonian of rigid body can be separated in terms of kinetic
1206     energy and potential energy,
1207     \[
1208     H = T(p,\pi ) + V(q,Q)
1209     \]
1210     The equations of motion corresponding to potential energy and
1211     kinetic energy are listed in the below table,
1212     \begin{center}
1213     \begin{tabular}{|l|l|}
1214     \hline
1215     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1216     Potential & Kinetic \\
1217     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1218     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1219     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1220     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1221     \hline
1222     \end{tabular}
1223     \end{center}
1224     A second-order symplectic method is now obtained by the composition
1225     of the flow maps,
1226     \[
1227     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1228     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1229     \]
1230 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1231     sub-flows which corresponding to force and torque respectively,
1232 tim 2713 \[
1233 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1234 tim 2713 _{\Delta t/2,\tau }.
1235 tim 2707 \]
1236 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1237     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1238 tim 2719 order inside $\varphi _{\Delta t/2,V}$ does not matter.
1239 tim 2707
1240 tim 2713 Furthermore, kinetic potential can be separated to translational
1241     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1242     \begin{equation}
1243     T(p,\pi ) =T^t (p) + T^r (\pi ).
1244     \end{equation}
1245     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1246     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1247     corresponding flow maps are given by
1248     \[
1249     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1250     _{\Delta t,T^r }.
1251     \]
1252     Finally, we obtain the overall symplectic flow maps for free moving
1253     rigid body
1254     \begin{equation}
1255     \begin{array}{c}
1256     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1257     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1258     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1259     \end{array}
1260     \label{introEquation:overallRBFlowMaps}
1261     \end{equation}
1262 tim 2707
1263 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1264 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1265     mimics a simple heat bath with stochastic and dissipative forces,
1266     has been applied in a variety of studies. This section will review
1267     the theory of Langevin dynamics simulation. A brief derivation of
1268 tim 2719 generalized Langevin equation will be given first. Follow that, we
1269 tim 2716 will discuss the physical meaning of the terms appearing in the
1270     equation as well as the calculation of friction tensor from
1271     hydrodynamics theory.
1272 tim 2685
1273 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1274 tim 2685
1275 tim 2719 Harmonic bath model, in which an effective set of harmonic
1276     oscillators are used to mimic the effect of a linearly responding
1277     environment, has been widely used in quantum chemistry and
1278     statistical mechanics. One of the successful applications of
1279     Harmonic bath model is the derivation of Deriving Generalized
1280     Langevin Dynamics. Lets consider a system, in which the degree of
1281     freedom $x$ is assumed to couple to the bath linearly, giving a
1282     Hamiltonian of the form
1283 tim 2696 \begin{equation}
1284     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1285 tim 2719 \label{introEquation:bathGLE}.
1286 tim 2696 \end{equation}
1287 tim 2719 Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1288     with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1289 tim 2696 \[
1290 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1291     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1292     \right\}}
1293 tim 2696 \]
1294 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1295     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1296     the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1297     coupling,
1298 tim 2696 \[
1299     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1300     \]
1301 tim 2719 where $g_\alpha$ are the coupling constants between the bath and the
1302     coordinate $x$. Introducing
1303 tim 2696 \[
1304 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1305     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1306     \] and combining the last two terms in Equation
1307     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1308     Hamiltonian as
1309 tim 2696 \[
1310     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1311     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1312     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1313     w_\alpha ^2 }}x} \right)^2 } \right\}}
1314     \]
1315     Since the first two terms of the new Hamiltonian depend only on the
1316     system coordinates, we can get the equations of motion for
1317     Generalized Langevin Dynamics by Hamilton's equations
1318     \ref{introEquation:motionHamiltonianCoordinate,
1319     introEquation:motionHamiltonianMomentum},
1320 tim 2719 \begin{equation}
1321     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1322     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1323     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1324     \label{introEquation:coorMotionGLE}
1325     \end{equation}
1326     and
1327     \begin{equation}
1328     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1329     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1330     \label{introEquation:bathMotionGLE}
1331     \end{equation}
1332 tim 2696
1333 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1334     variables $x_\alpha$ must be solved exactly first. As an integral
1335     transform which is particularly useful in solving linear ordinary
1336     differential equations, Laplace transform is the appropriate tool to
1337     solve this problem. The basic idea is to transform the difficult
1338     differential equations into simple algebra problems which can be
1339     solved easily. Then applying inverse Laplace transform, also known
1340     as the Bromwich integral, we can retrieve the solutions of the
1341     original problems.
