ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2844
Committed: Fri Jun 9 19:06:37 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 87109 byte(s)
Log Message:
fix figures of Lipid chapter

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9 tim 2819 behind classical mechanics. Firstly, one can determine the state of
10 tim 2692 a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20 tim 2819 Newton's first law defines a class of inertial frames. Inertial
21 tim 2694 frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23 tim 2819 With respect to inertial frames, Newton's second law has the form
24 tim 2694 \begin{equation}
25 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
26 tim 2694 \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2819 Newton's third law states that
33 tim 2694 \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 tim 2694 \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62 tim 2819 \dot L = r \times \dot p = \tau
63 tim 2694 \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71 tim 2819 schemes for rigid bodies \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75 tim 2819 Newtonian Mechanics suffers from two important limitations: motions
76     can only be described in cartesian coordinate systems. Moreover, It
77     become impossible to predict analytically the properties of the
78     system even if we know all of the details of the interaction. In
79     order to overcome some of the practical difficulties which arise in
80     attempts to apply Newton's equation to complex system, approximate
81     numerical procedures may be developed.
82 tim 2692
83 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84     Principle}}
85 tim 2692
86     Hamilton introduced the dynamical principle upon which it is
87 tim 2819 possible to base all of mechanics and most of classical physics.
88     Hamilton's Principle may be stated as follows,
89 tim 2692
90     The actual trajectory, along which a dynamical system may move from
91     one point to another within a specified time, is derived by finding
92     the path which minimizes the time integral of the difference between
93 tim 2819 the kinetic, $K$, and potential energies, $U$.
94 tim 2692 \begin{equation}
95     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
96 tim 2693 \label{introEquation:halmitonianPrinciple1}
97 tim 2692 \end{equation}
98    
99     For simple mechanical systems, where the forces acting on the
100 tim 2819 different parts are derivable from a potential, the Lagrangian
101     function $L$ can be defined as the difference between the kinetic
102     energy of the system and its potential energy,
103 tim 2692 \begin{equation}
104     L \equiv K - U = L(q_i ,\dot q_i ) ,
105     \label{introEquation:lagrangianDef}
106     \end{equation}
107     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
108     \begin{equation}
109 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
110     \label{introEquation:halmitonianPrinciple2}
111 tim 2692 \end{equation}
112    
113 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
114     Equations of Motion in Lagrangian Mechanics}}
115 tim 2692
116 tim 2700 For a holonomic system of $f$ degrees of freedom, the equations of
117 tim 2692 motion in the Lagrangian form is
118     \begin{equation}
119     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
120     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
121 tim 2693 \label{introEquation:eqMotionLagrangian}
122 tim 2692 \end{equation}
123     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
124     generalized velocity.
125    
126 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
127 tim 2692
128     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
129     introduced by William Rowan Hamilton in 1833 as a re-formulation of
130     classical mechanics. If the potential energy of a system is
131 tim 2819 independent of velocities, the momenta can be defined as
132 tim 2692 \begin{equation}
133     p_i = \frac{\partial L}{\partial \dot q_i}
134     \label{introEquation:generalizedMomenta}
135     \end{equation}
136 tim 2693 The Lagrange equations of motion are then expressed by
137 tim 2692 \begin{equation}
138 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
139     \label{introEquation:generalizedMomentaDot}
140     \end{equation}
141    
142     With the help of the generalized momenta, we may now define a new
143     quantity $H$ by the equation
144     \begin{equation}
145     H = \sum\limits_k {p_k \dot q_k } - L ,
146 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
147     \end{equation}
148     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
149     $L$ is the Lagrangian function for the system.
150    
151 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
152     one can obtain
153     \begin{equation}
154     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
155     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
156     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
157     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
158     \end{equation}
159     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
160     second and fourth terms in the parentheses cancel. Therefore,
161     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
162     \begin{equation}
163     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
164     \right)} - \frac{{\partial L}}{{\partial t}}dt
165     \label{introEquation:diffHamiltonian2}
166     \end{equation}
167     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
168     find
169     \begin{equation}
170 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
171 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
172     \end{equation}
173     \begin{equation}
174 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
175 tim 2693 \label{introEquation:motionHamiltonianMomentum}
176     \end{equation}
177     and
178     \begin{equation}
179     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
180     t}}
181     \label{introEquation:motionHamiltonianTime}
182     \end{equation}
183    
184     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
185     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
186     equation of motion. Due to their symmetrical formula, they are also
187 tim 2786 known as the canonical equations of motions \cite{Goldstein2001}.
188 tim 2693
189 tim 2692 An important difference between Lagrangian approach and the
190     Hamiltonian approach is that the Lagrangian is considered to be a
191 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
192     $q_i$, while the Hamiltonian is considered to be a function of the
193     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
194     Hamiltonian Mechanics is more appropriate for application to
195     statistical mechanics and quantum mechanics, since it treats the
196     coordinate and its time derivative as independent variables and it
197     only works with 1st-order differential equations\cite{Marion1990}.
198 tim 2692
199 tim 2696 In Newtonian Mechanics, a system described by conservative forces
200     conserves the total energy \ref{introEquation:energyConservation}.
201     It follows that Hamilton's equations of motion conserve the total
202     Hamiltonian.
203     \begin{equation}
204     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
205     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
206     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
207     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
208     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
209 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
210 tim 2696 \end{equation}
211    
212 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
213     Mechanics}
214 tim 2692
215 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
216 tim 2692 simulation are governed by the principle of Statistical Mechanics.
217     The following section will give a brief introduction to some of the
218 tim 2700 Statistical Mechanics concepts and theorem presented in this
219     dissertation.
220 tim 2692
221 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
222 tim 2692
223 tim 2700 Mathematically, phase space is the space which represents all
224     possible states. Each possible state of the system corresponds to
225     one unique point in the phase space. For mechanical systems, the
226     phase space usually consists of all possible values of position and
227 tim 2819 momentum variables. Consider a dynamic system of $f$ particles in a
228     cartesian space, where each of the $6f$ coordinates and momenta is
229     assigned to one of $6f$ mutually orthogonal axes, the phase space of
230     this system is a $6f$ dimensional space. A point, $x = (q_1 , \ldots
231     ,q_f ,p_1 , \ldots ,p_f )$, with a unique set of values of $6f$
232     coordinates and momenta is a phase space vector.
233 tim 2700
234     A microscopic state or microstate of a classical system is
235     specification of the complete phase space vector of a system at any
236     instant in time. An ensemble is defined as a collection of systems
237     sharing one or more macroscopic characteristics but each being in a
238     unique microstate. The complete ensemble is specified by giving all
239     systems or microstates consistent with the common macroscopic
240     characteristics of the ensemble. Although the state of each
241     individual system in the ensemble could be precisely described at
242     any instance in time by a suitable phase space vector, when using
243     ensembles for statistical purposes, there is no need to maintain
244     distinctions between individual systems, since the numbers of
245     systems at any time in the different states which correspond to
246     different regions of the phase space are more interesting. Moreover,
247     in the point of view of statistical mechanics, one would prefer to
248     use ensembles containing a large enough population of separate
249     members so that the numbers of systems in such different states can
250     be regarded as changing continuously as we traverse different
251     regions of the phase space. The condition of an ensemble at any time
252     can be regarded as appropriately specified by the density $\rho$
253     with which representative points are distributed over the phase
254 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
255     freedom is defined as,
256 tim 2700 \begin{equation}
257     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
258     \label{introEquation:densityDistribution}
259     \end{equation}
260     Governed by the principles of mechanics, the phase points change
261 tim 2819 their locations which would change the density at any time at phase
262     space. Hence, the density distribution is also to be taken as a
263 tim 2700 function of the time.
