ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2720
Committed: Wed Apr 19 19:46:53 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 78155 byte(s)
Log Message:
Finish Initialization of Molecular Dynamics Section

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2694 Newton¡¯s third law states that
33     \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
121 tim 2692 motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2694 equations\cite{Marion90}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224 tim 2700 Statistical Mechanics concepts and theorem presented in this
225     dissertation.
226 tim 2692
227 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 tim 2692
229 tim 2700 Mathematically, phase space is the space which represents all
230     possible states. Each possible state of the system corresponds to
231     one unique point in the phase space. For mechanical systems, the
232     phase space usually consists of all possible values of position and
233     momentum variables. Consider a dynamic system in a cartesian space,
234     where each of the $6f$ coordinates and momenta is assigned to one of
235     $6f$ mutually orthogonal axes, the phase space of this system is a
236     $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237     \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238     momenta is a phase space vector.
239    
240     A microscopic state or microstate of a classical system is
241     specification of the complete phase space vector of a system at any
242     instant in time. An ensemble is defined as a collection of systems
243     sharing one or more macroscopic characteristics but each being in a
244     unique microstate. The complete ensemble is specified by giving all
245     systems or microstates consistent with the common macroscopic
246     characteristics of the ensemble. Although the state of each
247     individual system in the ensemble could be precisely described at
248     any instance in time by a suitable phase space vector, when using
249     ensembles for statistical purposes, there is no need to maintain
250     distinctions between individual systems, since the numbers of
251     systems at any time in the different states which correspond to
252     different regions of the phase space are more interesting. Moreover,
253     in the point of view of statistical mechanics, one would prefer to
254     use ensembles containing a large enough population of separate
255     members so that the numbers of systems in such different states can
256     be regarded as changing continuously as we traverse different
257     regions of the phase space. The condition of an ensemble at any time
258     can be regarded as appropriately specified by the density $\rho$
259     with which representative points are distributed over the phase
260     space. The density of distribution for an ensemble with $f$ degrees
261     of freedom is defined as,
262     \begin{equation}
263     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264     \label{introEquation:densityDistribution}
265     \end{equation}
266     Governed by the principles of mechanics, the phase points change
267     their value which would change the density at any time at phase
268     space. Hence, the density of distribution is also to be taken as a
269     function of the time.
270    
271     The number of systems $\delta N$ at time $t$ can be determined by,
272     \begin{equation}
273     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274     \label{introEquation:deltaN}
275     \end{equation}
276     Assuming a large enough population of systems are exploited, we can
277     sufficiently approximate $\delta N$ without introducing
278     discontinuity when we go from one region in the phase space to
279     another. By integrating over the whole phase space,
280     \begin{equation}
281     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282     \label{introEquation:totalNumberSystem}
283     \end{equation}
284     gives us an expression for the total number of the systems. Hence,
285     the probability per unit in the phase space can be obtained by,
286     \begin{equation}
287     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289     \label{introEquation:unitProbability}
290     \end{equation}
291     With the help of Equation(\ref{introEquation:unitProbability}) and
292     the knowledge of the system, it is possible to calculate the average
293     value of any desired quantity which depends on the coordinates and
294     momenta of the system. Even when the dynamics of the real system is
295     complex, or stochastic, or even discontinuous, the average
296     properties of the ensemble of possibilities as a whole may still
297     remain well defined. For a classical system in thermal equilibrium
298     with its environment, the ensemble average of a mechanical quantity,
299     $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300     phase space of the system,
301     \begin{equation}
302     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305     \label{introEquation:ensembelAverage}
306     \end{equation}
307    
308     There are several different types of ensembles with different
309     statistical characteristics. As a function of macroscopic
310     parameters, such as temperature \textit{etc}, partition function can
311     be used to describe the statistical properties of a system in
312     thermodynamic equilibrium.
313    
314     As an ensemble of systems, each of which is known to be thermally
315     isolated and conserve energy, Microcanonical ensemble(NVE) has a
316     partition function like,
317     \begin{equation}
318 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 tim 2700 \end{equation}
320     A canonical ensemble(NVT)is an ensemble of systems, each of which
321     can share its energy with a large heat reservoir. The distribution
322     of the total energy amongst the possible dynamical states is given
323     by the partition function,
324     \begin{equation}
325     \Omega (N,V,T) = e^{ - \beta A}
326     \label{introEquation:NVTPartition}
327     \end{equation}
328     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329     TS$. Since most experiment are carried out under constant pressure
330     condition, isothermal-isobaric ensemble(NPT) play a very important
331     role in molecular simulation. The isothermal-isobaric ensemble allow
332     the system to exchange energy with a heat bath of temperature $T$
333     and to change the volume as well. Its partition function is given as
334     \begin{equation}
335     \Delta (N,P,T) = - e^{\beta G}.
336     \label{introEquation:NPTPartition}
337     \end{equation}
338     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339    
340     \subsection{\label{introSection:liouville}Liouville's theorem}
341    
342     The Liouville's theorem is the foundation on which statistical
343     mechanics rests. It describes the time evolution of phase space
344     distribution function. In order to calculate the rate of change of
345     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346     consider the two faces perpendicular to the $q_1$ axis, which are
347     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348     leaving the opposite face is given by the expression,
349     \begin{equation}
350     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353     \ldots \delta p_f .
354     \end{equation}
355     Summing all over the phase space, we obtain
356     \begin{equation}
357     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363     \end{equation}
364     Differentiating the equations of motion in Hamiltonian formalism
365     (\ref{introEquation:motionHamiltonianCoordinate},
366     \ref{introEquation:motionHamiltonianMomentum}), we can show,
367     \begin{equation}
368     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370     \end{equation}
371     which cancels the first terms of the right hand side. Furthermore,
372     divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373     p_f $ in both sides, we can write out Liouville's theorem in a
374     simple form,
375     \begin{equation}
376     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379     \label{introEquation:liouvilleTheorem}
380     \end{equation}
381    
382     Liouville's theorem states that the distribution function is
383     constant along any trajectory in phase space. In classical
384     statistical mechanics, since the number of particles in the system
385     is huge, we may be able to believe the system is stationary,
386     \begin{equation}
387     \frac{{\partial \rho }}{{\partial t}} = 0.
388     \label{introEquation:stationary}
389     \end{equation}
390     In such stationary system, the density of distribution $\rho$ can be
391     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392     distribution,
393     \begin{equation}
394     \rho \propto e^{ - \beta H}
395     \label{introEquation:densityAndHamiltonian}
396     \end{equation}
397    
398 tim 2702 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399     Lets consider a region in the phase space,
400     \begin{equation}
401     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402     \end{equation}
403     If this region is small enough, the density $\rho$ can be regarded
404     as uniform over the whole phase space. Thus, the number of phase
405     points inside this region is given by,
406     \begin{equation}
407     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408     dp_1 } ..dp_f.
409     \end{equation}
410    
411     \begin{equation}
412     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413     \frac{d}{{dt}}(\delta v) = 0.