1342 tim 2696
1343 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1344     transform of f(t) is a new function defined as
1345 tim 2696 \[
1346 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1347 tim 2696 \]
1348 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1349     Operator. Below are some important properties of Laplace transform
1350     \begin{equation}
1351     \begin{array}{c}
1352     L(x + y) = L(x) + L(y) \\
1353     L(ax) = aL(x) \\
1354     L(\dot x) = pL(x) - px(0) \\
1355     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1356     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1357     \end{array}
1358     \end{equation}
1359 tim 2696
1360 tim 2719 Applying Laplace transform to the bath coordinates, we obtain
1361 tim 2696 \[
1362 tim 2719 \begin{array}{c}
1363     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1364     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1365     \end{array}
1366 tim 2696 \]
1367 tim 2719 By the same way, the system coordinates become
1368 tim 2696 \[
1369 tim 2719 \begin{array}{c}
1370     mL(\ddot x) = - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1371     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1372     \end{array}
1373 tim 2696 \]
1374    
1375 tim 2719 With the help of some relatively important inverse Laplace
1376     transformations:
1377 tim 2696 \[
1378 tim 2719 \begin{array}{c}
1379     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1380     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1381     L(1) = \frac{1}{p} \\
1382     \end{array}
1383 tim 2696 \]
1384 tim 2719 , we obtain
1385 tim 2696 \begin{align}
1386     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1387     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1388     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1389     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1390     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1391     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1392     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1393     %
1394     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1395     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1396     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1397     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1398     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1399     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1400     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1401     (\omega _\alpha t)} \right\}}
1402     \end{align}
1403    
1404 tim 2719 Introducing a \emph{dynamic friction kernel}
1405 tim 2696 \begin{equation}
1406 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1407     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1408     \label{introEquation:dynamicFrictionKernelDefinition}
1409     \end{equation}
1410     and \emph{a random force}
1411     \begin{equation}
1412     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1413     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1414     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1415     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1416     \label{introEquation:randomForceDefinition}
1417     \end{equation}
1418     the equation of motion can be rewritten as
1419     \begin{equation}
1420 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1421     (t)\dot x(t - \tau )d\tau } + R(t)
1422     \label{introEuqation:GeneralizedLangevinDynamics}
1423     \end{equation}
1424 tim 2719 which is known as the \emph{generalized Langevin equation}.
1425    
1426     \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1427    
1428     One may notice that $R(t)$ depends only on initial conditions, which
1429     implies it is completely deterministic within the context of a
1430     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1431     uncorrelated to $x$ and $\dot x$,
1432 tim 2696 \[
1433 tim 2719 \begin{array}{l}
1434     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1435     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1436     \end{array}
1437 tim 2696 \]
1438 tim 2719 This property is what we expect from a truly random process. As long
1439     as the model, which is gaussian distribution in general, chosen for
1440     $R(t)$ is a truly random process, the stochastic nature of the GLE
1441     still remains.