264    
265     The number of systems $\delta N$ at time $t$ can be determined by,
266     \begin{equation}
267     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
268     \label{introEquation:deltaN}
269     \end{equation}
270 tim 2819 Assuming a large enough population of systems, we can sufficiently
271     approximate $\delta N$ without introducing discontinuity when we go
272     from one region in the phase space to another. By integrating over
273     the whole phase space,
274 tim 2700 \begin{equation}
275     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
276     \label{introEquation:totalNumberSystem}
277     \end{equation}
278     gives us an expression for the total number of the systems. Hence,
279     the probability per unit in the phase space can be obtained by,
280     \begin{equation}
281     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
282     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
283     \label{introEquation:unitProbability}
284     \end{equation}
285     With the help of Equation(\ref{introEquation:unitProbability}) and
286     the knowledge of the system, it is possible to calculate the average
287     value of any desired quantity which depends on the coordinates and
288     momenta of the system. Even when the dynamics of the real system is
289     complex, or stochastic, or even discontinuous, the average
290 tim 2819 properties of the ensemble of possibilities as a whole remaining
291     well defined. For a classical system in thermal equilibrium with its
292     environment, the ensemble average of a mechanical quantity, $\langle
293     A(q , p) \rangle_t$, takes the form of an integral over the phase
294     space of the system,
295 tim 2700 \begin{equation}
296     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
297     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
298     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
299     \label{introEquation:ensembelAverage}
300     \end{equation}
301    
302     There are several different types of ensembles with different
303     statistical characteristics. As a function of macroscopic
304 tim 2819 parameters, such as temperature \textit{etc}, the partition function
305     can be used to describe the statistical properties of a system in
306 tim 2700 thermodynamic equilibrium.
307    
308     As an ensemble of systems, each of which is known to be thermally
309 tim 2819 isolated and conserve energy, the Microcanonical ensemble(NVE) has a
310 tim 2700 partition function like,
311     \begin{equation}
312 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
313 tim 2700 \end{equation}
314     A canonical ensemble(NVT)is an ensemble of systems, each of which
315     can share its energy with a large heat reservoir. The distribution
316     of the total energy amongst the possible dynamical states is given
317     by the partition function,
318     \begin{equation}
319     \Omega (N,V,T) = e^{ - \beta A}
320     \label{introEquation:NVTPartition}
321     \end{equation}
322     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
323 tim 2819 TS$. Since most experiments are carried out under constant pressure
324     condition, the isothermal-isobaric ensemble(NPT) plays a very
325     important role in molecular simulations. The isothermal-isobaric
326     ensemble allow the system to exchange energy with a heat bath of
327     temperature $T$ and to change the volume as well. Its partition
328     function is given as
329 tim 2700 \begin{equation}
330     \Delta (N,P,T) = - e^{\beta G}.
331     \label{introEquation:NPTPartition}
332     \end{equation}
333     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
334    
335     \subsection{\label{introSection:liouville}Liouville's theorem}
336    
337 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
338     rests. It describes the time evolution of the phase space
339 tim 2700 distribution function. In order to calculate the rate of change of
340     $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
341     consider the two faces perpendicular to the $q_1$ axis, which are
342     located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
343     leaving the opposite face is given by the expression,
344     \begin{equation}
345     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
346     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
347     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
348     \ldots \delta p_f .
349     \end{equation}
350     Summing all over the phase space, we obtain
351     \begin{equation}
352     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
353     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
354     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
355     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
356     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
357     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
358     \end{equation}
359     Differentiating the equations of motion in Hamiltonian formalism
360     (\ref{introEquation:motionHamiltonianCoordinate},
361     \ref{introEquation:motionHamiltonianMomentum}), we can show,
362     \begin{equation}
363     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
364     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
365     \end{equation}
366     which cancels the first terms of the right hand side. Furthermore,
367 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
368 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
369     simple form,
370     \begin{equation}
371     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
372     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
373     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
374     \label{introEquation:liouvilleTheorem}
375     \end{equation}
376    
377     Liouville's theorem states that the distribution function is
378     constant along any trajectory in phase space. In classical
379     statistical mechanics, since the number of particles in the system
380     is huge, we may be able to believe the system is stationary,
381     \begin{equation}
382     \frac{{\partial \rho }}{{\partial t}} = 0.
383     \label{introEquation:stationary}
384     \end{equation}
385     In such stationary system, the density of distribution $\rho$ can be
386     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
387     distribution,
388     \begin{equation}
389     \rho \propto e^{ - \beta H}
390     \label{introEquation:densityAndHamiltonian}
391     \end{equation}
392    
393 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
394 tim 2702 Lets consider a region in the phase space,
395     \begin{equation}
396     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
397     \end{equation}
398     If this region is small enough, the density $\rho$ can be regarded
399 tim 2819 as uniform over the whole integral. Thus, the number of phase points
400     inside this region is given by,
401 tim 2702 \begin{equation}
402     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
403     dp_1 } ..dp_f.
404     \end{equation}
405    
406     \begin{equation}
407     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
408     \frac{d}{{dt}}(\delta v) = 0.
409     \end{equation}
410     With the help of stationary assumption
411     (\ref{introEquation:stationary}), we obtain the principle of the
412 tim 2819 \emph{conservation of volume in phase space},
413 tim 2702 \begin{equation}
414     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
415     ...dq_f dp_1 } ..dp_f = 0.
416     \label{introEquation:volumePreserving}
417     \end{equation}
418    
419 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
420 tim 2702
421 tim 2700 Liouville's theorem can be expresses in a variety of different forms
422     which are convenient within different contexts. For any two function
423     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
424     bracket ${F, G}$ is defined as
425     \begin{equation}
426     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
427     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
428     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
429     q_i }}} \right)}.
430     \label{introEquation:poissonBracket}
431     \end{equation}
432     Substituting equations of motion in Hamiltonian formalism(
433     \ref{introEquation:motionHamiltonianCoordinate} ,
434     \ref{introEquation:motionHamiltonianMomentum} ) into
435     (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
436     theorem using Poisson bracket notion,
437     \begin{equation}
438     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
439     {\rho ,H} \right\}.