414     \end{equation}
415     With the help of stationary assumption
416     (\ref{introEquation:stationary}), we obtain the principle of the
417     \emph{conservation of extension in phase space},
418     \begin{equation}
419     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420     ...dq_f dp_1 } ..dp_f = 0.
421     \label{introEquation:volumePreserving}
422     \end{equation}
423    
424     \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425    
426 tim 2700 Liouville's theorem can be expresses in a variety of different forms
427     which are convenient within different contexts. For any two function
428     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429     bracket ${F, G}$ is defined as
430     \begin{equation}
431     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434     q_i }}} \right)}.
435     \label{introEquation:poissonBracket}
436     \end{equation}
437     Substituting equations of motion in Hamiltonian formalism(
438     \ref{introEquation:motionHamiltonianCoordinate} ,
439     \ref{introEquation:motionHamiltonianMomentum} ) into
440     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441     theorem using Poisson bracket notion,
442     \begin{equation}
443     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444     {\rho ,H} \right\}.
445     \label{introEquation:liouvilleTheromInPoissin}
446     \end{equation}
447     Moreover, the Liouville operator is defined as
448     \begin{equation}
449     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452     \label{introEquation:liouvilleOperator}
453     \end{equation}
454     In terms of Liouville operator, Liouville's equation can also be
455     expressed as
456     \begin{equation}
457     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458     \label{introEquation:liouvilleTheoremInOperator}
459     \end{equation}
460    
461 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 tim 2692
463 tim 2695 Various thermodynamic properties can be calculated from Molecular
464     Dynamics simulation. By comparing experimental values with the
465     calculated properties, one can determine the accuracy of the
466     simulation and the quality of the underlying model. However, both of
467     experiment and computer simulation are usually performed during a
468     certain time interval and the measurements are averaged over a
469     period of them which is different from the average behavior of
470     many-body system in Statistical Mechanics. Fortunately, Ergodic
471     Hypothesis is proposed to make a connection between time average and
472     ensemble average. It states that time average and average over the
473     statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474     \begin{equation}
475 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 tim 2695 \end{equation}
479 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481     distribution function. If an observation is averaged over a
482     sufficiently long time (longer than relaxation time), all accessible
483     microstates in phase space are assumed to be equally probed, giving
484     a properly weighted statistical average. This allows the researcher
485     freedom of choice when deciding how best to measure a given
486     observable. In case an ensemble averaged approach sounds most
487     reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488     utilized. Or if the system lends itself to a time averaging
489     approach, the Molecular Dynamics techniques in
490     Sec.~\ref{introSection:molecularDynamics} will be the best
491     choice\cite{Frenkel1996}.
492 tim 2694
493 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494     A variety of numerical integrators were proposed to simulate the
495     motions. They usually begin with an initial conditionals and move
496     the objects in the direction governed by the differential equations.
497     However, most of them ignore the hidden physical law contained
498     within the equations. Since 1990, geometric integrators, which
499     preserve various phase-flow invariants such as symplectic structure,
500     volume and time reversal symmetry, are developed to address this
501     issue. The velocity verlet method, which happens to be a simple
502     example of symplectic integrator, continues to gain its popularity
503     in molecular dynamics community. This fact can be partly explained
504     by its geometric nature.
505    
506     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507     A \emph{manifold} is an abstract mathematical space. It locally
508     looks like Euclidean space, but when viewed globally, it may have
509     more complicate structure. A good example of manifold is the surface
510     of Earth. It seems to be flat locally, but it is round if viewed as
511     a whole. A \emph{differentiable manifold} (also known as
512     \emph{smooth manifold}) is a manifold with an open cover in which
513     the covering neighborhoods are all smoothly isomorphic to one
514     another. In other words,it is possible to apply calculus on
515     \emph{differentiable manifold}. A \emph{symplectic manifold} is
516     defined as a pair $(M, \omega)$ which consisting of a
517     \emph{differentiable manifold} $M$ and a close, non-degenerated,
518     bilinear symplectic form, $\omega$. A symplectic form on a vector
519     space $V$ is a function $\omega(x, y)$ which satisfies
520     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522     $\omega(x, x) = 0$. Cross product operation in vector field is an
523     example of symplectic form.
524    
525     One of the motivations to study \emph{symplectic manifold} in
526     Hamiltonian Mechanics is that a symplectic manifold can represent
527     all possible configurations of the system and the phase space of the
528     system can be described by it's cotangent bundle. Every symplectic
529     manifold is even dimensional. For instance, in Hamilton equations,
530     coordinate and momentum always appear in pairs.
531    
532     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533     \[
534     f : M \rightarrow N
535     \]
536     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538     Canonical transformation is an example of symplectomorphism in
539 tim 2698 classical mechanics.
540 tim 2697
541 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 tim 2697
543 tim 2698 For a ordinary differential system defined as
544     \begin{equation}
545     \dot x = f(x)
546     \end{equation}
547     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548     \begin{equation}
549 tim 2699 f(r) = J\nabla _x H(r).
550 tim 2698 \end{equation}
551     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552     matrix
553     \begin{equation}
554     J = \left( {\begin{array}{*{20}c}
555     0 & I \\
556     { - I} & 0 \\
557     \end{array}} \right)
558     \label{introEquation:canonicalMatrix}
559     \end{equation}
560     where $I$ is an identity matrix. Using this notation, Hamiltonian
561     system can be rewritten as,
562     \begin{equation}
563     \frac{d}{{dt}}x = J\nabla _x H(x)
564     \label{introEquation:compactHamiltonian}
565     \end{equation}In this case, $f$ is
566     called a \emph{Hamiltonian vector field}.
567 tim 2697
568 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569     \begin{equation}
570     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571     \end{equation}
572     The most obvious change being that matrix $J$ now depends on $x$.
573    
574 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
575    
576 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
577     \begin{equation}
578     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579     \end{equation}
580     The exact flow(solution) $\varphi_\tau$ is defined by
581     \[
582     x(t+\tau) =\varphi_\tau(x(t))
583     \]
584     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 tim 2702 space to itself. The flow has the continuous group property,
586 tim 2698 \begin{equation}
587 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
588     + \tau _2 } .
589     \end{equation}
590     In particular,
591     \begin{equation}
592     \varphi _\tau \circ \varphi _{ - \tau } = I
593     \end{equation}
594     Therefore, the exact flow is self-adjoint,
595     \begin{equation}
596     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
597     \end{equation}
598     The exact flow can also be written in terms of the of an operator,
599     \begin{equation}
600     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602     \label{introEquation:exponentialOperator}
603     \end{equation}
604    
605     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606     Instead, we use a approximate map, $\psi_\tau$, which is usually
607     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608     the Taylor series of $\psi_\tau$ agree to order $p$,
609     \begin{equation}
610 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611     \end{equation}
612    
613 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
614    
615 tim 2698 The hidden geometric properties of ODE and its flow play important
616 tim 2702 roles in numerical studies. Many of them can be found in systems
617     which occur naturally in applications.
