ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2786
Committed: Sun Jun 4 20:18:07 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 86880 byte(s)
Log Message:
fix  reference problem

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2694 Newton¡¯s third law states that
33     \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71     scheme for rigid body \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75     Newtonian Mechanics suffers from two important limitations: it
76     describes their motion in special cartesian coordinate systems.
77     Another limitation of Newtonian mechanics becomes obvious when we
78     try to describe systems with large numbers of particles. It becomes
79     very difficult to predict the properties of the system by carrying
80     out calculations involving the each individual interaction between
81     all the particles, even if we know all of the details of the
82     interaction. In order to overcome some of the practical difficulties
83     which arise in attempts to apply Newton's equation to complex
84     system, alternative procedures may be developed.
85    
86 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 tim 2692 Principle}
88    
89     Hamilton introduced the dynamical principle upon which it is
90     possible to base all of mechanics and, indeed, most of classical
91     physics. Hamilton's Principle may be stated as follow,
92    
93     The actual trajectory, along which a dynamical system may move from
94     one point to another within a specified time, is derived by finding
95     the path which minimizes the time integral of the difference between
96 tim 2786 the kinetic, $K$, and potential energies, $U$ \cite{Tolman1979}.
97 tim 2692 \begin{equation}
98     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 tim 2693 \label{introEquation:halmitonianPrinciple1}
100 tim 2692 \end{equation}
101    
102     For simple mechanical systems, where the forces acting on the
103     different part are derivable from a potential and the velocities are
104     small compared with that of light, the Lagrangian function $L$ can
105     be define as the difference between the kinetic energy of the system
106     and its potential energy,
107     \begin{equation}
108     L \equiv K - U = L(q_i ,\dot q_i ) ,
109     \label{introEquation:lagrangianDef}
110     \end{equation}
111     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112     \begin{equation}
113 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114     \label{introEquation:halmitonianPrinciple2}
115 tim 2692 \end{equation}
116    
117 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 tim 2692 Equations of Motion in Lagrangian Mechanics}
119    
120 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
121 tim 2692 motion in the Lagrangian form is
122     \begin{equation}
123     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 tim 2693 \label{introEquation:eqMotionLagrangian}
126 tim 2692 \end{equation}
127     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128     generalized velocity.
129    
130 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 tim 2692
132     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133     introduced by William Rowan Hamilton in 1833 as a re-formulation of
134     classical mechanics. If the potential energy of a system is
135     independent of generalized velocities, the generalized momenta can
136     be defined as
137     \begin{equation}
138     p_i = \frac{\partial L}{\partial \dot q_i}
139     \label{introEquation:generalizedMomenta}
140     \end{equation}
141 tim 2693 The Lagrange equations of motion are then expressed by
142 tim 2692 \begin{equation}
143 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
144     \label{introEquation:generalizedMomentaDot}
145     \end{equation}
146    
147     With the help of the generalized momenta, we may now define a new
148     quantity $H$ by the equation
149     \begin{equation}
150     H = \sum\limits_k {p_k \dot q_k } - L ,
151 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
152     \end{equation}
153     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154     $L$ is the Lagrangian function for the system.
155    
156 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157     one can obtain
158     \begin{equation}
159     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163     \end{equation}
164     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165     second and fourth terms in the parentheses cancel. Therefore,
166     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167     \begin{equation}
168     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169     \right)} - \frac{{\partial L}}{{\partial t}}dt
170     \label{introEquation:diffHamiltonian2}
171     \end{equation}
172     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173     find
174     \begin{equation}
175     \frac{{\partial H}}{{\partial p_k }} = q_k
176     \label{introEquation:motionHamiltonianCoordinate}
177     \end{equation}
178     \begin{equation}
179     \frac{{\partial H}}{{\partial q_k }} = - p_k
180     \label{introEquation:motionHamiltonianMomentum}
181     \end{equation}
182     and
183     \begin{equation}
184     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185     t}}
186     \label{introEquation:motionHamiltonianTime}
187     \end{equation}
188    
189     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191     equation of motion. Due to their symmetrical formula, they are also
192 tim 2786 known as the canonical equations of motions \cite{Goldstein2001}.
193 tim 2693
194 tim 2692 An important difference between Lagrangian approach and the
195     Hamiltonian approach is that the Lagrangian is considered to be a
196     function of the generalized velocities $\dot q_i$ and the
197     generalized coordinates $q_i$, while the Hamiltonian is considered
198     to be a function of the generalized momenta $p_i$ and the conjugate
199     generalized coordinate $q_i$. Hamiltonian Mechanics is more
200     appropriate for application to statistical mechanics and quantum
201     mechanics, since it treats the coordinate and its time derivative as
202     independent variables and it only works with 1st-order differential
203 tim 2786 equations\cite{Marion1990}.
204 tim 2692
205 tim 2696 In Newtonian Mechanics, a system described by conservative forces
206     conserves the total energy \ref{introEquation:energyConservation}.
207     It follows that Hamilton's equations of motion conserve the total
208     Hamiltonian.
209     \begin{equation}
210     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 tim 2696 \end{equation}
217    
218 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
219     Mechanics}
220 tim 2692
221 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
222 tim 2692 simulation are governed by the principle of Statistical Mechanics.
223     The following section will give a brief introduction to some of the
224 tim 2700 Statistical Mechanics concepts and theorem presented in this
225     dissertation.
226 tim 2692
227 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 tim 2692
229 tim 2700 Mathematically, phase space is the space which represents all
230     possible states. Each possible state of the system corresponds to
231     one unique point in the phase space. For mechanical systems, the
232     phase space usually consists of all possible values of position and
233     momentum variables. Consider a dynamic system in a cartesian space,
234     where each of the $6f$ coordinates and momenta is assigned to one of
235     $6f$ mutually orthogonal axes, the phase space of this system is a
236     $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237     \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238     momenta is a phase space vector.
239    
240     A microscopic state or microstate of a classical system is
241     specification of the complete phase space vector of a system at any
242     instant in time. An ensemble is defined as a collection of systems
243     sharing one or more macroscopic characteristics but each being in a
244     unique microstate. The complete ensemble is specified by giving all
245     systems or microstates consistent with the common macroscopic
246     characteristics of the ensemble. Although the state of each
247     individual system in the ensemble could be precisely described at
248     any instance in time by a suitable phase space vector, when using
249     ensembles for statistical purposes, there is no need to maintain
250     distinctions between individual systems, since the numbers of
251     systems at any time in the different states which correspond to
252     different regions of the phase space are more interesting. Moreover,
253     in the point of view of statistical mechanics, one would prefer to
254     use ensembles containing a large enough population of separate
255     members so that the numbers of systems in such different states can
256     be regarded as changing continuously as we traverse different
257     regions of the phase space. The condition of an ensemble at any time
258     can be regarded as appropriately specified by the density $\rho$
259     with which representative points are distributed over the phase
260     space. The density of distribution for an ensemble with $f$ degrees
261     of freedom is defined as,
262     \begin{equation}
263     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264     \label{introEquation:densityDistribution}
265     \end{equation}
266     Governed by the principles of mechanics, the phase points change
267     their value which would change the density at any time at phase
268     space. Hence, the density of distribution is also to be taken as a
269     function of the time.
270    
271     The number of systems $\delta N$ at time $t$ can be determined by,
272     \begin{equation}
273     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274     \label{introEquation:deltaN}
275     \end{equation}
276     Assuming a large enough population of systems are exploited, we can
277     sufficiently approximate $\delta N$ without introducing
278     discontinuity when we go from one region in the phase space to
279     another. By integrating over the whole phase space,
280     \begin{equation}
281     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282     \label{introEquation:totalNumberSystem}
283     \end{equation}
284     gives us an expression for the total number of the systems. Hence,
285     the probability per unit in the phase space can be obtained by,
286     \begin{equation}
287     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289     \label{introEquation:unitProbability}
290     \end{equation}
291     With the help of Equation(\ref{introEquation:unitProbability}) and
292     the knowledge of the system, it is possible to calculate the average
293     value of any desired quantity which depends on the coordinates and
294     momenta of the system. Even when the dynamics of the real system is
295     complex, or stochastic, or even discontinuous, the average
296     properties of the ensemble of possibilities as a whole may still
297     remain well defined. For a classical system in thermal equilibrium
298     with its environment, the ensemble average of a mechanical quantity,
299     $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300     phase space of the system,
301     \begin{equation}
302     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305     \label{introEquation:ensembelAverage}
306     \end{equation}
307    
308     There are several different types of ensembles with different
309     statistical characteristics. As a function of macroscopic
310     parameters, such as temperature \textit{etc}, partition function can
311     be used to describe the statistical properties of a system in
312     thermodynamic equilibrium.