440     \label{introEquation:liouvilleTheromInPoissin}
441     \end{equation}
442     Moreover, the Liouville operator is defined as
443     \begin{equation}
444     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
445     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
446     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
447     \label{introEquation:liouvilleOperator}
448     \end{equation}
449     In terms of Liouville operator, Liouville's equation can also be
450     expressed as
451     \begin{equation}
452     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
453     \label{introEquation:liouvilleTheoremInOperator}
454     \end{equation}
455    
456 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
457 tim 2692
458 tim 2695 Various thermodynamic properties can be calculated from Molecular
459     Dynamics simulation. By comparing experimental values with the
460     calculated properties, one can determine the accuracy of the
461 tim 2819 simulation and the quality of the underlying model. However, both
462     experiments and computer simulations are usually performed during a
463 tim 2695 certain time interval and the measurements are averaged over a
464     period of them which is different from the average behavior of
465 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
466     Hypothesis makes a connection between time average and the ensemble
467     average. It states that the time average and average over the
468 tim 2786 statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
469 tim 2695 \begin{equation}
470 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
471     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
472     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
473 tim 2695 \end{equation}
474 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
475     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
476     distribution function. If an observation is averaged over a
477     sufficiently long time (longer than relaxation time), all accessible
478     microstates in phase space are assumed to be equally probed, giving
479     a properly weighted statistical average. This allows the researcher
480     freedom of choice when deciding how best to measure a given
481     observable. In case an ensemble averaged approach sounds most
482 tim 2786 reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
483 tim 2700 utilized. Or if the system lends itself to a time averaging
484     approach, the Molecular Dynamics techniques in
485     Sec.~\ref{introSection:molecularDynamics} will be the best
486     choice\cite{Frenkel1996}.
487 tim 2694
488 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
489 tim 2819 A variety of numerical integrators have been proposed to simulate
490     the motions of atoms in MD simulation. They usually begin with
491     initial conditionals and move the objects in the direction governed
492     by the differential equations. However, most of them ignore the
493     hidden physical laws contained within the equations. Since 1990,
494     geometric integrators, which preserve various phase-flow invariants
495     such as symplectic structure, volume and time reversal symmetry, are
496     developed to address this issue\cite{Dullweber1997, McLachlan1998,
497     Leimkuhler1999}. The velocity verlet method, which happens to be a
498     simple example of symplectic integrator, continues to gain
499     popularity in the molecular dynamics community. This fact can be
500     partly explained by its geometric nature.
501 tim 2697
502 tim 2819 \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
503     A \emph{manifold} is an abstract mathematical space. It looks
504     locally like Euclidean space, but when viewed globally, it may have
505     more complicated structure. A good example of manifold is the
506     surface of Earth. It seems to be flat locally, but it is round if
507     viewed as a whole. A \emph{differentiable manifold} (also known as
508     \emph{smooth manifold}) is a manifold on which it is possible to
509     apply calculus on \emph{differentiable manifold}. A \emph{symplectic
510     manifold} is defined as a pair $(M, \omega)$ which consists of a
511 tim 2697 \emph{differentiable manifold} $M$ and a close, non-degenerated,
512     bilinear symplectic form, $\omega$. A symplectic form on a vector
513     space $V$ is a function $\omega(x, y)$ which satisfies
514     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
515     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
516 tim 2819 $\omega(x, x) = 0$. The cross product operation in vector field is
517     an example of symplectic form.
518 tim 2697
519 tim 2819 One of the motivations to study \emph{symplectic manifolds} in
520 tim 2697 Hamiltonian Mechanics is that a symplectic manifold can represent
521     all possible configurations of the system and the phase space of the
522     system can be described by it's cotangent bundle. Every symplectic
523     manifold is even dimensional. For instance, in Hamilton equations,
524     coordinate and momentum always appear in pairs.
525    
526 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
527 tim 2697
528 tim 2819 For an ordinary differential system defined as
529 tim 2698 \begin{equation}
530     \dot x = f(x)
531     \end{equation}
532 tim 2819 where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
533 tim 2698 \begin{equation}
534 tim 2699 f(r) = J\nabla _x H(r).
535 tim 2698 \end{equation}
536     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
537     matrix
538     \begin{equation}
539     J = \left( {\begin{array}{*{20}c}
540     0 & I \\
541     { - I} & 0 \\
542     \end{array}} \right)
543     \label{introEquation:canonicalMatrix}
544     \end{equation}
545     where $I$ is an identity matrix. Using this notation, Hamiltonian
546     system can be rewritten as,
547     \begin{equation}
548     \frac{d}{{dt}}x = J\nabla _x H(x)
549     \label{introEquation:compactHamiltonian}
550     \end{equation}In this case, $f$ is
551     called a \emph{Hamiltonian vector field}.
552 tim 2697
553 tim 2789 Another generalization of Hamiltonian dynamics is Poisson
554     Dynamics\cite{Olver1986},
555 tim 2698 \begin{equation}
556     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
557     \end{equation}
558     The most obvious change being that matrix $J$ now depends on $x$.
559    
560 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
561    
562 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
563     \begin{equation}
564     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
565     \end{equation}
566     The exact flow(solution) $\varphi_\tau$ is defined by
567     \[
568     x(t+\tau) =\varphi_\tau(x(t))
569     \]
570     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
571 tim 2702 space to itself. The flow has the continuous group property,
572 tim 2698 \begin{equation}
573 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
574     + \tau _2 } .
575     \end{equation}
576     In particular,
577     \begin{equation}
578     \varphi _\tau \circ \varphi _{ - \tau } = I
579     \end{equation}
580     Therefore, the exact flow is self-adjoint,
581     \begin{equation}
582     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
583     \end{equation}
584     The exact flow can also be written in terms of the of an operator,
585     \begin{equation}
586     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
587     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
588     \label{introEquation:exponentialOperator}
589     \end{equation}
590    
591     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
592     Instead, we use a approximate map, $\psi_\tau$, which is usually
593     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
594     the Taylor series of $\psi_\tau$ agree to order $p$,
595     \begin{equation}
596 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
597     \end{equation}
598    
599 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
600    
601 tim 2789 The hidden geometric properties\cite{Budd1999, Marsden1998} of ODE
602     and its flow play important roles in numerical studies. Many of them
603     can be found in systems which occur naturally in applications.
604 tim 2702
605     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
606     a \emph{symplectic} flow if it satisfies,
607 tim 2698 \begin{equation}
608 tim 2703 {\varphi '}^T J \varphi ' = J.
609 tim 2698 \end{equation}
610     According to Liouville's theorem, the symplectic volume is invariant
611     under a Hamiltonian flow, which is the basis for classical
612 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
613     field on a symplectic manifold can be shown to be a
614     symplectomorphism. As to the Poisson system,
615 tim 2698 \begin{equation}
616 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
617 tim 2698 \end{equation}
618 tim 2702 is the property must be preserved by the integrator.
619    
620     It is possible to construct a \emph{volume-preserving} flow for a
621     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
622     \det d\varphi = 1$. One can show easily that a symplectic flow will
623     be volume-preserving.