618    
619     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620     a \emph{symplectic} flow if it satisfies,
621 tim 2698 \begin{equation}
622 tim 2703 {\varphi '}^T J \varphi ' = J.
623 tim 2698 \end{equation}
624     According to Liouville's theorem, the symplectic volume is invariant
625     under a Hamiltonian flow, which is the basis for classical
626 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627     field on a symplectic manifold can be shown to be a
628     symplectomorphism. As to the Poisson system,
629 tim 2698 \begin{equation}
630 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
631 tim 2698 \end{equation}
632 tim 2702 is the property must be preserved by the integrator.
633    
634     It is possible to construct a \emph{volume-preserving} flow for a
635     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636     \det d\varphi = 1$. One can show easily that a symplectic flow will
637     be volume-preserving.
638    
639     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640     will result in a new system,
641 tim 2698 \[
642     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643     \]
644     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645     In other words, the flow of this vector field is reversible if and
646 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
647 tim 2698
648 tim 2705 A \emph{first integral}, or conserved quantity of a general
649     differential function is a function $ G:R^{2d} \to R^d $ which is
650     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651     \[
652     \frac{{dG(x(t))}}{{dt}} = 0.
653     \]
654     Using chain rule, one may obtain,
655     \[
656     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657     \]
658     which is the condition for conserving \emph{first integral}. For a
659     canonical Hamiltonian system, the time evolution of an arbitrary
660     smooth function $G$ is given by,
661     \begin{equation}
662     \begin{array}{c}
663     \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664     = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665     \end{array}
666     \label{introEquation:firstIntegral1}
667     \end{equation}
668     Using poisson bracket notion, Equation
669     \ref{introEquation:firstIntegral1} can be rewritten as
670     \[
671     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672     \]
673     Therefore, the sufficient condition for $G$ to be the \emph{first
674     integral} of a Hamiltonian system is
675     \[
676     \left\{ {G,H} \right\} = 0.
677     \]
678     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
680     0$.
681    
682    
683     When designing any numerical methods, one should always try to
684 tim 2702 preserve the structural properties of the original ODE and its flow.
685    
686 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687     A lot of well established and very effective numerical methods have
688     been successful precisely because of their symplecticities even
689     though this fact was not recognized when they were first
690     constructed. The most famous example is leapfrog methods in
691     molecular dynamics. In general, symplectic integrators can be
692     constructed using one of four different methods.
693     \begin{enumerate}
694     \item Generating functions
695     \item Variational methods
696     \item Runge-Kutta methods
697     \item Splitting methods
698     \end{enumerate}
699 tim 2698
700 tim 2699 Generating function tends to lead to methods which are cumbersome
701 tim 2702 and difficult to use. In dissipative systems, variational methods
702     can capture the decay of energy accurately. Since their
703     geometrically unstable nature against non-Hamiltonian perturbations,
704     ordinary implicit Runge-Kutta methods are not suitable for
705     Hamiltonian system. Recently, various high-order explicit
706     Runge--Kutta methods have been developed to overcome this
707 tim 2703 instability. However, due to computational penalty involved in
708     implementing the Runge-Kutta methods, they do not attract too much
709     attention from Molecular Dynamics community. Instead, splitting have
710     been widely accepted since they exploit natural decompositions of
711     the system\cite{Tuckerman92}.
712 tim 2702
713     \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714    
715     The main idea behind splitting methods is to decompose the discrete
716     $\varphi_h$ as a composition of simpler flows,
717 tim 2699 \begin{equation}
718     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
719     \varphi _{h_n }
720     \label{introEquation:FlowDecomposition}
721     \end{equation}
722     where each of the sub-flow is chosen such that each represent a
723 tim 2702 simpler integration of the system.
724    
725     Suppose that a Hamiltonian system takes the form,
726     \[
727     H = H_1 + H_2.
728     \]
729     Here, $H_1$ and $H_2$ may represent different physical processes of
730     the system. For instance, they may relate to kinetic and potential
731     energy respectively, which is a natural decomposition of the
732     problem. If $H_1$ and $H_2$ can be integrated using exact flows
733     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734     order is then given by the Lie-Trotter formula
735 tim 2699 \begin{equation}
736 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
737     \label{introEquation:firstOrderSplitting}
738     \end{equation}
739     where $\varphi _h$ is the result of applying the corresponding
740     continuous $\varphi _i$ over a time $h$. By definition, as
741     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742     must follow that each operator $\varphi_i(t)$ is a symplectic map.
743     It is easy to show that any composition of symplectic flows yields a
744     symplectic map,
745     \begin{equation}
746 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
748 tim 2699 \label{introEquation:SymplecticFlowComposition}
749     \end{equation}
750 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751     splitting in this context automatically generates a symplectic map.
752 tim 2699
753 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754     introduces local errors proportional to $h^2$, while Strang
755     splitting gives a second-order decomposition,
756     \begin{equation}
757     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
758 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 tim 2702 \end{equation}
760     which has a local error proportional to $h^3$. Sprang splitting's
761     popularity in molecular simulation community attribute to its
762     symmetric property,
763     \begin{equation}
764     \varphi _h^{ - 1} = \varphi _{ - h}.
765 tim 2703 \label{introEquation:timeReversible}
766 tim 2702 \end{equation}
767    
768     \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769     The classical equation for a system consisting of interacting
770     particles can be written in Hamiltonian form,
771     \[
772     H = T + V
773     \]
774     where $T$ is the kinetic energy and $V$ is the potential energy.
775     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776     obtains the following:
777     \begin{align}
778     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780     \label{introEquation:Lp10a} \\%
781     %
782     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784     \label{introEquation:Lp10b}
785     \end{align}
786     where $F(t)$ is the force at time $t$. This integration scheme is
787     known as \emph{velocity verlet} which is
788     symplectic(\ref{introEquation:SymplecticFlowComposition}),
789     time-reversible(\ref{introEquation:timeReversible}) and
790     volume-preserving (\ref{introEquation:volumePreserving}). These
791     geometric properties attribute to its long-time stability and its
792     popularity in the community. However, the most commonly used
793     velocity verlet integration scheme is written as below,
794     \begin{align}
795     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797     %
798     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799     \label{introEquation:Lp9b}\\%
800     %
801     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803     \end{align}
804     From the preceding splitting, one can see that the integration of
805     the equations of motion would follow:
806     \begin{enumerate}
807     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808    
809     \item Use the half step velocities to move positions one whole step, $\Delta t$.
810    
811     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812    
813     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814     \end{enumerate}
815    
816     Simply switching the order of splitting and composing, a new
817     integrator, the \emph{position verlet} integrator, can be generated,
818     \begin{align}
819     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821     \label{introEquation:positionVerlet1} \\%
822     %
823 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 tim 2702 q(\Delta t)} \right]. %
825 tim 2719 \label{introEquation:positionVerlet2}
826 tim 2702 \end{align}
827    
828     \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829    
830     Baker-Campbell-Hausdorff formula can be used to determine the local
831     error of splitting method in terms of commutator of the
832     operators(\ref{introEquation:exponentialOperator}) associated with
833     the sub-flow. For operators $hX$ and $hY$ which are associate to
834     $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835     \begin{equation}
836     \exp (hX + hY) = \exp (hZ)
837     \end{equation}
838     where
839     \begin{equation}
840     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
842     \end{equation}
843     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844     \[
845     [X,Y] = XY - YX .