313    
314     As an ensemble of systems, each of which is known to be thermally
315     isolated and conserve energy, Microcanonical ensemble(NVE) has a
316     partition function like,
317     \begin{equation}
318 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 tim 2700 \end{equation}
320     A canonical ensemble(NVT)is an ensemble of systems, each of which
321     can share its energy with a large heat reservoir. The distribution
322     of the total energy amongst the possible dynamical states is given
323     by the partition function,
324     \begin{equation}
325     \Omega (N,V,T) = e^{ - \beta A}
326     \label{introEquation:NVTPartition}
327     \end{equation}
328     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329     TS$. Since most experiment are carried out under constant pressure
330     condition, isothermal-isobaric ensemble(NPT) play a very important
331     role in molecular simulation. The isothermal-isobaric ensemble allow
332     the system to exchange energy with a heat bath of temperature $T$
333     and to change the volume as well. Its partition function is given as
334     \begin{equation}
335     \Delta (N,P,T) = - e^{\beta G}.
336     \label{introEquation:NPTPartition}
337     \end{equation}
338     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339    
340     \subsection{\label{introSection:liouville}Liouville's theorem}
341    
342     The Liouville's theorem is the foundation on which statistical
343     mechanics rests. It describes the time evolution of phase space
344     distribution function. In order to calculate the rate of change of
345     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346     consider the two faces perpendicular to the $q_1$ axis, which are
347     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348     leaving the opposite face is given by the expression,
349     \begin{equation}
350     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353     \ldots \delta p_f .
354     \end{equation}
355     Summing all over the phase space, we obtain
356     \begin{equation}
357     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363     \end{equation}
364     Differentiating the equations of motion in Hamiltonian formalism
365     (\ref{introEquation:motionHamiltonianCoordinate},
366     \ref{introEquation:motionHamiltonianMomentum}), we can show,
367     \begin{equation}
368     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370     \end{equation}
371     which cancels the first terms of the right hand side. Furthermore,
372     divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373     p_f $ in both sides, we can write out Liouville's theorem in a
374     simple form,
375     \begin{equation}
376     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379     \label{introEquation:liouvilleTheorem}
380     \end{equation}
381    
382     Liouville's theorem states that the distribution function is
383     constant along any trajectory in phase space. In classical
384     statistical mechanics, since the number of particles in the system
385     is huge, we may be able to believe the system is stationary,
386     \begin{equation}
387     \frac{{\partial \rho }}{{\partial t}} = 0.
388     \label{introEquation:stationary}
389     \end{equation}
390     In such stationary system, the density of distribution $\rho$ can be
391     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392     distribution,
393     \begin{equation}
394     \rho \propto e^{ - \beta H}
395     \label{introEquation:densityAndHamiltonian}
396     \end{equation}
397    
398 tim 2702 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399     Lets consider a region in the phase space,
400     \begin{equation}
401     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402     \end{equation}
403     If this region is small enough, the density $\rho$ can be regarded
404     as uniform over the whole phase space. Thus, the number of phase
405     points inside this region is given by,
406     \begin{equation}
407     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408     dp_1 } ..dp_f.
409     \end{equation}
410    
411     \begin{equation}
412     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413     \frac{d}{{dt}}(\delta v) = 0.
414     \end{equation}
415     With the help of stationary assumption
416     (\ref{introEquation:stationary}), we obtain the principle of the
417     \emph{conservation of extension in phase space},
418     \begin{equation}
419     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420     ...dq_f dp_1 } ..dp_f = 0.
421     \label{introEquation:volumePreserving}
422     \end{equation}
423    
424     \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425    
426 tim 2700 Liouville's theorem can be expresses in a variety of different forms
427     which are convenient within different contexts. For any two function
428     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429     bracket ${F, G}$ is defined as
430     \begin{equation}
431     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434     q_i }}} \right)}.
435     \label{introEquation:poissonBracket}
436     \end{equation}
437     Substituting equations of motion in Hamiltonian formalism(
438     \ref{introEquation:motionHamiltonianCoordinate} ,
439     \ref{introEquation:motionHamiltonianMomentum} ) into
440     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441     theorem using Poisson bracket notion,
442     \begin{equation}
443     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444     {\rho ,H} \right\}.
445     \label{introEquation:liouvilleTheromInPoissin}
446     \end{equation}
447     Moreover, the Liouville operator is defined as
448     \begin{equation}
449     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452     \label{introEquation:liouvilleOperator}
453     \end{equation}
454     In terms of Liouville operator, Liouville's equation can also be
455     expressed as
456     \begin{equation}
457     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458     \label{introEquation:liouvilleTheoremInOperator}
459     \end{equation}
460    
461 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 tim 2692
463 tim 2695 Various thermodynamic properties can be calculated from Molecular
464     Dynamics simulation. By comparing experimental values with the
465     calculated properties, one can determine the accuracy of the
466     simulation and the quality of the underlying model. However, both of
467     experiment and computer simulation are usually performed during a
468     certain time interval and the measurements are averaged over a
469     period of them which is different from the average behavior of
470     many-body system in Statistical Mechanics. Fortunately, Ergodic
471     Hypothesis is proposed to make a connection between time average and
472     ensemble average. It states that time average and average over the
473 tim 2786 statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
474 tim 2695 \begin{equation}
475 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 tim 2695 \end{equation}
479 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481     distribution function. If an observation is averaged over a
482     sufficiently long time (longer than relaxation time), all accessible
483     microstates in phase space are assumed to be equally probed, giving
484     a properly weighted statistical average. This allows the researcher
485     freedom of choice when deciding how best to measure a given
486     observable. In case an ensemble averaged approach sounds most
487 tim 2786 reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
488 tim 2700 utilized. Or if the system lends itself to a time averaging
489     approach, the Molecular Dynamics techniques in
490     Sec.~\ref{introSection:molecularDynamics} will be the best
491     choice\cite{Frenkel1996}.
492 tim 2694
493 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494     A variety of numerical integrators were proposed to simulate the
495     motions. They usually begin with an initial conditionals and move
496     the objects in the direction governed by the differential equations.
497     However, most of them ignore the hidden physical law contained
498     within the equations. Since 1990, geometric integrators, which
499     preserve various phase-flow invariants such as symplectic structure,
500     volume and time reversal symmetry, are developed to address this
501 tim 2786 issue\cite{}. The velocity verlet method, which happens to be a
502     simple example of symplectic integrator, continues to gain its
503     popularity in molecular dynamics community. This fact can be partly
504     explained by its geometric nature.
505 tim 2697
506     \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507     A \emph{manifold} is an abstract mathematical space. It locally
508     looks like Euclidean space, but when viewed globally, it may have
509     more complicate structure. A good example of manifold is the surface
510     of Earth. It seems to be flat locally, but it is round if viewed as
511     a whole. A \emph{differentiable manifold} (also known as
512     \emph{smooth manifold}) is a manifold with an open cover in which
513     the covering neighborhoods are all smoothly isomorphic to one
514     another. In other words,it is possible to apply calculus on
515     \emph{differentiable manifold}. A \emph{symplectic manifold} is
516     defined as a pair $(M, \omega)$ which consisting of a
517     \emph{differentiable manifold} $M$ and a close, non-degenerated,
518     bilinear symplectic form, $\omega$. A symplectic form on a vector
519     space $V$ is a function $\omega(x, y)$ which satisfies
520     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522     $\omega(x, x) = 0$. Cross product operation in vector field is an
523     example of symplectic form.
524    
525     One of the motivations to study \emph{symplectic manifold} in
526     Hamiltonian Mechanics is that a symplectic manifold can represent
527     all possible configurations of the system and the phase space of the
528     system can be described by it's cotangent bundle. Every symplectic
529     manifold is even dimensional. For instance, in Hamilton equations,
530     coordinate and momentum always appear in pairs.
531    
532     Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533     \[
534     f : M \rightarrow N
535     \]
536     is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537     the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538     Canonical transformation is an example of symplectomorphism in
539 tim 2698 classical mechanics.
540 tim 2697
541 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 tim 2697
543 tim 2698 For a ordinary differential system defined as
544     \begin{equation}
545     \dot x = f(x)
546     \end{equation}
547     where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548     \begin{equation}
549 tim 2699 f(r) = J\nabla _x H(r).
550 tim 2698 \end{equation}
551     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552     matrix
553     \begin{equation}
554     J = \left( {\begin{array}{*{20}c}
555     0 & I \\
556     { - I} & 0 \\
557     \end{array}} \right)
558     \label{introEquation:canonicalMatrix}
559     \end{equation}
560     where $I$ is an identity matrix. Using this notation, Hamiltonian
561     system can be rewritten as,
562     \begin{equation}
563     \frac{d}{{dt}}x = J\nabla _x H(x)
564     \label{introEquation:compactHamiltonian}
565     \end{equation}In this case, $f$ is
566     called a \emph{Hamiltonian vector field}.