624    
625     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
626     will result in a new system,
627 tim 2698 \[
628     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
629     \]
630     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
631     In other words, the flow of this vector field is reversible if and
632 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
633 tim 2698
634 tim 2705 A \emph{first integral}, or conserved quantity of a general
635     differential function is a function $ G:R^{2d} \to R^d $ which is
636     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
637     \[
638     \frac{{dG(x(t))}}{{dt}} = 0.
639     \]
640     Using chain rule, one may obtain,
641     \[
642     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
643     \]
644     which is the condition for conserving \emph{first integral}. For a
645     canonical Hamiltonian system, the time evolution of an arbitrary
646     smooth function $G$ is given by,
647 tim 2789
648     \begin{eqnarray}
649     \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
650     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
651 tim 2705 \label{introEquation:firstIntegral1}
652 tim 2789 \end{eqnarray}
653    
654    
655 tim 2705 Using poisson bracket notion, Equation
656     \ref{introEquation:firstIntegral1} can be rewritten as
657     \[
658     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
659     \]
660     Therefore, the sufficient condition for $G$ to be the \emph{first
661     integral} of a Hamiltonian system is
662     \[
663     \left\{ {G,H} \right\} = 0.
664     \]
665     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
666     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
667     0$.
668    
669 tim 2789 When designing any numerical methods, one should always try to
670 tim 2702 preserve the structural properties of the original ODE and its flow.
671    
672 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
673     A lot of well established and very effective numerical methods have
674     been successful precisely because of their symplecticities even
675     though this fact was not recognized when they were first
676 tim 2819 constructed. The most famous example is the Verlet-leapfrog methods
677     in molecular dynamics. In general, symplectic integrators can be
678 tim 2699 constructed using one of four different methods.
679     \begin{enumerate}
680     \item Generating functions
681     \item Variational methods
682     \item Runge-Kutta methods
683     \item Splitting methods
684     \end{enumerate}
685 tim 2698
686 tim 2789 Generating function\cite{Channell1990} tends to lead to methods
687     which are cumbersome and difficult to use. In dissipative systems,
688     variational methods can capture the decay of energy
689     accurately\cite{Kane2000}. Since their geometrically unstable nature
690     against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
691     methods are not suitable for Hamiltonian system. Recently, various
692     high-order explicit Runge-Kutta methods
693     \cite{Owren1992,Chen2003}have been developed to overcome this
694 tim 2703 instability. However, due to computational penalty involved in
695 tim 2819 implementing the Runge-Kutta methods, they have not attracted much
696     attention from the Molecular Dynamics community. Instead, splitting
697     methods have been widely accepted since they exploit natural
698     decompositions of the system\cite{Tuckerman1992, McLachlan1998}.
699 tim 2702
700 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
701 tim 2702
702     The main idea behind splitting methods is to decompose the discrete
703     $\varphi_h$ as a composition of simpler flows,
704 tim 2699 \begin{equation}
705     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
706     \varphi _{h_n }
707     \label{introEquation:FlowDecomposition}
708     \end{equation}
709     where each of the sub-flow is chosen such that each represent a
710 tim 2702 simpler integration of the system.
711    
712     Suppose that a Hamiltonian system takes the form,
713     \[
714     H = H_1 + H_2.
715     \]
716     Here, $H_1$ and $H_2$ may represent different physical processes of
717     the system. For instance, they may relate to kinetic and potential
718     energy respectively, which is a natural decomposition of the
719     problem. If $H_1$ and $H_2$ can be integrated using exact flows
720     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
721 tim 2819 order expression is then given by the Lie-Trotter formula
722 tim 2699 \begin{equation}
723 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
724     \label{introEquation:firstOrderSplitting}
725     \end{equation}
726     where $\varphi _h$ is the result of applying the corresponding
727     continuous $\varphi _i$ over a time $h$. By definition, as
728     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
729     must follow that each operator $\varphi_i(t)$ is a symplectic map.
730     It is easy to show that any composition of symplectic flows yields a
731     symplectic map,
732     \begin{equation}
733 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
734 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
735 tim 2699 \label{introEquation:SymplecticFlowComposition}
736     \end{equation}
737 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
738     splitting in this context automatically generates a symplectic map.
739 tim 2699
740 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
741     introduces local errors proportional to $h^2$, while Strang
742     splitting gives a second-order decomposition,
743     \begin{equation}
744     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
745 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
746 tim 2702 \end{equation}
747 tim 2819 which has a local error proportional to $h^3$. The Sprang
748     splitting's popularity in molecular simulation community attribute
749     to its symmetric property,
750 tim 2702 \begin{equation}
751     \varphi _h^{ - 1} = \varphi _{ - h}.
752 tim 2703 \label{introEquation:timeReversible}
753 tim 2844 \end{equation},appendixFig:architecture
754 tim 2702
755 tim 2819 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Example of Splitting Method}}
756 tim 2702 The classical equation for a system consisting of interacting
757     particles can be written in Hamiltonian form,
758     \[
759     H = T + V
760     \]
761     where $T$ is the kinetic energy and $V$ is the potential energy.
762     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
763     obtains the following:
764     \begin{align}
765     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
766     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
767     \label{introEquation:Lp10a} \\%
768     %
769     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
770     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
771     \label{introEquation:Lp10b}
772     \end{align}
773     where $F(t)$ is the force at time $t$. This integration scheme is
774     known as \emph{velocity verlet} which is
775     symplectic(\ref{introEquation:SymplecticFlowComposition}),
776     time-reversible(\ref{introEquation:timeReversible}) and
777     volume-preserving (\ref{introEquation:volumePreserving}). These
778     geometric properties attribute to its long-time stability and its
779     popularity in the community. However, the most commonly used
780     velocity verlet integration scheme is written as below,
781     \begin{align}
782     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
783     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
784     %
785     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
786     \label{introEquation:Lp9b}\\%
787     %
788     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
789     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
790     \end{align}
791     From the preceding splitting, one can see that the integration of
792     the equations of motion would follow:
793     \begin{enumerate}
794     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
795    
796     \item Use the half step velocities to move positions one whole step, $\Delta t$.
797    
798     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
799    
800     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
801     \end{enumerate}
802    
803     Simply switching the order of splitting and composing, a new
804     integrator, the \emph{position verlet} integrator, can be generated,
805     \begin{align}
806     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
807     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
808     \label{introEquation:positionVerlet1} \\%
809     %
810 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
811 tim 2702 q(\Delta t)} \right]. %
812 tim 2719 \label{introEquation:positionVerlet2}
813 tim 2702 \end{align}
814    
815 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
816 tim 2702
817     Baker-Campbell-Hausdorff formula can be used to determine the local
818     error of splitting method in terms of commutator of the
819     operators(\ref{introEquation:exponentialOperator}) associated with
820     the sub-flow. For operators $hX$ and $hY$ which are associate to
821 tim 2726 $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
822 tim 2702 \begin{equation}
823     \exp (hX + hY) = \exp (hZ)
824     \end{equation}
825     where
826     \begin{equation}
827     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
828     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
829     \end{equation}
830     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
831     \[
832     [X,Y] = XY - YX .