846     \]
847     Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848     can obtain
849 tim 2703 \begin{eqnarray*}
850 tim 2702 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 tim 2703 [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852     & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853     \ldots )
854     \end{eqnarray*}
855 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856     error of Spring splitting is proportional to $h^3$. The same
857     procedure can be applied to general splitting, of the form
858     \begin{equation}
859     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
860     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
861     \end{equation}
862     Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863     order method. Yoshida proposed an elegant way to compose higher
864     order methods based on symmetric splitting. Given a symmetric second
865     order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866     method can be constructed by composing,
867     \[
868     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
869     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
870     \]
871     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874     \begin{equation}
875     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
876     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
877     \end{equation}
878     , if the weights are chosen as
879     \[
880     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882     \]
883    
884 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885    
886 tim 2720 As one of the principal tools of molecular modeling, Molecular
887     dynamics has proven to be a powerful tool for studying the functions
888     of biological systems, providing structural, thermodynamic and
889     dynamical information. The basic idea of molecular dynamics is that
890     macroscopic properties are related to microscopic behavior and
891     microscopic behavior can be calculated from the trajectories in
892     simulations. For instance, instantaneous temperature of an
893     Hamiltonian system of $N$ particle can be measured by
894     \[
895     T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896     \]
897     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899     the boltzman constant.
900 tim 2694
901 tim 2720 A typical molecular dynamics run consists of three essential steps:
902     \begin{enumerate}
903     \item Initialization
904     \begin{enumerate}
905     \item Preliminary preparation
906     \item Minimization
907     \item Heating
908     \item Equilibration
909     \end{enumerate}
910     \item Production
911     \item Analysis
912     \end{enumerate}
913     These three individual steps will be covered in the following
914     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915     initialization of a simulation. Sec.~\ref{introSec:production} will
916     discusses issues in production run, including the force evaluation
917     and the numerical integration schemes of the equations of motion .
918     Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919     trajectory analysis.
920 tim 2719
921 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
922 tim 2719
923 tim 2720 \subsubsection{Preliminary preparation}
924 tim 2719
925 tim 2720 When selecting the starting structure of a molecule for molecular
926     simulation, one may retrieve its Cartesian coordinates from public
927     databases, such as RCSB Protein Data Bank \textit{etc}. Although
928     thousands of crystal structures of molecules are discovered every
929     year, many more remain unknown due to the difficulties of
930     purification and crystallization. Even for the molecule with known
931     structure, some important information is missing. For example, the
932     missing hydrogen atom which acts as donor in hydrogen bonding must
933     be added. Moreover, in order to include electrostatic interaction,
934     one may need to specify the partial charges for individual atoms.
935     Under some circumstances, we may even need to prepare the system in
936     a special setup. For instance, when studying transport phenomenon in
937     membrane system, we may prepare the lipids in bilayer structure
938     instead of placing lipids randomly in solvent, since we are not
939     interested in self-aggregation and it takes a long time to happen.
940 tim 2694
941 tim 2720 \subsubsection{Minimization}
942 tim 2705
943 tim 2720 It is quite possible that some of molecules in the system from
944     preliminary preparation may be overlapped with each other. This
945     close proximity leads to high potential energy which consequently
946     jeopardizes any molecular dynamics simulations. To remove these
947     steric overlaps, one typically performs energy minimization to find
948     a more reasonable conformation. Several energy minimization methods
949     have been developed to exploit the energy surface and to locate the
950     local minimum. While converging slowly near the minimum, steepest
951     descent method is extremely robust when systems are far from
952     harmonic. Thus, it is often used to refine structure from
953     crystallographic data. Relied on the gradient or hessian, advanced
954     methods like conjugate gradient and Newton-Raphson converge rapidly
955     to a local minimum, while become unstable if the energy surface is
956     far from quadratic. Another factor must be taken into account, when
957     choosing energy minimization method, is the size of the system.
958     Steepest descent and conjugate gradient can deal with models of any
959     size. Because of the limit of computation power to calculate hessian
960     matrix and insufficient storage capacity to store them, most
961     Newton-Raphson methods can not be used with very large models.
962 tim 2694
963 tim 2720 \subsubsection{Heating}
964    
965     Typically, Heating is performed by assigning random velocities
966     according to a Gaussian distribution for a temperature. Beginning at
967     a lower temperature and gradually increasing the temperature by
968     assigning greater random velocities, we end up with setting the
969     temperature of the system to a final temperature at which the
970     simulation will be conducted. In heating phase, we should also keep
971     the system from drifting or rotating as a whole. Equivalently, the
972     net linear momentum and angular momentum of the system should be
973     shifted to zero.
974    
975     \subsubsection{Equilibration}
976    
977     The purpose of equilibration is to allow the system to evolve
978     spontaneously for a period of time and reach equilibrium. The
979     procedure is continued until various statistical properties, such as
980     temperature, pressure, energy, volume and other structural
981     properties \textit{etc}, become independent of time. Strictly
982     speaking, minimization and heating are not necessary, provided the
983     equilibration process is long enough. However, these steps can serve
984     as a means to arrive at an equilibrated structure in an effective
985     way.
986    
987     \subsection{\label{introSection:production}Production}
988    
989     \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990    
991     \subsubsection{\label{introSection:integrationSchemes} Integration
992     Schemes}
993    
994     \subsection{\label{introSection:Analysis} Analysis}
995    
996 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
997 tim 2692
998 tim 2705 Rigid bodies are frequently involved in the modeling of different
999     areas, from engineering, physics, to chemistry. For example,
1000     missiles and vehicle are usually modeled by rigid bodies. The
1001     movement of the objects in 3D gaming engine or other physics
1002     simulator is governed by the rigid body dynamics. In molecular
1003     simulation, rigid body is used to simplify the model in
1004     protein-protein docking study{\cite{Gray03}}.
1005 tim 2694
1006 tim 2705 It is very important to develop stable and efficient methods to
1007     integrate the equations of motion of orientational degrees of
1008     freedom. Euler angles are the nature choice to describe the
1009     rotational degrees of freedom. However, due to its singularity, the
1010     numerical integration of corresponding equations of motion is very
1011     inefficient and inaccurate. Although an alternative integrator using
1012     different sets of Euler angles can overcome this difficulty\cite{},
1013     the computational penalty and the lost of angular momentum
1014     conservation still remain. A singularity free representation
1015     utilizing quaternions was developed by Evans in 1977. Unfortunately,
1016     this approach suffer from the nonseparable Hamiltonian resulted from
1017     quaternion representation, which prevents the symplectic algorithm
1018     to be utilized. Another different approach is to apply holonomic
1019     constraints to the atoms belonging to the rigid body. Each atom
1020     moves independently under the normal forces deriving from potential
1021     energy and constraint forces which are used to guarantee the
1022     rigidness. However, due to their iterative nature, SHAKE and Rattle
1023     algorithm converge very slowly when the number of constraint
1024     increases.