567 tim 2697
568 tim 2698 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569     \begin{equation}
570     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571     \end{equation}
572     The most obvious change being that matrix $J$ now depends on $x$.
573    
574 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
575    
576 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
577     \begin{equation}
578     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579     \end{equation}
580     The exact flow(solution) $\varphi_\tau$ is defined by
581     \[
582     x(t+\tau) =\varphi_\tau(x(t))
583     \]
584     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 tim 2702 space to itself. The flow has the continuous group property,
586 tim 2698 \begin{equation}
587 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
588     + \tau _2 } .
589     \end{equation}
590     In particular,
591     \begin{equation}
592     \varphi _\tau \circ \varphi _{ - \tau } = I
593     \end{equation}
594     Therefore, the exact flow is self-adjoint,
595     \begin{equation}
596     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
597     \end{equation}
598     The exact flow can also be written in terms of the of an operator,
599     \begin{equation}
600     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602     \label{introEquation:exponentialOperator}
603     \end{equation}
604    
605     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606     Instead, we use a approximate map, $\psi_\tau$, which is usually
607     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608     the Taylor series of $\psi_\tau$ agree to order $p$,
609     \begin{equation}
610 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611     \end{equation}
612    
613 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
614    
615 tim 2698 The hidden geometric properties of ODE and its flow play important
616 tim 2702 roles in numerical studies. Many of them can be found in systems
617     which occur naturally in applications.
618    
619     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620     a \emph{symplectic} flow if it satisfies,
621 tim 2698 \begin{equation}
622 tim 2703 {\varphi '}^T J \varphi ' = J.
623 tim 2698 \end{equation}
624     According to Liouville's theorem, the symplectic volume is invariant
625     under a Hamiltonian flow, which is the basis for classical
626 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627     field on a symplectic manifold can be shown to be a
628     symplectomorphism. As to the Poisson system,
629 tim 2698 \begin{equation}
630 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
631 tim 2698 \end{equation}
632 tim 2702 is the property must be preserved by the integrator.
633    
634     It is possible to construct a \emph{volume-preserving} flow for a
635     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636     \det d\varphi = 1$. One can show easily that a symplectic flow will
637     be volume-preserving.
638    
639     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640     will result in a new system,
641 tim 2698 \[
642     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643     \]
644     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645     In other words, the flow of this vector field is reversible if and
646 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
647 tim 2698
648 tim 2705 A \emph{first integral}, or conserved quantity of a general
649     differential function is a function $ G:R^{2d} \to R^d $ which is
650     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651     \[
652     \frac{{dG(x(t))}}{{dt}} = 0.
653     \]
654     Using chain rule, one may obtain,
655     \[
656     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657     \]
658     which is the condition for conserving \emph{first integral}. For a
659     canonical Hamiltonian system, the time evolution of an arbitrary
660     smooth function $G$ is given by,
661     \begin{equation}
662     \begin{array}{c}
663     \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664     = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665     \end{array}
666     \label{introEquation:firstIntegral1}
667     \end{equation}
668     Using poisson bracket notion, Equation
669     \ref{introEquation:firstIntegral1} can be rewritten as
670     \[
671     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672     \]
673     Therefore, the sufficient condition for $G$ to be the \emph{first
674     integral} of a Hamiltonian system is
675     \[
676     \left\{ {G,H} \right\} = 0.
677     \]
678     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
680     0$.
681    
682    
683     When designing any numerical methods, one should always try to
684 tim 2702 preserve the structural properties of the original ODE and its flow.
685    
686 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687     A lot of well established and very effective numerical methods have
688     been successful precisely because of their symplecticities even
689     though this fact was not recognized when they were first
690     constructed. The most famous example is leapfrog methods in
691     molecular dynamics. In general, symplectic integrators can be
692     constructed using one of four different methods.
693     \begin{enumerate}
694     \item Generating functions
695     \item Variational methods
696     \item Runge-Kutta methods
697     \item Splitting methods
698     \end{enumerate}
699 tim 2698
700 tim 2699 Generating function tends to lead to methods which are cumbersome
701 tim 2702 and difficult to use. In dissipative systems, variational methods
702     can capture the decay of energy accurately. Since their
703     geometrically unstable nature against non-Hamiltonian perturbations,
704     ordinary implicit Runge-Kutta methods are not suitable for
705     Hamiltonian system. Recently, various high-order explicit
706     Runge--Kutta methods have been developed to overcome this
707 tim 2703 instability. However, due to computational penalty involved in
708     implementing the Runge-Kutta methods, they do not attract too much
709     attention from Molecular Dynamics community. Instead, splitting have
710     been widely accepted since they exploit natural decompositions of
711 tim 2786 the system\cite{Tuckerman1992}.
712 tim 2702
713     \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714    
715     The main idea behind splitting methods is to decompose the discrete
716     $\varphi_h$ as a composition of simpler flows,
717 tim 2699 \begin{equation}
718     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
719     \varphi _{h_n }
720     \label{introEquation:FlowDecomposition}
721     \end{equation}
722     where each of the sub-flow is chosen such that each represent a
723 tim 2702 simpler integration of the system.
724    
725     Suppose that a Hamiltonian system takes the form,
726     \[
727     H = H_1 + H_2.
728     \]
729     Here, $H_1$ and $H_2$ may represent different physical processes of
730     the system. For instance, they may relate to kinetic and potential
731     energy respectively, which is a natural decomposition of the
732     problem. If $H_1$ and $H_2$ can be integrated using exact flows
733     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734     order is then given by the Lie-Trotter formula
735 tim 2699 \begin{equation}
736 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
737     \label{introEquation:firstOrderSplitting}
738     \end{equation}
739     where $\varphi _h$ is the result of applying the corresponding
740     continuous $\varphi _i$ over a time $h$. By definition, as
741     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742     must follow that each operator $\varphi_i(t)$ is a symplectic map.
743     It is easy to show that any composition of symplectic flows yields a
744     symplectic map,
745     \begin{equation}
746 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
748 tim 2699 \label{introEquation:SymplecticFlowComposition}
749     \end{equation}
750 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751     splitting in this context automatically generates a symplectic map.
752 tim 2699
753 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754     introduces local errors proportional to $h^2$, while Strang
755     splitting gives a second-order decomposition,
756     \begin{equation}
757     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
758 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 tim 2702 \end{equation}
760     which has a local error proportional to $h^3$. Sprang splitting's
761     popularity in molecular simulation community attribute to its
762     symmetric property,
763     \begin{equation}
764     \varphi _h^{ - 1} = \varphi _{ - h}.
765 tim 2703 \label{introEquation:timeReversible}
766 tim 2702 \end{equation}
767    
768     \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769     The classical equation for a system consisting of interacting
770     particles can be written in Hamiltonian form,
771     \[
772     H = T + V
773     \]
774     where $T$ is the kinetic energy and $V$ is the potential energy.
775     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776     obtains the following:
777     \begin{align}
778     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780     \label{introEquation:Lp10a} \\%
781     %
782     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784     \label{introEquation:Lp10b}
785     \end{align}
786     where $F(t)$ is the force at time $t$. This integration scheme is
787     known as \emph{velocity verlet} which is
788     symplectic(\ref{introEquation:SymplecticFlowComposition}),
789     time-reversible(\ref{introEquation:timeReversible}) and
790     volume-preserving (\ref{introEquation:volumePreserving}). These
791     geometric properties attribute to its long-time stability and its
792     popularity in the community. However, the most commonly used
793     velocity verlet integration scheme is written as below,
794     \begin{align}
795     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797     %
798     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799     \label{introEquation:Lp9b}\\%
800     %
801     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803     \end{align}
804     From the preceding splitting, one can see that the integration of
805     the equations of motion would follow:
806     \begin{enumerate}
807     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808    
809     \item Use the half step velocities to move positions one whole step, $\Delta t$.
810    
811     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812    
813     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814     \end{enumerate}
815    
816     Simply switching the order of splitting and composing, a new
817     integrator, the \emph{position verlet} integrator, can be generated,
818     \begin{align}
819     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821     \label{introEquation:positionVerlet1} \\%
822     %
823 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 tim 2702 q(\Delta t)} \right]. %
825 tim 2719 \label{introEquation:positionVerlet2}
826 tim 2702 \end{align}
827    
828     \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829    
830     Baker-Campbell-Hausdorff formula can be used to determine the local
831     error of splitting method in terms of commutator of the
832     operators(\ref{introEquation:exponentialOperator}) associated with
833     the sub-flow. For operators $hX$ and $hY$ which are associate to
834 tim 2726 $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
835 tim 2702 \begin{equation}
836     \exp (hX + hY) = \exp (hZ)
837     \end{equation}
838     where
839     \begin{equation}
840     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
842     \end{equation}
843     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844     \[
845     [X,Y] = XY - YX .