833     \]
834 tim 2789 Applying Baker-Campbell-Hausdorff formula\cite{Varadarajan1974} to
835     Sprang splitting, we can obtain
836 tim 2779 \begin{eqnarray*}
837 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
838     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
839 tim 2779 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
840     \end{eqnarray*}
841 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
842     error of Spring splitting is proportional to $h^3$. The same
843     procedure can be applied to general splitting, of the form
844     \begin{equation}
845     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
846     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
847     \end{equation}
848 tim 2795 Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
849 tim 2702 order method. Yoshida proposed an elegant way to compose higher
850 tim 2789 order methods based on symmetric splitting\cite{Yoshida1990}. Given
851     a symmetric second order base method $ \varphi _h^{(2)} $, a
852     fourth-order symmetric method can be constructed by composing,
853 tim 2702 \[
854     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
855     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
856     \]
857     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
858     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
859     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
860     \begin{equation}
861     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
862     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
863     \end{equation}
864     , if the weights are chosen as
865     \[
866     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
867     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
868     \]
869    
870 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
871    
872 tim 2720 As one of the principal tools of molecular modeling, Molecular
873     dynamics has proven to be a powerful tool for studying the functions
874     of biological systems, providing structural, thermodynamic and
875     dynamical information. The basic idea of molecular dynamics is that
876     macroscopic properties are related to microscopic behavior and
877     microscopic behavior can be calculated from the trajectories in
878     simulations. For instance, instantaneous temperature of an
879     Hamiltonian system of $N$ particle can be measured by
880     \[
881 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
882 tim 2720 \]
883     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
884     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
885     the boltzman constant.
886 tim 2694
887 tim 2720 A typical molecular dynamics run consists of three essential steps:
888     \begin{enumerate}
889     \item Initialization
890     \begin{enumerate}
891     \item Preliminary preparation
892     \item Minimization
893     \item Heating
894     \item Equilibration
895     \end{enumerate}
896     \item Production
897     \item Analysis
898     \end{enumerate}
899     These three individual steps will be covered in the following
900     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
901 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
902     will discusses issues in production run.
903     Sec.~\ref{introSection:Analysis} provides the theoretical tools for
904     trajectory analysis.
905 tim 2719
906 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
907 tim 2719
908 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
909 tim 2719
910 tim 2720 When selecting the starting structure of a molecule for molecular
911     simulation, one may retrieve its Cartesian coordinates from public
912     databases, such as RCSB Protein Data Bank \textit{etc}. Although
913     thousands of crystal structures of molecules are discovered every
914     year, many more remain unknown due to the difficulties of
915     purification and crystallization. Even for the molecule with known
916     structure, some important information is missing. For example, the
917     missing hydrogen atom which acts as donor in hydrogen bonding must
918     be added. Moreover, in order to include electrostatic interaction,
919     one may need to specify the partial charges for individual atoms.
920     Under some circumstances, we may even need to prepare the system in
921     a special setup. For instance, when studying transport phenomenon in
922     membrane system, we may prepare the lipids in bilayer structure
923     instead of placing lipids randomly in solvent, since we are not
924     interested in self-aggregation and it takes a long time to happen.
925 tim 2694
926 tim 2819 \subsubsection{\textbf{Minimization}}
927 tim 2705
928 tim 2720 It is quite possible that some of molecules in the system from
929     preliminary preparation may be overlapped with each other. This
930     close proximity leads to high potential energy which consequently
931     jeopardizes any molecular dynamics simulations. To remove these
932     steric overlaps, one typically performs energy minimization to find
933     a more reasonable conformation. Several energy minimization methods
934     have been developed to exploit the energy surface and to locate the
935     local minimum. While converging slowly near the minimum, steepest
936     descent method is extremely robust when systems are far from
937     harmonic. Thus, it is often used to refine structure from
938     crystallographic data. Relied on the gradient or hessian, advanced
939     methods like conjugate gradient and Newton-Raphson converge rapidly
940     to a local minimum, while become unstable if the energy surface is
941     far from quadratic. Another factor must be taken into account, when
942     choosing energy minimization method, is the size of the system.
943     Steepest descent and conjugate gradient can deal with models of any
944     size. Because of the limit of computation power to calculate hessian
945     matrix and insufficient storage capacity to store them, most
946     Newton-Raphson methods can not be used with very large models.
947 tim 2694
948 tim 2819 \subsubsection{\textbf{Heating}}
949 tim 2720
950     Typically, Heating is performed by assigning random velocities
951     according to a Gaussian distribution for a temperature. Beginning at
952     a lower temperature and gradually increasing the temperature by
953     assigning greater random velocities, we end up with setting the
954     temperature of the system to a final temperature at which the
955     simulation will be conducted. In heating phase, we should also keep
956     the system from drifting or rotating as a whole. Equivalently, the
957     net linear momentum and angular momentum of the system should be
958     shifted to zero.
959    
960 tim 2819 \subsubsection{\textbf{Equilibration}}
961 tim 2720
962     The purpose of equilibration is to allow the system to evolve
963     spontaneously for a period of time and reach equilibrium. The
964     procedure is continued until various statistical properties, such as
965     temperature, pressure, energy, volume and other structural
966     properties \textit{etc}, become independent of time. Strictly
967     speaking, minimization and heating are not necessary, provided the
968     equilibration process is long enough. However, these steps can serve
969     as a means to arrive at an equilibrated structure in an effective
970     way.
971    
972     \subsection{\label{introSection:production}Production}
973    
974 tim 2789 Production run is the most important step of the simulation, in
975 tim 2725 which the equilibrated structure is used as a starting point and the
976     motions of the molecules are collected for later analysis. In order
977     to capture the macroscopic properties of the system, the molecular
978     dynamics simulation must be performed in correct and efficient way.
979 tim 2720
980 tim 2725 The most expensive part of a molecular dynamics simulation is the
981     calculation of non-bonded forces, such as van der Waals force and
982     Coulombic forces \textit{etc}. For a system of $N$ particles, the
983     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
984     which making large simulations prohibitive in the absence of any
985     computation saving techniques.
986 tim 2720
987 tim 2725 A natural approach to avoid system size issue is to represent the
988     bulk behavior by a finite number of the particles. However, this
989     approach will suffer from the surface effect. To offset this,
990 tim 2789 \textit{Periodic boundary condition} (see Fig.~\ref{introFig:pbc})
991     is developed to simulate bulk properties with a relatively small
992     number of particles. In this method, the simulation box is
993     replicated throughout space to form an infinite lattice. During the
994     simulation, when a particle moves in the primary cell, its image in
995     other cells move in exactly the same direction with exactly the same
996     orientation. Thus, as a particle leaves the primary cell, one of its
997     images will enter through the opposite face.