1442 tim 2696
1443 tim 2719 %dynamic friction kernel
1444     The convolution integral
1445 tim 2696 \[
1446 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1447 tim 2696 \]
1448 tim 2719 depends on the entire history of the evolution of $x$, which implies
1449     that the bath retains memory of previous motions. In other words,
1450     the bath requires a finite time to respond to change in the motion
1451     of the system. For a sluggish bath which responds slowly to changes
1452     in the system coordinate, we may regard $\xi(t)$ as a constant
1453     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1454     \[
1455     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1456     \]
1457     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1458     \[
1459     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1460     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1461     \]
1462     which can be used to describe dynamic caging effect. The other
1463     extreme is the bath that responds infinitely quickly to motions in
1464     the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1465     time:
1466     \[
1467     \xi (t) = 2\xi _0 \delta (t)
1468     \]
1469     Hence, the convolution integral becomes
1470     \[
1471     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1472     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1473     \]
1474     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1475     \begin{equation}
1476     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1477     x(t) + R(t) \label{introEquation:LangevinEquation}
1478     \end{equation}
1479     which is known as the Langevin equation. The static friction
1480     coefficient $\xi _0$ can either be calculated from spectral density
1481     or be determined by Stokes' law for regular shaped particles.A
1482     briefly review on calculating friction tensor for arbitrary shaped
1483     particles is given in section \ref{introSection:frictionTensor}.
1484 tim 2696
1485     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1486 tim 2719
1487     Defining a new set of coordinates,
1488 tim 2696 \[
1489     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1490     ^2 }}x(0)
1491 tim 2719 \],
1492     we can rewrite $R(T)$ as
1493 tim 2696 \[
1494 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1495 tim 2696 \]
1496     And since the $q$ coordinates are harmonic oscillators,
1497     \[
1498 tim 2719 \begin{array}{c}
1499     \left\langle {q_\alpha ^2 } \right\rangle = \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1500 tim 2696 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1501     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1502 tim 2719 \left\langle {R(t)R(0)} \right\rangle = \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1503     = \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1504     = kT\xi (t) \\
1505 tim 2696 \end{array}
1506     \]
1507 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1508 tim 2696 \begin{equation}
1509     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1510 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1511 tim 2696 \end{equation}
1512 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1513     can model the random force and friction kernel.
1514 tim 2696
1515     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1516 tim 2716 Theoretically, the friction kernel can be determined using velocity
1517     autocorrelation function. However, this approach become impractical
1518     when the system become more and more complicate. Instead, various
1519     approaches based on hydrodynamics have been developed to calculate
1520     the friction coefficients. The friction effect is isotropic in
1521     Equation, \zeta can be taken as a scalar. In general, friction
1522     tensor \Xi is a $6\times 6$ matrix given by
1523     \[
1524     \Xi = \left( {\begin{array}{*{20}c}
1525     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1526     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1527     \end{array}} \right).
1528     \]
1529     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1530 tim 2718 tensor and rotational resistance (friction) tensor respectively,
1531     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1532     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1533     particle moves in a fluid, it may experience friction force or
1534     torque along the opposite direction of the velocity or angular
1535     velocity,
1536 tim 2716 \[
1537     \left( \begin{array}{l}
1538 tim 2718 F_R \\
1539     \tau _R \\
1540 tim 2716 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1541     {\Xi ^{tt} } & {\Xi ^{rt} } \\
1542     {\Xi ^{tr} } & {\Xi ^{rr} } \\
1543     \end{array}} \right)\left( \begin{array}{l}
1544     v \\
1545     w \\
1546     \end{array} \right)
1547     \]
1548 tim 2718 where $F_r$ is the friction force and $\tau _R$ is the friction
1549     toque.
1550 tim 2696
1551 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1552    
1553 tim 2716 For a spherical particle, the translational and rotational friction
1554     constant can be calculated from Stoke's law,
1555     \[
1556     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1557     {6\pi \eta R} & 0 & 0 \\
1558     0 & {6\pi \eta R} & 0 \\
1559     0 & 0 & {6\pi \eta R} \\
1560     \end{array}} \right)
1561     \]
1562     and
1563     \[
1564     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1565     {8\pi \eta R^3 } & 0 & 0 \\
1566     0 & {8\pi \eta R^3 } & 0 \\
1567     0 & 0 & {8\pi \eta R^3 } \\
1568     \end{array}} \right)
1569     \]
1570     where $\eta$ is the viscosity of the solvent and $R$ is the
1571     hydrodynamics radius.