846     \]
847     Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848     can obtain
849 tim 2779 \begin{eqnarray*}
850 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
851     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 tim 2779 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
853     \end{eqnarray*}
854 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
855     error of Spring splitting is proportional to $h^3$. The same
856     procedure can be applied to general splitting, of the form
857     \begin{equation}
858     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
859     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
860     \end{equation}
861 tim 2779 Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
862 tim 2702 order method. Yoshida proposed an elegant way to compose higher
863     order methods based on symmetric splitting. Given a symmetric second
864     order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
865     method can be constructed by composing,
866     \[
867     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
868     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
869     \]
870     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
871     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
872     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
873     \begin{equation}
874     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
875     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
876     \end{equation}
877     , if the weights are chosen as
878     \[
879     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
880     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
881     \]
882    
883 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
884    
885 tim 2720 As one of the principal tools of molecular modeling, Molecular
886     dynamics has proven to be a powerful tool for studying the functions
887     of biological systems, providing structural, thermodynamic and
888     dynamical information. The basic idea of molecular dynamics is that
889     macroscopic properties are related to microscopic behavior and
890     microscopic behavior can be calculated from the trajectories in
891     simulations. For instance, instantaneous temperature of an
892     Hamiltonian system of $N$ particle can be measured by
893     \[
894 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
895 tim 2720 \]
896     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
897     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
898     the boltzman constant.
899 tim 2694
900 tim 2720 A typical molecular dynamics run consists of three essential steps:
901     \begin{enumerate}
902     \item Initialization
903     \begin{enumerate}
904     \item Preliminary preparation
905     \item Minimization
906     \item Heating
907     \item Equilibration
908     \end{enumerate}
909     \item Production
910     \item Analysis
911     \end{enumerate}
912     These three individual steps will be covered in the following
913     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
914     initialization of a simulation. Sec.~\ref{introSec:production} will
915 tim 2725 discusses issues in production run. Sec.~\ref{introSection:Analysis}
916     provides the theoretical tools for trajectory analysis.
917 tim 2719
918 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
919 tim 2719
920 tim 2720 \subsubsection{Preliminary preparation}
921 tim 2719
922 tim 2720 When selecting the starting structure of a molecule for molecular
923     simulation, one may retrieve its Cartesian coordinates from public
924     databases, such as RCSB Protein Data Bank \textit{etc}. Although
925     thousands of crystal structures of molecules are discovered every
926     year, many more remain unknown due to the difficulties of
927     purification and crystallization. Even for the molecule with known
928     structure, some important information is missing. For example, the
929     missing hydrogen atom which acts as donor in hydrogen bonding must
930     be added. Moreover, in order to include electrostatic interaction,
931     one may need to specify the partial charges for individual atoms.
932     Under some circumstances, we may even need to prepare the system in
933     a special setup. For instance, when studying transport phenomenon in
934     membrane system, we may prepare the lipids in bilayer structure
935     instead of placing lipids randomly in solvent, since we are not
936     interested in self-aggregation and it takes a long time to happen.
937 tim 2694
938 tim 2720 \subsubsection{Minimization}
939 tim 2705
940 tim 2720 It is quite possible that some of molecules in the system from
941     preliminary preparation may be overlapped with each other. This
942     close proximity leads to high potential energy which consequently
943     jeopardizes any molecular dynamics simulations. To remove these
944     steric overlaps, one typically performs energy minimization to find
945     a more reasonable conformation. Several energy minimization methods
946     have been developed to exploit the energy surface and to locate the
947     local minimum. While converging slowly near the minimum, steepest
948     descent method is extremely robust when systems are far from
949     harmonic. Thus, it is often used to refine structure from
950     crystallographic data. Relied on the gradient or hessian, advanced
951     methods like conjugate gradient and Newton-Raphson converge rapidly
952     to a local minimum, while become unstable if the energy surface is
953     far from quadratic. Another factor must be taken into account, when
954     choosing energy minimization method, is the size of the system.
955     Steepest descent and conjugate gradient can deal with models of any
956     size. Because of the limit of computation power to calculate hessian
957     matrix and insufficient storage capacity to store them, most
958     Newton-Raphson methods can not be used with very large models.
959 tim 2694
960 tim 2720 \subsubsection{Heating}
961    
962     Typically, Heating is performed by assigning random velocities
963     according to a Gaussian distribution for a temperature. Beginning at
964     a lower temperature and gradually increasing the temperature by
965     assigning greater random velocities, we end up with setting the
966     temperature of the system to a final temperature at which the
967     simulation will be conducted. In heating phase, we should also keep
968     the system from drifting or rotating as a whole. Equivalently, the
969     net linear momentum and angular momentum of the system should be
970     shifted to zero.
971    
972     \subsubsection{Equilibration}
973    
974     The purpose of equilibration is to allow the system to evolve
975     spontaneously for a period of time and reach equilibrium. The
976     procedure is continued until various statistical properties, such as
977     temperature, pressure, energy, volume and other structural
978     properties \textit{etc}, become independent of time. Strictly
979     speaking, minimization and heating are not necessary, provided the
980     equilibration process is long enough. However, these steps can serve
981     as a means to arrive at an equilibrated structure in an effective
982     way.
983    
984     \subsection{\label{introSection:production}Production}
985    
986 tim 2725 Production run is the most important steps of the simulation, in
987     which the equilibrated structure is used as a starting point and the
988     motions of the molecules are collected for later analysis. In order
989     to capture the macroscopic properties of the system, the molecular
990     dynamics simulation must be performed in correct and efficient way.
991 tim 2720
992 tim 2725 The most expensive part of a molecular dynamics simulation is the
993     calculation of non-bonded forces, such as van der Waals force and
994     Coulombic forces \textit{etc}. For a system of $N$ particles, the
995     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
996     which making large simulations prohibitive in the absence of any
997     computation saving techniques.
998 tim 2720
999 tim 2725 A natural approach to avoid system size issue is to represent the
1000     bulk behavior by a finite number of the particles. However, this
1001     approach will suffer from the surface effect. To offset this,
1002     \textit{Periodic boundary condition} is developed to simulate bulk
1003     properties with a relatively small number of particles. In this
1004     method, the simulation box is replicated throughout space to form an
1005     infinite lattice. During the simulation, when a particle moves in
1006     the primary cell, its image in other cells move in exactly the same
1007     direction with exactly the same orientation. Thus, as a particle
1008     leaves the primary cell, one of its images will enter through the
1009     opposite face.
1010     %\begin{figure}
1011     %\centering
1012     %\includegraphics[width=\linewidth]{pbcFig.eps}
1013     %\caption[An illustration of periodic boundary conditions]{A 2-D
1014     %illustration of periodic boundary conditions. As one particle leaves
1015     %the right of the simulation box, an image of it enters the left.}
1016     %\label{introFig:pbc}
1017     %\end{figure}
1018    
1019     %cutoff and minimum image convention
1020     Another important technique to improve the efficiency of force
1021     evaluation is to apply cutoff where particles farther than a
1022     predetermined distance, are not included in the calculation
1023     \cite{Frenkel1996}. The use of a cutoff radius will cause a
1024 tim 2730 discontinuity in the potential energy curve. Fortunately, one can
1025     shift the potential to ensure the potential curve go smoothly to
1026     zero at the cutoff radius. Cutoff strategy works pretty well for
1027     Lennard-Jones interaction because of its short range nature.
1028     However, simply truncating the electrostatic interaction with the
1029     use of cutoff has been shown to lead to severe artifacts in
1030     simulations. Ewald summation, in which the slowly conditionally
1031     convergent Coulomb potential is transformed into direct and
1032     reciprocal sums with rapid and absolute convergence, has proved to
1033     minimize the periodicity artifacts in liquid simulations. Taking the
1034     advantages of the fast Fourier transform (FFT) for calculating
1035     discrete Fourier transforms, the particle mesh-based methods are
1036     accelerated from $O(N^{3/2})$ to $O(N logN)$. An alternative
1037     approach is \emph{fast multipole method}, which treats Coulombic
1038     interaction exactly at short range, and approximate the potential at
1039     long range through multipolar expansion. In spite of their wide
1040     acceptances at the molecular simulation community, these two methods
1041     are hard to be implemented correctly and efficiently. Instead, we
1042     use a damped and charge-neutralized Coulomb potential method
1043     developed by Wolf and his coworkers. The shifted Coulomb potential
1044     for particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1045 tim 2725 \begin{equation}
1046     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1047     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1048     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1049     r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1050     \end{equation}
1051     where $\alpha$ is the convergence parameter. Due to the lack of
1052     inherent periodicity and rapid convergence,this method is extremely
1053     efficient and easy to implement.