998     \begin{figure}
999     \centering
1000     \includegraphics[width=\linewidth]{pbc.eps}
1001     \caption[An illustration of periodic boundary conditions]{A 2-D
1002     illustration of periodic boundary conditions. As one particle leaves
1003     the left of the simulation box, an image of it enters the right.}
1004     \label{introFig:pbc}
1005     \end{figure}
1006 tim 2725
1007     %cutoff and minimum image convention
1008     Another important technique to improve the efficiency of force
1009     evaluation is to apply cutoff where particles farther than a
1010     predetermined distance, are not included in the calculation
1011     \cite{Frenkel1996}. The use of a cutoff radius will cause a
1012 tim 2730 discontinuity in the potential energy curve. Fortunately, one can
1013     shift the potential to ensure the potential curve go smoothly to
1014     zero at the cutoff radius. Cutoff strategy works pretty well for
1015     Lennard-Jones interaction because of its short range nature.
1016     However, simply truncating the electrostatic interaction with the
1017     use of cutoff has been shown to lead to severe artifacts in
1018     simulations. Ewald summation, in which the slowly conditionally
1019     convergent Coulomb potential is transformed into direct and
1020     reciprocal sums with rapid and absolute convergence, has proved to
1021     minimize the periodicity artifacts in liquid simulations. Taking the
1022     advantages of the fast Fourier transform (FFT) for calculating
1023 tim 2789 discrete Fourier transforms, the particle mesh-based
1024     methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1025     $O(N^{3/2})$ to $O(N logN)$. An alternative approach is \emph{fast
1026     multipole method}\cite{Greengard1987, Greengard1994}, which treats
1027     Coulombic interaction exactly at short range, and approximate the
1028     potential at long range through multipolar expansion. In spite of
1029     their wide acceptances at the molecular simulation community, these
1030     two methods are hard to be implemented correctly and efficiently.
1031     Instead, we use a damped and charge-neutralized Coulomb potential
1032     method developed by Wolf and his coworkers\cite{Wolf1999}. The
1033     shifted Coulomb potential for particle $i$ and particle $j$ at
1034     distance $r_{rj}$ is given by:
1035 tim 2725 \begin{equation}
1036     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1037     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1038     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1039     r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1040     \end{equation}
1041     where $\alpha$ is the convergence parameter. Due to the lack of
1042     inherent periodicity and rapid convergence,this method is extremely
1043     efficient and easy to implement.
1044 tim 2789 \begin{figure}
1045     \centering
1046     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1047     \caption[An illustration of shifted Coulomb potential]{An
1048     illustration of shifted Coulomb potential.}
1049     \label{introFigure:shiftedCoulomb}
1050     \end{figure}
1051 tim 2725
1052     %multiple time step
1053    
1054 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
1055    
1056 tim 2721 Recently, advanced visualization technique are widely applied to
1057     monitor the motions of molecules. Although the dynamics of the
1058     system can be described qualitatively from animation, quantitative
1059     trajectory analysis are more appreciable. According to the
1060     principles of Statistical Mechanics,
1061     Sec.~\ref{introSection:statisticalMechanics}, one can compute
1062     thermodynamics properties, analyze fluctuations of structural
1063     parameters, and investigate time-dependent processes of the molecule
1064     from the trajectories.
1065    
1066 tim 2819 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamics Properties}}
1067 tim 2721
1068 tim 2725 Thermodynamics properties, which can be expressed in terms of some
1069     function of the coordinates and momenta of all particles in the
1070     system, can be directly computed from molecular dynamics. The usual
1071     way to measure the pressure is based on virial theorem of Clausius
1072     which states that the virial is equal to $-3Nk_BT$. For a system
1073     with forces between particles, the total virial, $W$, contains the
1074     contribution from external pressure and interaction between the
1075     particles:
1076     \[
1077     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1078     f_{ij} } } \right\rangle
1079     \]
1080     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1081     distance $r_{ij}$. Thus, the expression for the pressure is given
1082     by:
1083     \begin{equation}
1084     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1085     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1086     \end{equation}
1087    
1088 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1089 tim 2721
1090     Structural Properties of a simple fluid can be described by a set of
1091     distribution functions. Among these functions,\emph{pair
1092     distribution function}, also known as \emph{radial distribution
1093 tim 2725 function}, is of most fundamental importance to liquid-state theory.
1094     Pair distribution function can be gathered by Fourier transforming
1095     raw data from a series of neutron diffraction experiments and
1096 tim 2786 integrating over the surface factor \cite{Powles1973}. The
1097     experiment result can serve as a criterion to justify the
1098     correctness of the theory. Moreover, various equilibrium
1099     thermodynamic and structural properties can also be expressed in
1100     terms of radial distribution function \cite{Allen1987}.
1101 tim 2721
1102     A pair distribution functions $g(r)$ gives the probability that a
1103     particle $i$ will be located at a distance $r$ from a another
1104     particle $j$ in the system
1105     \[
1106     g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1107     \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1108     \]
1109     Note that the delta function can be replaced by a histogram in
1110     computer simulation. Figure
1111     \ref{introFigure:pairDistributionFunction} shows a typical pair
1112     distribution function for the liquid argon system. The occurrence of
1113     several peaks in the plot of $g(r)$ suggests that it is more likely
1114     to find particles at certain radial values than at others. This is a
1115     result of the attractive interaction at such distances. Because of
1116     the strong repulsive forces at short distance, the probability of
1117     locating particles at distances less than about 2.5{\AA} from each
1118     other is essentially zero.
1119    
1120     %\begin{figure}
1121     %\centering
1122     %\includegraphics[width=\linewidth]{pdf.eps}
1123     %\caption[Pair distribution function for the liquid argon
1124     %]{Pair distribution function for the liquid argon}
1125     %\label{introFigure:pairDistributionFunction}
1126     %\end{figure}
1127    
1128 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1129     Properties}}
1130 tim 2721
1131     Time-dependent properties are usually calculated using \emph{time
1132     correlation function}, which correlates random variables $A$ and $B$
1133     at two different time
1134     \begin{equation}
1135     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1136     \label{introEquation:timeCorrelationFunction}
1137     \end{equation}
1138     If $A$ and $B$ refer to same variable, this kind of correlation
1139     function is called \emph{auto correlation function}. One example of
1140     auto correlation function is velocity auto-correlation function
1141     which is directly related to transport properties of molecular
1142 tim 2725 liquids:
1143     \[
1144     D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1145     \right\rangle } dt
1146     \]
1147     where $D$ is diffusion constant. Unlike velocity autocorrelation
1148     function which is averaging over time origins and over all the
1149     atoms, dipole autocorrelation are calculated for the entire system.
1150     The dipole autocorrelation function is given by:
1151     \[
1152     c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1153     \right\rangle
1154     \]
1155     Here $u_{tot}$ is the net dipole of the entire system and is given
1156     by
1157     \[
1158     u_{tot} (t) = \sum\limits_i {u_i (t)}
1159     \]
1160     In principle, many time correlation functions can be related with
1161     Fourier transforms of the infrared, Raman, and inelastic neutron
1162     scattering spectra of molecular liquids. In practice, one can
1163     extract the IR spectrum from the intensity of dipole fluctuation at
1164     each frequency using the following relationship:
1165     \[
1166     \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1167     i2\pi vt} dt}
1168     \]
1169 tim 2721
1170 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1171 tim 2692
1172 tim 2705 Rigid bodies are frequently involved in the modeling of different
1173     areas, from engineering, physics, to chemistry. For example,
1174     missiles and vehicle are usually modeled by rigid bodies. The
1175     movement of the objects in 3D gaming engine or other physics
1176     simulator is governed by the rigid body dynamics. In molecular
1177     simulation, rigid body is used to simplify the model in
1178 tim 2789 protein-protein docking study\cite{Gray2003}.