1025 tim 2694
1026 tim 2705 The break through in geometric literature suggests that, in order to
1027     develop a long-term integration scheme, one should preserve the
1028     symplectic structure of the flow. Introducing conjugate momentum to
1029 tim 2719 rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1030 tim 2705 symplectic integrator, RSHAKE, was proposed to evolve the
1031     Hamiltonian system in a constraint manifold by iteratively
1032 tim 2719 satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1033 tim 2705 method using quaternion representation was developed by Omelyan.
1034     However, both of these methods are iterative and inefficient. In
1035     this section, we will present a symplectic Lie-Poisson integrator
1036 tim 2707 for rigid body developed by Dullweber and his
1037 tim 2713 coworkers\cite{Dullweber1997} in depth.
1038 tim 2705
1039 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1040 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
1041     function
1042 tim 2706 \begin{equation}
1043     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1044     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1045     \label{introEquation:RBHamiltonian}
1046     \end{equation}
1047     Here, $q$ and $Q$ are the position and rotation matrix for the
1048     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1049     $J$, a diagonal matrix, is defined by
1050     \[
1051     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1052     \]
1053     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1054     constrained Hamiltonian equation subjects to a holonomic constraint,
1055     \begin{equation}
1056     Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1057     \end{equation}
1058     which is used to ensure rotation matrix's orthogonality.
1059     Differentiating \ref{introEquation:orthogonalConstraint} and using
1060     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1061     \begin{equation}
1062 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1063 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1064     \end{equation}
1065    
1066     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1067     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1068     the equations of motion,
1069     \[
1070     \begin{array}{c}
1071     \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1072     \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1073     \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1074 tim 2707 \frac{{dP}}{{dt}} = - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1075 tim 2706 \end{array}
1076     \]
1077    
1078 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1079     We can use constraint force provided by lagrange multiplier on the
1080     normal manifold to keep the motion on constraint space. Or we can
1081     simply evolve the system in constraint manifold. The two method are
1082     proved to be equivalent. The holonomic constraint and equations of
1083     motions define a constraint manifold for rigid body
1084     \[
1085     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1086     \right\}.
1087     \]
1088 tim 2706
1089 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1090     $T_{\star}SO(3)$. However, it turns out that under symplectic
1091     transformation, the cotangent space and the phase space are
1092     diffeomorphic. Introducing
1093 tim 2706 \[
1094 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1095 tim 2706 \]
1096 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1097     can be re-formulated as a Hamiltonian system on the cotangent space
1098     \[
1099     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1100     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1101     \]
1102 tim 2706
1103 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1104     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1105     given as
1106     \begin{equation}
1107     X_i^{lab} = Q X_i + q.
1108     \end{equation}
1109     Therefore, potential energy $V(q,Q)$ is defined by
1110     \[
1111     V(q,Q) = V(Q X_0 + q).
1112     \]
1113 tim 2713 Hence, the force and torque are given by
1114 tim 2707 \[
1115 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1116 tim 2707 \]
1117 tim 2713 and
1118 tim 2707 \[
1119     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1120     \]
1121 tim 2713 respectively.
1122 tim 2695
1123 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1124     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1125     rewrite the equations of motion,
1126     \begin{equation}
1127     \begin{array}{l}
1128     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1129     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1130     \end{array}
1131     \label{introEqaution:RBMotionPI}
1132     \end{equation}
1133     , as well as holonomic constraints,
1134     \[
1135     \begin{array}{l}
1136     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1137     Q^T Q = 1 \\
1138     \end{array}
1139     \]
1140 tim 2692
1141 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1142     so(3)^ \star$, the hat-map isomorphism,
1143     \begin{equation}
1144     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1145     {\begin{array}{*{20}c}
1146     0 & { - v_3 } & {v_2 } \\
1147     {v_3 } & 0 & { - v_1 } \\
1148     { - v_2 } & {v_1 } & 0 \\
1149     \end{array}} \right),
1150     \label{introEquation:hatmapIsomorphism}
1151     \end{equation}
1152     will let us associate the matrix products with traditional vector
1153     operations
1154     \[
1155     \hat vu = v \times u
1156     \]
1157    
1158     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1159     matrix,
1160     \begin{equation}
1161     (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ \bullet ^T
1162     ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1163     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1164     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1165     \end{equation}
1166     Since $\Lambda$ is symmetric, the last term of Equation
1167 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1168     multiplier $\Lambda$ is absent from the equations of motion. This
1169     unique property eliminate the requirement of iterations which can
1170     not be avoided in other methods\cite{}.
1171 tim 2707
1172 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1173     angular momentum on body frame
1174     \begin{equation}
1175     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1176     F_i (r,Q)} \right) \times X_i }.
1177     \label{introEquation:bodyAngularMotion}
1178     \end{equation}
1179 tim 2707 In the same manner, the equation of motion for rotation matrix is
1180     given by
1181     \[
1182 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1183 tim 2707 \]
1184    
1185 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1186     Lie-Poisson Integrator for Free Rigid Body}
1187 tim 2707
1188 tim 2713 If there is not external forces exerted on the rigid body, the only
1189     contribution to the rotational is from the kinetic potential (the
1190     first term of \ref{ introEquation:bodyAngularMotion}). The free
1191     rigid body is an example of Lie-Poisson system with Hamiltonian
1192     function
1193     \begin{equation}
1194     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1195     \label{introEquation:rotationalKineticRB}
1196     \end{equation}
1197     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1198     Lie-Poisson structure matrix,
1199     \begin{equation}
1200     J(\pi ) = \left( {\begin{array}{*{20}c}
1201     0 & {\pi _3 } & { - \pi _2 } \\
1202     { - \pi _3 } & 0 & {\pi _1 } \\
1203     {\pi _2 } & { - \pi _1 } & 0 \\
1204     \end{array}} \right)
1205     \end{equation}
1206     Thus, the dynamics of free rigid body is governed by
1207     \begin{equation}
1208     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1209     \end{equation}
1210 tim 2707
1211 tim 2713 One may notice that each $T_i^r$ in Equation
1212     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1213     instance, the equations of motion due to $T_1^r$ are given by
1214     \begin{equation}
1215     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1216     \label{introEqaution:RBMotionSingleTerm}
1217     \end{equation}
1218     where
1219     \[ R_1 = \left( {\begin{array}{*{20}c}
1220     0 & 0 & 0 \\
1221     0 & 0 & {\pi _1 } \\
1222     0 & { - \pi _1 } & 0 \\
1223     \end{array}} \right).
1224     \]
1225     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1226 tim 2707 \[
1227 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1228     Q(0)e^{\Delta tR_1 }
1229 tim 2707 \]
1230 tim 2713 with
1231 tim 2707 \[
1232 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1233     0 & 0 & 0 \\
1234     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1235     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1236     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1237 tim 2707 \]
1238 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1239     tR_1 }$, we can use Cayley transformation,
1240 tim 2713 \[
1241     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1242     )
1243     \]
1244 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1245 tim 2713 manner.