1572 tim 2706
1573 tim 2718 Other non-spherical shape, such as cylinder and ellipsoid
1574     \textit{etc}, are widely used as reference for developing new
1575     hydrodynamics theory, because their properties can be calculated
1576     exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1577     also called a triaxial ellipsoid, which is given in Cartesian
1578     coordinates by
1579 tim 2716 \[
1580 tim 2718 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1581     }} = 1
1582     \]
1583     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1584     due to the complexity of the elliptic integral, only the ellipsoid
1585     with the restriction of two axes having to be equal, \textit{i.e.}
1586     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1587     exactly. Introducing an elliptic integral parameter $S$ for prolate,
1588     \[
1589 tim 2716 S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1590 tim 2718 } }}{b},
1591 tim 2716 \]
1592 tim 2718 and oblate,
1593 tim 2716 \[
1594     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1595     }}{a}
1596 tim 2718 \],
1597     one can write down the translational and rotational resistance
1598     tensors
1599 tim 2716 \[
1600     \begin{array}{l}
1601     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1602     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1603 tim 2718 \end{array},
1604 tim 2716 \]
1605 tim 2718 and
1606 tim 2716 \[
1607     \begin{array}{l}
1608     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1609     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1610 tim 2718 \end{array}.
1611 tim 2716 \]
1612    
1613 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1614 tim 2716
1615     Unlike spherical and other regular shaped molecules, there is not
1616     analytical solution for friction tensor of any arbitrary shaped
1617     rigid molecules. The ellipsoid of revolution model and general
1618     triaxial ellipsoid model have been used to approximate the
1619     hydrodynamic properties of rigid bodies. However, since the mapping
1620     from all possible ellipsoidal space, $r$-space, to all possible
1621     combination of rotational diffusion coefficients, $D$-space is not
1622     unique\cite{Wegener79} as well as the intrinsic coupling between
1623     translational and rotational motion of rigid body\cite{}, general
1624     ellipsoid is not always suitable for modeling arbitrarily shaped
1625     rigid molecule. A number of studies have been devoted to determine
1626     the friction tensor for irregularly shaped rigid bodies using more
1627     advanced method\cite{} where the molecule of interest was modeled by
1628     combinations of spheres(beads)\cite{} and the hydrodynamics
1629     properties of the molecule can be calculated using the hydrodynamic
1630     interaction tensor. Let us consider a rigid assembly of $N$ beads
1631     immersed in a continuous medium. Due to hydrodynamics interaction,
1632     the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1633     unperturbed velocity $v_i$,
1634     \[
1635     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1636     \]
1637     where $F_i$ is the frictional force, and $T_{ij}$ is the
1638     hydrodynamic interaction tensor. The friction force of $i$th bead is
1639     proportional to its ``net'' velocity
1640     \begin{equation}
1641     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1642     \label{introEquation:tensorExpression}
1643     \end{equation}
1644     This equation is the basis for deriving the hydrodynamic tensor. In
1645     1930, Oseen and Burgers gave a simple solution to Equation
1646     \ref{introEquation:tensorExpression}
1647     \begin{equation}
1648     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1649     R_{ij}^T }}{{R_{ij}^2 }}} \right).