1179 tim 2694
1180 tim 2705 It is very important to develop stable and efficient methods to
1181     integrate the equations of motion of orientational degrees of
1182     freedom. Euler angles are the nature choice to describe the
1183     rotational degrees of freedom. However, due to its singularity, the
1184     numerical integration of corresponding equations of motion is very
1185     inefficient and inaccurate. Although an alternative integrator using
1186 tim 2789 different sets of Euler angles can overcome this
1187     difficulty\cite{Barojas1973}, the computational penalty and the lost
1188     of angular momentum conservation still remain. A singularity free
1189     representation utilizing quaternions was developed by Evans in
1190     1977\cite{Evans1977}. Unfortunately, this approach suffer from the
1191     nonseparable Hamiltonian resulted from quaternion representation,
1192     which prevents the symplectic algorithm to be utilized. Another
1193     different approach is to apply holonomic constraints to the atoms
1194     belonging to the rigid body. Each atom moves independently under the
1195     normal forces deriving from potential energy and constraint forces
1196     which are used to guarantee the rigidness. However, due to their
1197     iterative nature, SHAKE and Rattle algorithm converge very slowly
1198     when the number of constraint increases\cite{Ryckaert1977,
1199     Andersen1983}.
1200 tim 2694
1201 tim 2705 The break through in geometric literature suggests that, in order to
1202     develop a long-term integration scheme, one should preserve the
1203     symplectic structure of the flow. Introducing conjugate momentum to
1204 tim 2719 rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1205 tim 2789 symplectic integrator, RSHAKE\cite{Kol1997}, was proposed to evolve
1206     the Hamiltonian system in a constraint manifold by iteratively
1207 tim 2719 satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1208 tim 2789 method using quaternion representation was developed by
1209     Omelyan\cite{Omelyan1998}. However, both of these methods are
1210     iterative and inefficient. In this section, we will present a
1211     symplectic Lie-Poisson integrator for rigid body developed by
1212     Dullweber and his coworkers\cite{Dullweber1997} in depth.
1213 tim 2705
1214 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1215 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
1216     function
1217 tim 2706 \begin{equation}
1218     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1219     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1220     \label{introEquation:RBHamiltonian}
1221     \end{equation}
1222     Here, $q$ and $Q$ are the position and rotation matrix for the
1223     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1224     $J$, a diagonal matrix, is defined by
1225     \[
1226     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1227     \]
1228     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1229     constrained Hamiltonian equation subjects to a holonomic constraint,
1230     \begin{equation}
1231 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1232 tim 2706 \end{equation}
1233     which is used to ensure rotation matrix's orthogonality.
1234     Differentiating \ref{introEquation:orthogonalConstraint} and using
1235     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1236     \begin{equation}
1237 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1238 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1239     \end{equation}
1240    
1241     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1242     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1243     the equations of motion,
1244    
1245 tim 2796 \begin{eqnarray}
1246     \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1247     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1248     \frac{{dQ}}{{dt}} & = & PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1249     \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1250     \end{eqnarray}
1251    
1252 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1253     We can use constraint force provided by lagrange multiplier on the
1254     normal manifold to keep the motion on constraint space. Or we can
1255 tim 2776 simply evolve the system in constraint manifold. These two methods
1256     are proved to be equivalent. The holonomic constraint and equations
1257     of motions define a constraint manifold for rigid body
1258 tim 2707 \[
1259     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1260     \right\}.
1261     \]
1262 tim 2706
1263 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1264     $T_{\star}SO(3)$. However, it turns out that under symplectic
1265     transformation, the cotangent space and the phase space are
1266     diffeomorphic. Introducing
1267 tim 2706 \[
1268 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1269 tim 2706 \]
1270 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1271     can be re-formulated as a Hamiltonian system on the cotangent space
1272     \[
1273     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1274     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1275     \]
1276 tim 2706
1277 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1278     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1279     given as
1280     \begin{equation}
1281     X_i^{lab} = Q X_i + q.
1282     \end{equation}
1283     Therefore, potential energy $V(q,Q)$ is defined by
1284     \[
1285     V(q,Q) = V(Q X_0 + q).
1286     \]
1287 tim 2713 Hence, the force and torque are given by
1288 tim 2707 \[
1289 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1290 tim 2707 \]
1291 tim 2713 and
1292 tim 2707 \[
1293     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1294     \]
1295 tim 2713 respectively.
1296 tim 2695
1297 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1298     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1299     rewrite the equations of motion,
1300     \begin{equation}
1301     \begin{array}{l}
1302     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1303     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1304     \end{array}
1305     \label{introEqaution:RBMotionPI}
1306     \end{equation}
1307     , as well as holonomic constraints,
1308     \[
1309     \begin{array}{l}
1310     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1311     Q^T Q = 1 \\
1312     \end{array}
1313     \]
1314 tim 2692
1315 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1316     so(3)^ \star$, the hat-map isomorphism,
1317     \begin{equation}
1318     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1319     {\begin{array}{*{20}c}
1320     0 & { - v_3 } & {v_2 } \\
1321     {v_3 } & 0 & { - v_1 } \\
1322     { - v_2 } & {v_1 } & 0 \\
1323     \end{array}} \right),
1324     \label{introEquation:hatmapIsomorphism}
1325     \end{equation}
1326     will let us associate the matrix products with traditional vector
1327     operations
1328     \[
1329     \hat vu = v \times u
1330     \]
1331     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1332     matrix,
1333     \begin{equation}
1334 tim 2797 (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ {\bullet ^T}
1335 tim 2707 ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1336     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1337     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1338     \end{equation}
1339     Since $\Lambda$ is symmetric, the last term of Equation
1340 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1341     multiplier $\Lambda$ is absent from the equations of motion. This
1342     unique property eliminate the requirement of iterations which can
1343 tim 2789 not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1344 tim 2707
1345 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1346     angular momentum on body frame
1347     \begin{equation}
1348     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1349     F_i (r,Q)} \right) \times X_i }.