1246    
1247     In order to construct a second-order symplectic method, we split the
1248     angular kinetic Hamiltonian function can into five terms
1249 tim 2707 \[
1250 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1251     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1252     (\pi _1 )
1253     \].
1254     Concatenating flows corresponding to these five terms, we can obtain
1255     an symplectic integrator,
1256     \[
1257     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1258 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1259     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1260 tim 2713 _1 }.
1261 tim 2707 \]
1262    
1263 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1264     $F(\pi )$ and $G(\pi )$ is defined by
1265 tim 2707 \[
1266 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1267     )
1268     \]
1269     If the Poisson bracket of a function $F$ with an arbitrary smooth
1270     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1271     conserved quantity in Poisson system. We can easily verify that the
1272     norm of the angular momentum, $\parallel \pi
1273     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1274     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1275     then by the chain rule
1276     \[
1277     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1278     }}{2})\pi
1279     \]
1280     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1281     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1282     Lie-Poisson integrator is found to be extremely efficient and stable
1283     which can be explained by the fact the small angle approximation is
1284     used and the norm of the angular momentum is conserved.
1285    
1286     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1287     Splitting for Rigid Body}
1288    
1289     The Hamiltonian of rigid body can be separated in terms of kinetic
1290     energy and potential energy,
1291     \[
1292     H = T(p,\pi ) + V(q,Q)
1293     \]
1294     The equations of motion corresponding to potential energy and
1295     kinetic energy are listed in the below table,
1296     \begin{center}
1297     \begin{tabular}{|l|l|}
1298     \hline
1299     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1300     Potential & Kinetic \\
1301     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1302     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1303     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1304     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1305     \hline
1306     \end{tabular}
1307     \end{center}
1308     A second-order symplectic method is now obtained by the composition
1309     of the flow maps,
1310     \[
1311     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1312     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1313     \]
1314 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1315     sub-flows which corresponding to force and torque respectively,
1316 tim 2713 \[
1317 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1318 tim 2713 _{\Delta t/2,\tau }.
1319 tim 2707 \]
1320 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1321     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1322 tim 2719 order inside $\varphi _{\Delta t/2,V}$ does not matter.
1323 tim 2707
1324 tim 2713 Furthermore, kinetic potential can be separated to translational
1325     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1326     \begin{equation}
1327     T(p,\pi ) =T^t (p) + T^r (\pi ).
1328     \end{equation}
1329     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1330     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1331     corresponding flow maps are given by
1332     \[
1333     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1334     _{\Delta t,T^r }.
1335     \]
1336     Finally, we obtain the overall symplectic flow maps for free moving
1337     rigid body
1338     \begin{equation}
1339     \begin{array}{c}
1340     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1341     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1342     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1343     \end{array}
1344     \label{introEquation:overallRBFlowMaps}
1345     \end{equation}
1346 tim 2707
1347 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1348 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1349     mimics a simple heat bath with stochastic and dissipative forces,
1350     has been applied in a variety of studies. This section will review
1351     the theory of Langevin dynamics simulation. A brief derivation of
1352 tim 2719 generalized Langevin equation will be given first. Follow that, we
1353 tim 2716 will discuss the physical meaning of the terms appearing in the
1354     equation as well as the calculation of friction tensor from
1355     hydrodynamics theory.
1356 tim 2685
1357 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1358 tim 2685
1359 tim 2719 Harmonic bath model, in which an effective set of harmonic
1360     oscillators are used to mimic the effect of a linearly responding
1361     environment, has been widely used in quantum chemistry and
1362     statistical mechanics. One of the successful applications of
1363     Harmonic bath model is the derivation of Deriving Generalized
1364     Langevin Dynamics. Lets consider a system, in which the degree of
1365     freedom $x$ is assumed to couple to the bath linearly, giving a
1366     Hamiltonian of the form
1367 tim 2696 \begin{equation}
1368     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1369 tim 2719 \label{introEquation:bathGLE}.
1370 tim 2696 \end{equation}
1371 tim 2719 Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1372     with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1373 tim 2696 \[
1374 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1376     \right\}}
1377 tim 2696 \]
1378 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1379     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1380     the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1381     coupling,
1382 tim 2696 \[
1383     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1384     \]
1385 tim 2719 where $g_\alpha$ are the coupling constants between the bath and the
1386     coordinate $x$. Introducing
1387 tim 2696 \[
1388 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1389     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1390     \] and combining the last two terms in Equation
1391     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1392     Hamiltonian as
1393 tim 2696 \[
1394     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1395     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1396     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1397     w_\alpha ^2 }}x} \right)^2 } \right\}}
1398     \]
1399     Since the first two terms of the new Hamiltonian depend only on the
1400     system coordinates, we can get the equations of motion for
1401     Generalized Langevin Dynamics by Hamilton's equations
1402     \ref{introEquation:motionHamiltonianCoordinate,
1403     introEquation:motionHamiltonianMomentum},
1404 tim 2719 \begin{equation}
1405     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1406     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1407     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1408     \label{introEquation:coorMotionGLE}
1409     \end{equation}
1410     and
1411     \begin{equation}
1412     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1413     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1414     \label{introEquation:bathMotionGLE}
1415     \end{equation}
1416 tim 2696
1417 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1418     variables $x_\alpha$ must be solved exactly first. As an integral
1419     transform which is particularly useful in solving linear ordinary
1420     differential equations, Laplace transform is the appropriate tool to
1421     solve this problem. The basic idea is to transform the difficult
1422     differential equations into simple algebra problems which can be
1423     solved easily. Then applying inverse Laplace transform, also known
1424     as the Bromwich integral, we can retrieve the solutions of the
1425     original problems.
1426 tim 2696
1427 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1428     transform of f(t) is a new function defined as
1429 tim 2696 \[
1430 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1431 tim 2696 \]
1432 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1433     Operator. Below are some important properties of Laplace transform
1434     \begin{equation}
1435     \begin{array}{c}
1436     L(x + y) = L(x) + L(y) \\
1437     L(ax) = aL(x) \\
1438     L(\dot x) = pL(x) - px(0) \\
1439     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1440     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1441     \end{array}
1442     \end{equation}
1443 tim 2696
1444 tim 2719 Applying Laplace transform to the bath coordinates, we obtain
1445 tim 2696 \[
1446 tim 2719 \begin{array}{c}
1447     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1448     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1449     \end{array}
1450 tim 2696 \]
1451 tim 2719 By the same way, the system coordinates become
1452 tim 2696 \[
1453 tim 2719 \begin{array}{c}
1454     mL(\ddot x) = - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1455     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1456     \end{array}
1457 tim 2696 \]
1458    
1459 tim 2719 With the help of some relatively important inverse Laplace
1460     transformations:
1461 tim 2696 \[
1462 tim 2719 \begin{array}{c}
1463     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1464     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1465     L(1) = \frac{1}{p} \\
1466     \end{array}
1467 tim 2696 \]
1468 tim 2719 , we obtain
1469 tim 2696 \begin{align}
1470     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1471     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1472     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1473     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1474     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1475     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1476     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1477     %
1478     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1479     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1480     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1481     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1482     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1483     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1484     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1485     (\omega _\alpha t)} \right\}}
1486     \end{align}
1487    
1488 tim 2719 Introducing a \emph{dynamic friction kernel}
1489 tim 2696 \begin{equation}
1490 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1491     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1492     \label{introEquation:dynamicFrictionKernelDefinition}
1493     \end{equation}
1494     and \emph{a random force}
1495     \begin{equation}
1496     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1497     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1498     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1499     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1500     \label{introEquation:randomForceDefinition}
1501     \end{equation}
1502     the equation of motion can be rewritten as
1503     \begin{equation}
1504 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1505     (t)\dot x(t - \tau )d\tau } + R(t)
1506     \label{introEuqation:GeneralizedLangevinDynamics}
1507     \end{equation}
1508 tim 2719 which is known as the \emph{generalized Langevin equation}.