1054     %\begin{figure}
1055     %\centering
1056     %\includegraphics[width=\linewidth]{pbcFig.eps}
1057     %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1058     %\label{introFigure:shiftedCoulomb}
1059     %\end{figure}
1060    
1061     %multiple time step
1062    
1063 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
1064    
1065 tim 2721 Recently, advanced visualization technique are widely applied to
1066     monitor the motions of molecules. Although the dynamics of the
1067     system can be described qualitatively from animation, quantitative
1068     trajectory analysis are more appreciable. According to the
1069     principles of Statistical Mechanics,
1070     Sec.~\ref{introSection:statisticalMechanics}, one can compute
1071     thermodynamics properties, analyze fluctuations of structural
1072     parameters, and investigate time-dependent processes of the molecule
1073     from the trajectories.
1074    
1075     \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1076    
1077 tim 2725 Thermodynamics properties, which can be expressed in terms of some
1078     function of the coordinates and momenta of all particles in the
1079     system, can be directly computed from molecular dynamics. The usual
1080     way to measure the pressure is based on virial theorem of Clausius
1081     which states that the virial is equal to $-3Nk_BT$. For a system
1082     with forces between particles, the total virial, $W$, contains the
1083     contribution from external pressure and interaction between the
1084     particles:
1085     \[
1086     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1087     f_{ij} } } \right\rangle
1088     \]
1089     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1090     distance $r_{ij}$. Thus, the expression for the pressure is given
1091     by:
1092     \begin{equation}
1093     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1094     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1095     \end{equation}
1096    
1097 tim 2721 \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1098    
1099     Structural Properties of a simple fluid can be described by a set of
1100     distribution functions. Among these functions,\emph{pair
1101     distribution function}, also known as \emph{radial distribution
1102 tim 2725 function}, is of most fundamental importance to liquid-state theory.
1103     Pair distribution function can be gathered by Fourier transforming
1104     raw data from a series of neutron diffraction experiments and
1105 tim 2786 integrating over the surface factor \cite{Powles1973}. The
1106     experiment result can serve as a criterion to justify the
1107     correctness of the theory. Moreover, various equilibrium
1108     thermodynamic and structural properties can also be expressed in
1109     terms of radial distribution function \cite{Allen1987}.
1110 tim 2721
1111     A pair distribution functions $g(r)$ gives the probability that a
1112     particle $i$ will be located at a distance $r$ from a another
1113     particle $j$ in the system
1114     \[
1115     g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1116     \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1117     \]
1118     Note that the delta function can be replaced by a histogram in
1119     computer simulation. Figure
1120     \ref{introFigure:pairDistributionFunction} shows a typical pair
1121     distribution function for the liquid argon system. The occurrence of
1122     several peaks in the plot of $g(r)$ suggests that it is more likely
1123     to find particles at certain radial values than at others. This is a
1124     result of the attractive interaction at such distances. Because of
1125     the strong repulsive forces at short distance, the probability of
1126     locating particles at distances less than about 2.5{\AA} from each
1127     other is essentially zero.
1128    
1129     %\begin{figure}
1130     %\centering
1131     %\includegraphics[width=\linewidth]{pdf.eps}
1132     %\caption[Pair distribution function for the liquid argon
1133     %]{Pair distribution function for the liquid argon}
1134     %\label{introFigure:pairDistributionFunction}
1135     %\end{figure}
1136    
1137     \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1138     Properties}
1139    
1140     Time-dependent properties are usually calculated using \emph{time
1141     correlation function}, which correlates random variables $A$ and $B$
1142     at two different time
1143     \begin{equation}
1144     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1145     \label{introEquation:timeCorrelationFunction}
1146     \end{equation}
1147     If $A$ and $B$ refer to same variable, this kind of correlation
1148     function is called \emph{auto correlation function}. One example of
1149     auto correlation function is velocity auto-correlation function
1150     which is directly related to transport properties of molecular
1151 tim 2725 liquids:
1152     \[
1153     D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1154     \right\rangle } dt
1155     \]
1156     where $D$ is diffusion constant. Unlike velocity autocorrelation
1157     function which is averaging over time origins and over all the
1158     atoms, dipole autocorrelation are calculated for the entire system.
1159     The dipole autocorrelation function is given by:
1160     \[
1161     c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1162     \right\rangle
1163     \]
1164     Here $u_{tot}$ is the net dipole of the entire system and is given
1165     by
1166     \[
1167     u_{tot} (t) = \sum\limits_i {u_i (t)}
1168     \]
1169     In principle, many time correlation functions can be related with
1170     Fourier transforms of the infrared, Raman, and inelastic neutron
1171     scattering spectra of molecular liquids. In practice, one can
1172     extract the IR spectrum from the intensity of dipole fluctuation at
1173     each frequency using the following relationship:
1174     \[
1175     \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1176     i2\pi vt} dt}
1177     \]
1178 tim 2721
1179 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1180 tim 2692
1181 tim 2705 Rigid bodies are frequently involved in the modeling of different
1182     areas, from engineering, physics, to chemistry. For example,
1183     missiles and vehicle are usually modeled by rigid bodies. The
1184     movement of the objects in 3D gaming engine or other physics
1185     simulator is governed by the rigid body dynamics. In molecular
1186     simulation, rigid body is used to simplify the model in
1187 tim 2786 protein-protein docking study{\cite{Gray2003}}.
1188 tim 2694
1189 tim 2705 It is very important to develop stable and efficient methods to
1190     integrate the equations of motion of orientational degrees of
1191     freedom. Euler angles are the nature choice to describe the
1192     rotational degrees of freedom. However, due to its singularity, the
1193     numerical integration of corresponding equations of motion is very
1194     inefficient and inaccurate. Although an alternative integrator using
1195     different sets of Euler angles can overcome this difficulty\cite{},
1196     the computational penalty and the lost of angular momentum
1197     conservation still remain. A singularity free representation
1198     utilizing quaternions was developed by Evans in 1977. Unfortunately,
1199     this approach suffer from the nonseparable Hamiltonian resulted from
1200     quaternion representation, which prevents the symplectic algorithm
1201     to be utilized. Another different approach is to apply holonomic
1202     constraints to the atoms belonging to the rigid body. Each atom
1203     moves independently under the normal forces deriving from potential
1204     energy and constraint forces which are used to guarantee the
1205     rigidness. However, due to their iterative nature, SHAKE and Rattle
1206     algorithm converge very slowly when the number of constraint
1207     increases.
1208 tim 2694
1209 tim 2705 The break through in geometric literature suggests that, in order to
1210     develop a long-term integration scheme, one should preserve the
1211     symplectic structure of the flow. Introducing conjugate momentum to
1212 tim 2719 rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1213 tim 2705 symplectic integrator, RSHAKE, was proposed to evolve the
1214     Hamiltonian system in a constraint manifold by iteratively
1215 tim 2719 satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1216 tim 2705 method using quaternion representation was developed by Omelyan.
1217     However, both of these methods are iterative and inefficient. In
1218     this section, we will present a symplectic Lie-Poisson integrator
1219 tim 2707 for rigid body developed by Dullweber and his
1220 tim 2713 coworkers\cite{Dullweber1997} in depth.
1221 tim 2705
1222 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1223 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
1224     function
1225 tim 2706 \begin{equation}
1226     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1227     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1228     \label{introEquation:RBHamiltonian}
1229     \end{equation}
1230     Here, $q$ and $Q$ are the position and rotation matrix for the
1231     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1232     $J$, a diagonal matrix, is defined by
1233     \[
1234     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1235     \]
1236     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1237     constrained Hamiltonian equation subjects to a holonomic constraint,
1238     \begin{equation}
1239 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1240 tim 2706 \end{equation}
1241     which is used to ensure rotation matrix's orthogonality.
1242     Differentiating \ref{introEquation:orthogonalConstraint} and using
1243     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1244     \begin{equation}
1245 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1246 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1247     \end{equation}
1248    
1249     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1250     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1251     the equations of motion,
1252     \[
1253     \begin{array}{c}
1254     \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1255     \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1256     \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1257 tim 2707 \frac{{dP}}{{dt}} = - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1258 tim 2706 \end{array}
1259     \]
1260    
1261 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1262     We can use constraint force provided by lagrange multiplier on the
1263     normal manifold to keep the motion on constraint space. Or we can
1264 tim 2776 simply evolve the system in constraint manifold. These two methods
1265     are proved to be equivalent. The holonomic constraint and equations
1266     of motions define a constraint manifold for rigid body
1267 tim 2707 \[
1268     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1269     \right\}.