1650     \label{introEquation:oseenTensor}
1651     \end{equation}
1652     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1653     A second order expression for element of different size was
1654     introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1655     la Torre and Bloomfield,
1656     \begin{equation}
1657     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1658     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1659     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1660     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1661     \label{introEquation:RPTensorNonOverlapped}
1662     \end{equation}
1663     Both of the Equation \ref{introEquation:oseenTensor} and Equation
1664     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1665     \ge \sigma _i + \sigma _j$. An alternative expression for
1666     overlapping beads with the same radius, $\sigma$, is given by
1667     \begin{equation}
1668     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1669     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1670     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1671     \label{introEquation:RPTensorOverlapped}
1672     \end{equation}
1673    
1674 tim 2718 To calculate the resistance tensor at an arbitrary origin $O$, we
1675     construct a $3N \times 3N$ matrix consisting of $N \times N$
1676     $B_{ij}$ blocks
1677     \begin{equation}
1678 tim 2716 B = \left( {\begin{array}{*{20}c}
1679 tim 2718 {B_{11} } & \ldots & {B_{1N} } \\
1680 tim 2716 \vdots & \ddots & \vdots \\
1681 tim 2718 {B_{N1} } & \cdots & {B_{NN} } \\
1682     \end{array}} \right),
1683     \end{equation}
1684     where $B_{ij}$ is given by
1685     \[
1686     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1687     )T_{ij}
1688 tim 2716 \]
1689 tim 2719 where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1690 tim 2718 $B$, we obtain
1691 tim 2716
1692     \[
1693     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1694     {C_{11} } & \ldots & {C_{1N} } \\
1695     \vdots & \ddots & \vdots \\
1696     {C_{N1} } & \cdots & {C_{NN} } \\
1697     \end{array}} \right)
1698     \]
1699 tim 2718 , which can be partitioned into $N \times N$ $3 \times 3$ block
1700     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1701     \[
1702     U_i = \left( {\begin{array}{*{20}c}
1703     0 & { - z_i } & {y_i } \\
1704     {z_i } & 0 & { - x_i } \\
1705     { - y_i } & {x_i } & 0 \\
1706     \end{array}} \right)
1707     \]
1708     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1709     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1710     arbitrary origin $O$ can be written as
1711 tim 2716 \begin{equation}
1712     \begin{array}{l}
1713     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1714     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1715     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1716     \end{array}
1717 tim 2718 \label{introEquation:ResistanceTensorArbitraryOrigin}
1718 tim 2716 \end{equation}
1719 tim 2718
1720     The resistance tensor depends on the origin to which they refer. The
1721     proper location for applying friction force is the center of
1722     resistance (reaction), at which the trace of rotational resistance
1723     tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1724     resistance is defined as an unique point of the rigid body at which
1725     the translation-rotation coupling tensor are symmetric,
1726     \begin{equation}
1727     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
1728     \label{introEquation:definitionCR}
1729     \end{equation}
1730     Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1731     we can easily find out that the translational resistance tensor is
1732     origin independent, while the rotational resistance tensor and
1733 tim 2719 translation-rotation coupling resistance tensor depend on the
1734 tim 2718 origin. Given resistance tensor at an arbitrary origin $O$, and a
1735     vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1736     obtain the resistance tensor at $P$ by
1737     \begin{equation}
1738     \begin{array}{l}
1739     \Xi _P^{tt} = \Xi _O^{tt} \\
1740     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
1741     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{tr} ^{^T } \\
1742     \end{array}
1743     \label{introEquation:resistanceTensorTransformation}
1744     \end{equation}
1745 tim 2716 where
1746     \[
1747 tim 2718 U_{OP} = \left( {\begin{array}{*{20}c}
1748     0 & { - z_{OP} } & {y_{OP} } \\
1749     {z_i } & 0 & { - x_{OP} } \\
1750     { - y_{OP} } & {x_{OP} } & 0 \\
1751 tim 2716 \end{array}} \right)
1752     \]
1753 tim 2718 Using Equations \ref{introEquation:definitionCR} and
1754     \ref{introEquation:resistanceTensorTransformation}, one can locate
1755     the position of center of resistance,
1756 tim 2716 \[
1757 tim 2718 \left( \begin{array}{l}
1758 tim 2716 x_{OR} \\
1759     y_{OR} \\
1760     z_{OR} \\
1761     \end{array} \right) = \left( {\begin{array}{*{20}c}
1762 tim 2718 {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
1763     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
1764     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
1765 tim 2716 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1766 tim 2718 (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
1767     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
1768     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
1769     \end{array} \right).
1770 tim 2716 \]
1771 tim 2718 where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1772     joining center of resistance $R$ and origin $O$.
1773 tim 2716
1774     %\section{\label{introSection:correlationFunctions}Correlation Functions}