1509    
1510     \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1511    
1512     One may notice that $R(t)$ depends only on initial conditions, which
1513     implies it is completely deterministic within the context of a
1514     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1515     uncorrelated to $x$ and $\dot x$,
1516 tim 2696 \[
1517 tim 2719 \begin{array}{l}
1518     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1519     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1520     \end{array}
1521 tim 2696 \]
1522 tim 2719 This property is what we expect from a truly random process. As long
1523     as the model, which is gaussian distribution in general, chosen for
1524     $R(t)$ is a truly random process, the stochastic nature of the GLE
1525     still remains.
1526 tim 2696
1527 tim 2719 %dynamic friction kernel
1528     The convolution integral
1529 tim 2696 \[
1530 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1531 tim 2696 \]
1532 tim 2719 depends on the entire history of the evolution of $x$, which implies
1533     that the bath retains memory of previous motions. In other words,
1534     the bath requires a finite time to respond to change in the motion
1535     of the system. For a sluggish bath which responds slowly to changes
1536     in the system coordinate, we may regard $\xi(t)$ as a constant
1537     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1538     \[
1539     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1540     \]
1541     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1542     \[
1543     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1544     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1545     \]
1546     which can be used to describe dynamic caging effect. The other
1547     extreme is the bath that responds infinitely quickly to motions in
1548     the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1549     time:
1550     \[
1551     \xi (t) = 2\xi _0 \delta (t)
1552     \]
1553     Hence, the convolution integral becomes
1554     \[
1555     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1556     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1557     \]
1558     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1559     \begin{equation}
1560     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1561     x(t) + R(t) \label{introEquation:LangevinEquation}
1562     \end{equation}
1563     which is known as the Langevin equation. The static friction
1564     coefficient $\xi _0$ can either be calculated from spectral density
1565     or be determined by Stokes' law for regular shaped particles.A
1566     briefly review on calculating friction tensor for arbitrary shaped
1567 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1568 tim 2696
1569     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1570 tim 2719
1571     Defining a new set of coordinates,
1572 tim 2696 \[
1573     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1574     ^2 }}x(0)
1575 tim 2719 \],
1576     we can rewrite $R(T)$ as
1577 tim 2696 \[
1578 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1579 tim 2696 \]
1580     And since the $q$ coordinates are harmonic oscillators,
1581     \[
1582 tim 2719 \begin{array}{c}
1583     \left\langle {q_\alpha ^2 } \right\rangle = \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1584 tim 2696 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1585     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1586 tim 2719 \left\langle {R(t)R(0)} \right\rangle = \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1587     = \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1588     = kT\xi (t) \\
1589 tim 2696 \end{array}
1590     \]
1591 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1592 tim 2696 \begin{equation}
1593     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1594 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1595 tim 2696 \end{equation}
1596 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1597     can model the random force and friction kernel.
1598 tim 2696
1599     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1600 tim 2716 Theoretically, the friction kernel can be determined using velocity
1601     autocorrelation function. However, this approach become impractical
1602     when the system become more and more complicate. Instead, various
1603     approaches based on hydrodynamics have been developed to calculate
1604     the friction coefficients. The friction effect is isotropic in
1605     Equation, \zeta can be taken as a scalar. In general, friction
1606     tensor \Xi is a $6\times 6$ matrix given by
1607     \[
1608     \Xi = \left( {\begin{array}{*{20}c}
1609     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1610     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1611     \end{array}} \right).
1612     \]
1613     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1614 tim 2718 tensor and rotational resistance (friction) tensor respectively,
1615     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1616     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1617     particle moves in a fluid, it may experience friction force or
1618     torque along the opposite direction of the velocity or angular
1619     velocity,
1620 tim 2716 \[
1621     \left( \begin{array}{l}
1622 tim 2718 F_R \\
1623     \tau _R \\
1624 tim 2716 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1625     {\Xi ^{tt} } & {\Xi ^{rt} } \\
1626     {\Xi ^{tr} } & {\Xi ^{rr} } \\
1627     \end{array}} \right)\left( \begin{array}{l}
1628     v \\
1629     w \\
1630     \end{array} \right)
1631     \]
1632 tim 2718 where $F_r$ is the friction force and $\tau _R$ is the friction
1633     toque.
1634 tim 2696
1635 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1636    
1637 tim 2716 For a spherical particle, the translational and rotational friction
1638     constant can be calculated from Stoke's law,
1639     \[
1640     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1641     {6\pi \eta R} & 0 & 0 \\
1642     0 & {6\pi \eta R} & 0 \\
1643     0 & 0 & {6\pi \eta R} \\
1644     \end{array}} \right)
1645     \]
1646     and
1647     \[
1648     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1649     {8\pi \eta R^3 } & 0 & 0 \\
1650     0 & {8\pi \eta R^3 } & 0 \\
1651     0 & 0 & {8\pi \eta R^3 } \\
1652     \end{array}} \right)
1653     \]
1654     where $\eta$ is the viscosity of the solvent and $R$ is the
1655     hydrodynamics radius.
1656 tim 2706
1657 tim 2718 Other non-spherical shape, such as cylinder and ellipsoid
1658     \textit{etc}, are widely used as reference for developing new
1659     hydrodynamics theory, because their properties can be calculated
1660     exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1661     also called a triaxial ellipsoid, which is given in Cartesian
1662     coordinates by
1663 tim 2716 \[
1664 tim 2718 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1665     }} = 1
1666     \]
1667     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1668     due to the complexity of the elliptic integral, only the ellipsoid
1669     with the restriction of two axes having to be equal, \textit{i.e.}
1670     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1671     exactly. Introducing an elliptic integral parameter $S$ for prolate,
1672     \[
1673 tim 2716 S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1674 tim 2718 } }}{b},
1675 tim 2716 \]
1676 tim 2718 and oblate,
1677 tim 2716 \[
1678     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1679     }}{a}
1680 tim 2718 \],
1681     one can write down the translational and rotational resistance
1682     tensors
1683 tim 2716 \[
1684     \begin{array}{l}
1685     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1686     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1687 tim 2718 \end{array},
1688 tim 2716 \]
1689 tim 2718 and
1690 tim 2716 \[
1691     \begin{array}{l}
1692     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1693     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1694 tim 2718 \end{array}.