1270     \]
1271 tim 2706
1272 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1273     $T_{\star}SO(3)$. However, it turns out that under symplectic
1274     transformation, the cotangent space and the phase space are
1275     diffeomorphic. Introducing
1276 tim 2706 \[
1277 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1278 tim 2706 \]
1279 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1280     can be re-formulated as a Hamiltonian system on the cotangent space
1281     \[
1282     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1283     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1284     \]
1285 tim 2706
1286 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1287     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1288     given as
1289     \begin{equation}
1290     X_i^{lab} = Q X_i + q.
1291     \end{equation}
1292     Therefore, potential energy $V(q,Q)$ is defined by
1293     \[
1294     V(q,Q) = V(Q X_0 + q).
1295     \]
1296 tim 2713 Hence, the force and torque are given by
1297 tim 2707 \[
1298 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1299 tim 2707 \]
1300 tim 2713 and
1301 tim 2707 \[
1302     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1303     \]
1304 tim 2713 respectively.
1305 tim 2695
1306 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1307     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1308     rewrite the equations of motion,
1309     \begin{equation}
1310     \begin{array}{l}
1311     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1312     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1313     \end{array}
1314     \label{introEqaution:RBMotionPI}
1315     \end{equation}
1316     , as well as holonomic constraints,
1317     \[
1318     \begin{array}{l}
1319     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1320     Q^T Q = 1 \\
1321     \end{array}
1322     \]
1323 tim 2692
1324 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1325     so(3)^ \star$, the hat-map isomorphism,
1326     \begin{equation}
1327     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1328     {\begin{array}{*{20}c}
1329     0 & { - v_3 } & {v_2 } \\
1330     {v_3 } & 0 & { - v_1 } \\
1331     { - v_2 } & {v_1 } & 0 \\
1332     \end{array}} \right),
1333     \label{introEquation:hatmapIsomorphism}
1334     \end{equation}
1335     will let us associate the matrix products with traditional vector
1336     operations
1337     \[
1338     \hat vu = v \times u
1339     \]
1340    
1341     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1342     matrix,
1343     \begin{equation}
1344     (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ \bullet ^T
1345     ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1346     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1347     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1348     \end{equation}
1349     Since $\Lambda$ is symmetric, the last term of Equation
1350 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1351     multiplier $\Lambda$ is absent from the equations of motion. This
1352     unique property eliminate the requirement of iterations which can
1353     not be avoided in other methods\cite{}.
1354 tim 2707
1355 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1356     angular momentum on body frame
1357     \begin{equation}
1358     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1359     F_i (r,Q)} \right) \times X_i }.
1360     \label{introEquation:bodyAngularMotion}
1361     \end{equation}
1362 tim 2707 In the same manner, the equation of motion for rotation matrix is
1363     given by
1364     \[
1365 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1366 tim 2707 \]
1367    
1368 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1369     Lie-Poisson Integrator for Free Rigid Body}
1370 tim 2707
1371 tim 2713 If there is not external forces exerted on the rigid body, the only
1372     contribution to the rotational is from the kinetic potential (the
1373     first term of \ref{ introEquation:bodyAngularMotion}). The free
1374     rigid body is an example of Lie-Poisson system with Hamiltonian
1375     function
1376     \begin{equation}
1377     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1378     \label{introEquation:rotationalKineticRB}
1379     \end{equation}
1380     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1381     Lie-Poisson structure matrix,
1382     \begin{equation}
1383     J(\pi ) = \left( {\begin{array}{*{20}c}
1384     0 & {\pi _3 } & { - \pi _2 } \\
1385     { - \pi _3 } & 0 & {\pi _1 } \\
1386     {\pi _2 } & { - \pi _1 } & 0 \\
1387     \end{array}} \right)
1388     \end{equation}
1389     Thus, the dynamics of free rigid body is governed by
1390     \begin{equation}
1391     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1392     \end{equation}
1393 tim 2707
1394 tim 2713 One may notice that each $T_i^r$ in Equation
1395     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1396     instance, the equations of motion due to $T_1^r$ are given by
1397     \begin{equation}
1398     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1399     \label{introEqaution:RBMotionSingleTerm}
1400     \end{equation}
1401     where
1402     \[ R_1 = \left( {\begin{array}{*{20}c}
1403     0 & 0 & 0 \\
1404     0 & 0 & {\pi _1 } \\
1405     0 & { - \pi _1 } & 0 \\
1406     \end{array}} \right).
1407     \]
1408     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1409 tim 2707 \[
1410 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1411     Q(0)e^{\Delta tR_1 }
1412 tim 2707 \]
1413 tim 2713 with
1414 tim 2707 \[
1415 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1416     0 & 0 & 0 \\
1417     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1418     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1419     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1420 tim 2707 \]
1421 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1422     tR_1 }$, we can use Cayley transformation,
1423 tim 2713 \[
1424     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1425     )
1426     \]
1427 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1428 tim 2713 manner.
1429    
1430     In order to construct a second-order symplectic method, we split the
1431     angular kinetic Hamiltonian function can into five terms
1432 tim 2707 \[
1433 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1434     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1435     (\pi _1 )
1436     \].
1437     Concatenating flows corresponding to these five terms, we can obtain
1438     an symplectic integrator,
1439     \[
1440     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1441 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1442     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1443 tim 2713 _1 }.
1444 tim 2707 \]
1445    
1446 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1447     $F(\pi )$ and $G(\pi )$ is defined by
1448 tim 2707 \[
1449 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1450     )
1451     \]
1452     If the Poisson bracket of a function $F$ with an arbitrary smooth
1453     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1454     conserved quantity in Poisson system. We can easily verify that the
1455     norm of the angular momentum, $\parallel \pi
1456     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1457     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1458     then by the chain rule
1459     \[
1460     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1461     }}{2})\pi
1462     \]
1463     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1464     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1465     Lie-Poisson integrator is found to be extremely efficient and stable
1466     which can be explained by the fact the small angle approximation is
1467     used and the norm of the angular momentum is conserved.
1468    
1469     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1470     Splitting for Rigid Body}
1471    
1472     The Hamiltonian of rigid body can be separated in terms of kinetic
1473     energy and potential energy,
1474     \[
1475     H = T(p,\pi ) + V(q,Q)
1476     \]
1477     The equations of motion corresponding to potential energy and
1478     kinetic energy are listed in the below table,
1479 tim 2776 \begin{table}
1480     \caption{Equations of motion due to Potential and Kinetic Energies}
1481 tim 2713 \begin{center}
1482     \begin{tabular}{|l|l|}
1483     \hline
1484     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1485     Potential & Kinetic \\
1486     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1487     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1488     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1489     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1490     \hline
1491     \end{tabular}
1492     \end{center}
1493 tim 2776 \end{table}
1494     A second-order symplectic method is now obtained by the
1495     composition of the flow maps,
1496 tim 2713 \[
1497     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1498     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1499     \]
1500 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1501     sub-flows which corresponding to force and torque respectively,
1502 tim 2713 \[
1503 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1504 tim 2713 _{\Delta t/2,\tau }.
1505 tim 2707 \]
1506 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1507     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1508 tim 2719 order inside $\varphi _{\Delta t/2,V}$ does not matter.
1509 tim 2707
1510 tim 2713 Furthermore, kinetic potential can be separated to translational
1511     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1512     \begin{equation}
1513     T(p,\pi ) =T^t (p) + T^r (\pi ).
1514     \end{equation}
1515     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1516     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1517     corresponding flow maps are given by
1518     \[
1519     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1520     _{\Delta t,T^r }.
1521     \]
1522     Finally, we obtain the overall symplectic flow maps for free moving
1523     rigid body
1524     \begin{equation}
1525     \begin{array}{c}
1526     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1527     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1528     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1529     \end{array}
1530     \label{introEquation:overallRBFlowMaps}
1531     \end{equation}
1532 tim 2707
1533 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1534 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1535     mimics a simple heat bath with stochastic and dissipative forces,
1536     has been applied in a variety of studies. This section will review
1537     the theory of Langevin dynamics simulation. A brief derivation of
1538 tim 2719 generalized Langevin equation will be given first. Follow that, we
1539 tim 2716 will discuss the physical meaning of the terms appearing in the
1540     equation as well as the calculation of friction tensor from
1541     hydrodynamics theory.
1542 tim 2685
1543 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1544 tim 2685
1545 tim 2719 Harmonic bath model, in which an effective set of harmonic
1546     oscillators are used to mimic the effect of a linearly responding
1547     environment, has been widely used in quantum chemistry and
1548     statistical mechanics. One of the successful applications of
1549     Harmonic bath model is the derivation of Deriving Generalized
1550     Langevin Dynamics. Lets consider a system, in which the degree of
1551     freedom $x$ is assumed to couple to the bath linearly, giving a
1552     Hamiltonian of the form
1553 tim 2696 \begin{equation}
1554     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1555 tim 2719 \label{introEquation:bathGLE}.
1556 tim 2696 \end{equation}
1557 tim 2719 Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1558     with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1559 tim 2696 \[
1560 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1561     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1562     \right\}}
1563 tim 2696 \]
1564 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1565     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1566     the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1567     coupling,
1568 tim 2696 \[
1569     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1570     \]
1571 tim 2719 where $g_\alpha$ are the coupling constants between the bath and the
1572     coordinate $x$. Introducing
1573 tim 2696 \[
1574 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1575     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1576     \] and combining the last two terms in Equation
1577     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1578     Hamiltonian as
1579 tim 2696 \[
1580     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1581     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1582     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1583     w_\alpha ^2 }}x} \right)^2 } \right\}}
1584     \]
1585     Since the first two terms of the new Hamiltonian depend only on the
1586     system coordinates, we can get the equations of motion for
1587     Generalized Langevin Dynamics by Hamilton's equations
1588     \ref{introEquation:motionHamiltonianCoordinate,
1589     introEquation:motionHamiltonianMomentum},
1590 tim 2719 \begin{equation}
1591     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1592     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1593     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1594     \label{introEquation:coorMotionGLE}
1595     \end{equation}
1596     and
1597     \begin{equation}
1598     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1599     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1600     \label{introEquation:bathMotionGLE}
1601     \end{equation}
1602 tim 2696
1603 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1604     variables $x_\alpha$ must be solved exactly first. As an integral
1605     transform which is particularly useful in solving linear ordinary
1606     differential equations, Laplace transform is the appropriate tool to
1607     solve this problem. The basic idea is to transform the difficult
1608     differential equations into simple algebra problems which can be
1609     solved easily. Then applying inverse Laplace transform, also known
1610     as the Bromwich integral, we can retrieve the solutions of the
1611     original problems.
1612 tim 2696
1613 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1614     transform of f(t) is a new function defined as
1615 tim 2696 \[
1616 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1617 tim 2696 \]
1618 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1619     Operator. Below are some important properties of Laplace transform
1620     \begin{equation}
1621     \begin{array}{c}
1622     L(x + y) = L(x) + L(y) \\
1623     L(ax) = aL(x) \\
1624     L(\dot x) = pL(x) - px(0) \\
1625     L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1626     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1627     \end{array}
1628     \end{equation}
1629 tim 2696
1630 tim 2719 Applying Laplace transform to the bath coordinates, we obtain
1631 tim 2696 \[
1632 tim 2719 \begin{array}{c}
1633     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1634     L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1635     \end{array}
1636 tim 2696 \]
1637 tim 2719 By the same way, the system coordinates become
1638 tim 2696 \[
1639 tim 2719 \begin{array}{c}
1640     mL(\ddot x) = - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1641     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1642     \end{array}
1643 tim 2696 \]
1644    
1645 tim 2719 With the help of some relatively important inverse Laplace
1646     transformations:
1647 tim 2696 \[
1648 tim 2719 \begin{array}{c}
1649     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1650     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1651     L(1) = \frac{1}{p} \\
1652     \end{array}
1653 tim 2696 \]
1654 tim 2719 , we obtain
1655 tim 2696 \begin{align}
1656     m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1657     \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1658     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1659     _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1660     - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1661     (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1662     _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1663     %
1664     &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1665     {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1666     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1667     t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1668     {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1669     \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1670     \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1671     (\omega _\alpha t)} \right\}}
1672     \end{align}
1673    
1674 tim 2719 Introducing a \emph{dynamic friction kernel}
1675 tim 2696 \begin{equation}
1676 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1677     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1678     \label{introEquation:dynamicFrictionKernelDefinition}
1679     \end{equation}
1680     and \emph{a random force}
1681     \begin{equation}
1682     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1683     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1684     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1685     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1686     \label{introEquation:randomForceDefinition}
1687     \end{equation}
1688     the equation of motion can be rewritten as
1689     \begin{equation}
1690 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1691     (t)\dot x(t - \tau )d\tau } + R(t)
1692     \label{introEuqation:GeneralizedLangevinDynamics}
1693     \end{equation}
1694 tim 2719 which is known as the \emph{generalized Langevin equation}.
1695    
1696     \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1697    
1698     One may notice that $R(t)$ depends only on initial conditions, which
1699     implies it is completely deterministic within the context of a
1700     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1701     uncorrelated to $x$ and $\dot x$,
1702 tim 2696 \[
1703 tim 2719 \begin{array}{l}
1704     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1705     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1706     \end{array}
1707 tim 2696 \]
1708 tim 2719 This property is what we expect from a truly random process. As long
1709     as the model, which is gaussian distribution in general, chosen for
1710     $R(t)$ is a truly random process, the stochastic nature of the GLE
1711     still remains.
1712 tim 2696
1713 tim 2719 %dynamic friction kernel
1714     The convolution integral
1715 tim 2696 \[
1716 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1717 tim 2696 \]
1718 tim 2719 depends on the entire history of the evolution of $x$, which implies
1719     that the bath retains memory of previous motions. In other words,
1720     the bath requires a finite time to respond to change in the motion
1721     of the system. For a sluggish bath which responds slowly to changes
1722     in the system coordinate, we may regard $\xi(t)$ as a constant
1723     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1724     \[
1725     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1726     \]
1727     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1728     \[
1729     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1730     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1731     \]
1732     which can be used to describe dynamic caging effect. The other
1733     extreme is the bath that responds infinitely quickly to motions in
1734     the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1735     time:
1736     \[
1737     \xi (t) = 2\xi _0 \delta (t)
1738     \]
1739     Hence, the convolution integral becomes
1740     \[
1741     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1742     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1743     \]
1744     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1745     \begin{equation}
1746     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1747     x(t) + R(t) \label{introEquation:LangevinEquation}
1748     \end{equation}
1749     which is known as the Langevin equation. The static friction
1750     coefficient $\xi _0$ can either be calculated from spectral density
1751     or be determined by Stokes' law for regular shaped particles.A
1752     briefly review on calculating friction tensor for arbitrary shaped
1753 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1754 tim 2696
1755     \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1756 tim 2719
1757     Defining a new set of coordinates,
1758 tim 2696 \[
1759     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1760     ^2 }}x(0)
1761 tim 2719 \],
1762     we can rewrite $R(T)$ as
1763 tim 2696 \[
1764 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1765 tim 2696 \]
1766     And since the $q$ coordinates are harmonic oscillators,
1767     \[
1768 tim 2719 \begin{array}{c}
1769     \left\langle {q_\alpha ^2 } \right\rangle = \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1770 tim 2696 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1771     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1772 tim 2719 \left\langle {R(t)R(0)} \right\rangle = \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1773     = \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1774     = kT\xi (t) \\
1775 tim 2696 \end{array}
1776     \]
1777 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1778 tim 2696 \begin{equation}
1779     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1780 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1781 tim 2696 \end{equation}
1782 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1783     can model the random force and friction kernel.
1784 tim 2696
1785     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1786 tim 2716 Theoretically, the friction kernel can be determined using velocity
1787     autocorrelation function. However, this approach become impractical
1788     when the system become more and more complicate. Instead, various
1789     approaches based on hydrodynamics have been developed to calculate
1790     the friction coefficients. The friction effect is isotropic in
1791 tim 2776 Equation, $\zeta$ can be taken as a scalar. In general, friction
1792     tensor $\Xi$ is a $6\times 6$ matrix given by
1793 tim 2716 \[
1794     \Xi = \left( {\begin{array}{*{20}c}
1795     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1796     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1797     \end{array}} \right).
1798     \]
1799     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1800 tim 2718 tensor and rotational resistance (friction) tensor respectively,
1801     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1802     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1803     particle moves in a fluid, it may experience friction force or
1804     torque along the opposite direction of the velocity or angular
1805     velocity,
1806 tim 2716 \[
1807     \left( \begin{array}{l}
1808 tim 2718 F_R \\
1809     \tau _R \\
1810 tim 2716 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1811     {\Xi ^{tt} } & {\Xi ^{rt} } \\
1812     {\Xi ^{tr} } & {\Xi ^{rr} } \\
1813     \end{array}} \right)\left( \begin{array}{l}
1814     v \\
1815     w \\
1816     \end{array} \right)
1817     \]
1818 tim 2718 where $F_r$ is the friction force and $\tau _R$ is the friction
1819     toque.