1695 tim 2716 \]
1696    
1697 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1698 tim 2716
1699     Unlike spherical and other regular shaped molecules, there is not
1700     analytical solution for friction tensor of any arbitrary shaped
1701     rigid molecules. The ellipsoid of revolution model and general
1702     triaxial ellipsoid model have been used to approximate the
1703     hydrodynamic properties of rigid bodies. However, since the mapping
1704     from all possible ellipsoidal space, $r$-space, to all possible
1705     combination of rotational diffusion coefficients, $D$-space is not
1706     unique\cite{Wegener79} as well as the intrinsic coupling between
1707     translational and rotational motion of rigid body\cite{}, general
1708     ellipsoid is not always suitable for modeling arbitrarily shaped
1709     rigid molecule. A number of studies have been devoted to determine
1710     the friction tensor for irregularly shaped rigid bodies using more
1711     advanced method\cite{} where the molecule of interest was modeled by
1712     combinations of spheres(beads)\cite{} and the hydrodynamics
1713     properties of the molecule can be calculated using the hydrodynamic
1714     interaction tensor. Let us consider a rigid assembly of $N$ beads
1715     immersed in a continuous medium. Due to hydrodynamics interaction,
1716     the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1717     unperturbed velocity $v_i$,
1718     \[
1719     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1720     \]
1721     where $F_i$ is the frictional force, and $T_{ij}$ is the
1722     hydrodynamic interaction tensor. The friction force of $i$th bead is
1723     proportional to its ``net'' velocity
1724     \begin{equation}
1725     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1726     \label{introEquation:tensorExpression}
1727     \end{equation}
1728     This equation is the basis for deriving the hydrodynamic tensor. In
1729     1930, Oseen and Burgers gave a simple solution to Equation
1730     \ref{introEquation:tensorExpression}
1731     \begin{equation}
1732     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1733     R_{ij}^T }}{{R_{ij}^2 }}} \right).
1734     \label{introEquation:oseenTensor}
1735     \end{equation}
1736     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1737     A second order expression for element of different size was
1738     introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1739     la Torre and Bloomfield,
1740     \begin{equation}
1741     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1742     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1743     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1744     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1745     \label{introEquation:RPTensorNonOverlapped}
1746     \end{equation}
1747     Both of the Equation \ref{introEquation:oseenTensor} and Equation
1748     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1749     \ge \sigma _i + \sigma _j$. An alternative expression for
1750     overlapping beads with the same radius, $\sigma$, is given by
1751     \begin{equation}
1752     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1753     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1754     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1755     \label{introEquation:RPTensorOverlapped}
1756     \end{equation}
1757    
1758 tim 2718 To calculate the resistance tensor at an arbitrary origin $O$, we
1759     construct a $3N \times 3N$ matrix consisting of $N \times N$
1760     $B_{ij}$ blocks
1761     \begin{equation}
1762 tim 2716 B = \left( {\begin{array}{*{20}c}
1763 tim 2718 {B_{11} } & \ldots & {B_{1N} } \\
1764 tim 2716 \vdots & \ddots & \vdots \\
1765 tim 2718 {B_{N1} } & \cdots & {B_{NN} } \\
1766     \end{array}} \right),
1767     \end{equation}
1768     where $B_{ij}$ is given by
1769     \[
1770     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1771     )T_{ij}
1772 tim 2716 \]
1773 tim 2719 where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1774 tim 2718 $B$, we obtain
1775 tim 2716
1776     \[
1777     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1778     {C_{11} } & \ldots & {C_{1N} } \\
1779     \vdots & \ddots & \vdots \\
1780     {C_{N1} } & \cdots & {C_{NN} } \\
1781     \end{array}} \right)
1782     \]
1783 tim 2718 , which can be partitioned into $N \times N$ $3 \times 3$ block
1784     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1785     \[
1786     U_i = \left( {\begin{array}{*{20}c}
1787     0 & { - z_i } & {y_i } \\
1788     {z_i } & 0 & { - x_i } \\
1789     { - y_i } & {x_i } & 0 \\
1790     \end{array}} \right)
1791     \]
1792     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1793     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1794     arbitrary origin $O$ can be written as
1795 tim 2716 \begin{equation}
1796     \begin{array}{l}
1797     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1798     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1799     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1800     \end{array}
1801 tim 2718 \label{introEquation:ResistanceTensorArbitraryOrigin}
1802 tim 2716 \end{equation}
1803 tim 2718
1804     The resistance tensor depends on the origin to which they refer. The
1805     proper location for applying friction force is the center of
1806     resistance (reaction), at which the trace of rotational resistance
1807     tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1808     resistance is defined as an unique point of the rigid body at which
1809     the translation-rotation coupling tensor are symmetric,
1810     \begin{equation}
1811     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
1812     \label{introEquation:definitionCR}
1813     \end{equation}
1814     Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1815     we can easily find out that the translational resistance tensor is
1816     origin independent, while the rotational resistance tensor and
1817 tim 2719 translation-rotation coupling resistance tensor depend on the
1818 tim 2718 origin. Given resistance tensor at an arbitrary origin $O$, and a
1819     vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1820     obtain the resistance tensor at $P$ by
1821     \begin{equation}
1822     \begin{array}{l}
1823     \Xi _P^{tt} = \Xi _O^{tt} \\
1824     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
1825     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{tr} ^{^T } \\
1826     \end{array}
1827     \label{introEquation:resistanceTensorTransformation}
1828     \end{equation}
1829 tim 2716 where
1830     \[
1831 tim 2718 U_{OP} = \left( {\begin{array}{*{20}c}
1832     0 & { - z_{OP} } & {y_{OP} } \\
1833     {z_i } & 0 & { - x_{OP} } \\
1834     { - y_{OP} } & {x_{OP} } & 0 \\
1835 tim 2716 \end{array}} \right)
1836     \]
1837 tim 2718 Using Equations \ref{introEquation:definitionCR} and
1838     \ref{introEquation:resistanceTensorTransformation}, one can locate
1839     the position of center of resistance,
1840 tim 2716 \[
1841 tim 2718 \left( \begin{array}{l}
1842 tim 2716 x_{OR} \\
1843     y_{OR} \\
1844     z_{OR} \\
1845     \end{array} \right) = \left( {\begin{array}{*{20}c}
1846 tim 2718 {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
1847     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
1848     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
1849 tim 2716 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1850 tim 2718 (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
1851     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
1852     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
1853     \end{array} \right).
1854 tim 2716 \]
1855 tim 2718 where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1856     joining center of resistance $R$ and origin $O$.
1857 tim 2716
1858     %\section{\label{introSection:correlationFunctions}Correlation Functions}