1820 tim 2696
1821 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1822    
1823 tim 2716 For a spherical particle, the translational and rotational friction
1824     constant can be calculated from Stoke's law,
1825     \[
1826     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1827     {6\pi \eta R} & 0 & 0 \\
1828     0 & {6\pi \eta R} & 0 \\
1829     0 & 0 & {6\pi \eta R} \\
1830     \end{array}} \right)
1831     \]
1832     and
1833     \[
1834     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1835     {8\pi \eta R^3 } & 0 & 0 \\
1836     0 & {8\pi \eta R^3 } & 0 \\
1837     0 & 0 & {8\pi \eta R^3 } \\
1838     \end{array}} \right)
1839     \]
1840     where $\eta$ is the viscosity of the solvent and $R$ is the
1841     hydrodynamics radius.
1842 tim 2706
1843 tim 2718 Other non-spherical shape, such as cylinder and ellipsoid
1844     \textit{etc}, are widely used as reference for developing new
1845     hydrodynamics theory, because their properties can be calculated
1846     exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1847     also called a triaxial ellipsoid, which is given in Cartesian
1848     coordinates by
1849 tim 2716 \[
1850 tim 2718 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1851     }} = 1
1852     \]
1853     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1854     due to the complexity of the elliptic integral, only the ellipsoid
1855     with the restriction of two axes having to be equal, \textit{i.e.}
1856     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1857     exactly. Introducing an elliptic integral parameter $S$ for prolate,
1858     \[
1859 tim 2716 S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1860 tim 2718 } }}{b},
1861 tim 2716 \]
1862 tim 2718 and oblate,
1863 tim 2716 \[
1864     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1865     }}{a}
1866 tim 2718 \],
1867     one can write down the translational and rotational resistance
1868     tensors
1869 tim 2716 \[
1870     \begin{array}{l}
1871     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1872     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1873 tim 2718 \end{array},
1874 tim 2716 \]
1875 tim 2718 and
1876 tim 2716 \[
1877     \begin{array}{l}
1878     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1879     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1880 tim 2718 \end{array}.
1881 tim 2716 \]
1882    
1883 tim 2718 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1884 tim 2716
1885     Unlike spherical and other regular shaped molecules, there is not
1886     analytical solution for friction tensor of any arbitrary shaped
1887     rigid molecules. The ellipsoid of revolution model and general
1888     triaxial ellipsoid model have been used to approximate the
1889     hydrodynamic properties of rigid bodies. However, since the mapping
1890     from all possible ellipsoidal space, $r$-space, to all possible
1891     combination of rotational diffusion coefficients, $D$-space is not
1892 tim 2786 unique\cite{Wegener1979} as well as the intrinsic coupling between
1893 tim 2716 translational and rotational motion of rigid body\cite{}, general
1894     ellipsoid is not always suitable for modeling arbitrarily shaped
1895     rigid molecule. A number of studies have been devoted to determine
1896     the friction tensor for irregularly shaped rigid bodies using more
1897     advanced method\cite{} where the molecule of interest was modeled by
1898     combinations of spheres(beads)\cite{} and the hydrodynamics
1899     properties of the molecule can be calculated using the hydrodynamic
1900     interaction tensor. Let us consider a rigid assembly of $N$ beads
1901     immersed in a continuous medium. Due to hydrodynamics interaction,
1902     the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1903     unperturbed velocity $v_i$,
1904     \[
1905     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1906     \]
1907     where $F_i$ is the frictional force, and $T_{ij}$ is the
1908     hydrodynamic interaction tensor. The friction force of $i$th bead is
1909     proportional to its ``net'' velocity
1910     \begin{equation}
1911     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1912     \label{introEquation:tensorExpression}
1913     \end{equation}
1914     This equation is the basis for deriving the hydrodynamic tensor. In
1915     1930, Oseen and Burgers gave a simple solution to Equation
1916     \ref{introEquation:tensorExpression}
1917     \begin{equation}
1918     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1919     R_{ij}^T }}{{R_{ij}^2 }}} \right).
1920     \label{introEquation:oseenTensor}
1921     \end{equation}
1922     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1923     A second order expression for element of different size was
1924     introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1925     la Torre and Bloomfield,
1926     \begin{equation}
1927     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1928     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1929     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1930     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1931     \label{introEquation:RPTensorNonOverlapped}
1932     \end{equation}
1933     Both of the Equation \ref{introEquation:oseenTensor} and Equation
1934     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1935     \ge \sigma _i + \sigma _j$. An alternative expression for
1936     overlapping beads with the same radius, $\sigma$, is given by
1937     \begin{equation}
1938     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1939     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1940     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1941     \label{introEquation:RPTensorOverlapped}
1942     \end{equation}
1943    
1944 tim 2718 To calculate the resistance tensor at an arbitrary origin $O$, we
1945     construct a $3N \times 3N$ matrix consisting of $N \times N$
1946     $B_{ij}$ blocks
1947     \begin{equation}
1948 tim 2716 B = \left( {\begin{array}{*{20}c}
1949 tim 2718 {B_{11} } & \ldots & {B_{1N} } \\
1950 tim 2716 \vdots & \ddots & \vdots \\
1951 tim 2718 {B_{N1} } & \cdots & {B_{NN} } \\
1952     \end{array}} \right),
1953     \end{equation}
1954     where $B_{ij}$ is given by
1955     \[
1956     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1957     )T_{ij}
1958 tim 2716 \]
1959 tim 2719 where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1960 tim 2718 $B$, we obtain
1961 tim 2716
1962     \[
1963     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1964     {C_{11} } & \ldots & {C_{1N} } \\
1965     \vdots & \ddots & \vdots \\
1966     {C_{N1} } & \cdots & {C_{NN} } \\
1967     \end{array}} \right)
1968     \]
1969 tim 2718 , which can be partitioned into $N \times N$ $3 \times 3$ block
1970     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1971     \[
1972     U_i = \left( {\begin{array}{*{20}c}
1973     0 & { - z_i } & {y_i } \\
1974     {z_i } & 0 & { - x_i } \\
1975     { - y_i } & {x_i } & 0 \\
1976     \end{array}} \right)
1977     \]
1978     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1979     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1980     arbitrary origin $O$ can be written as
1981 tim 2716 \begin{equation}
1982     \begin{array}{l}
1983     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1984     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1985     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1986     \end{array}
1987 tim 2718 \label{introEquation:ResistanceTensorArbitraryOrigin}
1988 tim 2716 \end{equation}
1989 tim 2718
1990     The resistance tensor depends on the origin to which they refer. The
1991     proper location for applying friction force is the center of
1992     resistance (reaction), at which the trace of rotational resistance
1993     tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1994     resistance is defined as an unique point of the rigid body at which
1995     the translation-rotation coupling tensor are symmetric,
1996     \begin{equation}
1997     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
1998     \label{introEquation:definitionCR}
1999     \end{equation}
2000     Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2001     we can easily find out that the translational resistance tensor is
2002     origin independent, while the rotational resistance tensor and
2003 tim 2719 translation-rotation coupling resistance tensor depend on the
2004 tim 2718 origin. Given resistance tensor at an arbitrary origin $O$, and a
2005     vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2006     obtain the resistance tensor at $P$ by
2007     \begin{equation}
2008     \begin{array}{l}
2009     \Xi _P^{tt} = \Xi _O^{tt} \\
2010     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
2011     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{tr} ^{^T } \\
2012     \end{array}
2013     \label{introEquation:resistanceTensorTransformation}
2014     \end{equation}
2015 tim 2716 where
2016     \[
2017 tim 2718 U_{OP} = \left( {\begin{array}{*{20}c}
2018     0 & { - z_{OP} } & {y_{OP} } \\
2019     {z_i } & 0 & { - x_{OP} } \\
2020     { - y_{OP} } & {x_{OP} } & 0 \\
2021 tim 2716 \end{array}} \right)
2022     \]
2023 tim 2718 Using Equations \ref{introEquation:definitionCR} and
2024     \ref{introEquation:resistanceTensorTransformation}, one can locate
2025     the position of center of resistance,
2026 tim 2716 \[
2027 tim 2718 \left( \begin{array}{l}
2028 tim 2716 x_{OR} \\
2029     y_{OR} \\
2030     z_{OR} \\
2031     \end{array} \right) = \left( {\begin{array}{*{20}c}
2032 tim 2718 {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
2033     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
2034     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
2035 tim 2716 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2036 tim 2718 (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
2037     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
2038     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
2039     \end{array} \right).
2040 tim 2716 \]
2041 tim 2718 where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2042     joining center of resistance $R$ and origin $O$.