1350     \label{introEquation:bodyAngularMotion}
1351     \end{equation}
1352 tim 2707 In the same manner, the equation of motion for rotation matrix is
1353     given by
1354     \[
1355 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1356 tim 2707 \]
1357    
1358 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1359     Lie-Poisson Integrator for Free Rigid Body}
1360 tim 2707
1361 tim 2713 If there is not external forces exerted on the rigid body, the only
1362     contribution to the rotational is from the kinetic potential (the
1363 tim 2801 first term of \ref{introEquation:bodyAngularMotion}). The free rigid
1364     body is an example of Lie-Poisson system with Hamiltonian function
1365 tim 2713 \begin{equation}
1366     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1367     \label{introEquation:rotationalKineticRB}
1368     \end{equation}
1369     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1370     Lie-Poisson structure matrix,
1371     \begin{equation}
1372     J(\pi ) = \left( {\begin{array}{*{20}c}
1373     0 & {\pi _3 } & { - \pi _2 } \\
1374     { - \pi _3 } & 0 & {\pi _1 } \\
1375     {\pi _2 } & { - \pi _1 } & 0 \\
1376     \end{array}} \right)
1377     \end{equation}
1378     Thus, the dynamics of free rigid body is governed by
1379     \begin{equation}
1380     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1381     \end{equation}
1382 tim 2707
1383 tim 2713 One may notice that each $T_i^r$ in Equation
1384     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1385     instance, the equations of motion due to $T_1^r$ are given by
1386     \begin{equation}
1387     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1388     \label{introEqaution:RBMotionSingleTerm}
1389     \end{equation}
1390     where
1391     \[ R_1 = \left( {\begin{array}{*{20}c}
1392     0 & 0 & 0 \\
1393     0 & 0 & {\pi _1 } \\
1394     0 & { - \pi _1 } & 0 \\
1395     \end{array}} \right).
1396     \]
1397     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1398 tim 2707 \[
1399 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1400     Q(0)e^{\Delta tR_1 }
1401 tim 2707 \]
1402 tim 2713 with
1403 tim 2707 \[
1404 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1405     0 & 0 & 0 \\
1406     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1407     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1408     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1409 tim 2707 \]
1410 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1411     tR_1 }$, we can use Cayley transformation,
1412 tim 2713 \[
1413     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1414     )
1415     \]
1416 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1417 tim 2713 manner.
1418    
1419     In order to construct a second-order symplectic method, we split the
1420     angular kinetic Hamiltonian function can into five terms
1421 tim 2707 \[
1422 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1423     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1424     (\pi _1 )
1425     \].
1426     Concatenating flows corresponding to these five terms, we can obtain
1427     an symplectic integrator,
1428     \[
1429     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1430 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1431     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1432 tim 2713 _1 }.
1433 tim 2707 \]
1434    
1435 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1436     $F(\pi )$ and $G(\pi )$ is defined by
1437 tim 2707 \[
1438 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1439     )
1440     \]
1441     If the Poisson bracket of a function $F$ with an arbitrary smooth
1442     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1443     conserved quantity in Poisson system. We can easily verify that the
1444     norm of the angular momentum, $\parallel \pi
1445     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1446     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1447     then by the chain rule
1448     \[
1449     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1450     }}{2})\pi
1451     \]
1452     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1453     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1454     Lie-Poisson integrator is found to be extremely efficient and stable
1455     which can be explained by the fact the small angle approximation is
1456     used and the norm of the angular momentum is conserved.
1457    
1458     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1459     Splitting for Rigid Body}
1460    
1461     The Hamiltonian of rigid body can be separated in terms of kinetic
1462     energy and potential energy,
1463     \[
1464     H = T(p,\pi ) + V(q,Q)
1465     \]
1466     The equations of motion corresponding to potential energy and
1467     kinetic energy are listed in the below table,
1468 tim 2776 \begin{table}
1469     \caption{Equations of motion due to Potential and Kinetic Energies}
1470 tim 2713 \begin{center}
1471     \begin{tabular}{|l|l|}
1472     \hline
1473     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1474     Potential & Kinetic \\
1475     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1476     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1477     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1478     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1479     \hline
1480     \end{tabular}
1481     \end{center}
1482 tim 2776 \end{table}
1483     A second-order symplectic method is now obtained by the
1484     composition of the flow maps,
1485 tim 2713 \[
1486     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1487     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1488     \]
1489 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1490     sub-flows which corresponding to force and torque respectively,
1491 tim 2713 \[
1492 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1493 tim 2713 _{\Delta t/2,\tau }.
1494 tim 2707 \]
1495 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1496     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1497 tim 2719 order inside $\varphi _{\Delta t/2,V}$ does not matter.
1498 tim 2707
1499 tim 2713 Furthermore, kinetic potential can be separated to translational
1500     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1501     \begin{equation}
1502     T(p,\pi ) =T^t (p) + T^r (\pi ).
1503     \end{equation}
1504     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1505     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1506     corresponding flow maps are given by
1507     \[
1508     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1509     _{\Delta t,T^r }.
1510     \]
1511     Finally, we obtain the overall symplectic flow maps for free moving
1512     rigid body
1513     \begin{equation}
1514     \begin{array}{c}
1515     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1516     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1517     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1518     \end{array}
1519     \label{introEquation:overallRBFlowMaps}
1520     \end{equation}
1521 tim 2707
1522 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1523 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1524     mimics a simple heat bath with stochastic and dissipative forces,
1525     has been applied in a variety of studies. This section will review
1526     the theory of Langevin dynamics simulation. A brief derivation of
1527 tim 2719 generalized Langevin equation will be given first. Follow that, we
1528 tim 2716 will discuss the physical meaning of the terms appearing in the
1529     equation as well as the calculation of friction tensor from
1530     hydrodynamics theory.
1531 tim 2685
1532 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1533 tim 2685
1534 tim 2719 Harmonic bath model, in which an effective set of harmonic
1535     oscillators are used to mimic the effect of a linearly responding
1536     environment, has been widely used in quantum chemistry and
1537     statistical mechanics. One of the successful applications of
1538     Harmonic bath model is the derivation of Deriving Generalized
1539     Langevin Dynamics. Lets consider a system, in which the degree of
1540     freedom $x$ is assumed to couple to the bath linearly, giving a
1541     Hamiltonian of the form
1542 tim 2696 \begin{equation}
1543     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1544 tim 2719 \label{introEquation:bathGLE}.
1545 tim 2696 \end{equation}
1546 tim 2719 Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1547     with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1548 tim 2696 \[
1549 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1550     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1551     \right\}}
1552 tim 2696 \]
1553 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1554     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1555     the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1556     coupling,
1557 tim 2696 \[
1558     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1559     \]
1560 tim 2719 where $g_\alpha$ are the coupling constants between the bath and the
1561     coordinate $x$. Introducing
1562 tim 2696 \[
1563 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1564     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1565     \] and combining the last two terms in Equation
1566     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1567     Hamiltonian as
1568 tim 2696 \[
1569     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1570     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1571     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1572     w_\alpha ^2 }}x} \right)^2 } \right\}}
1573     \]
1574     Since the first two terms of the new Hamiltonian depend only on the
1575     system coordinates, we can get the equations of motion for
1576     Generalized Langevin Dynamics by Hamilton's equations
1577     \ref{introEquation:motionHamiltonianCoordinate,
1578     introEquation:motionHamiltonianMomentum},
1579 tim 2719 \begin{equation}
1580     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1581     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1582     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1583     \label{introEquation:coorMotionGLE}
1584     \end{equation}
1585     and
1586     \begin{equation}
1587     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1588     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1589     \label{introEquation:bathMotionGLE}
1590     \end{equation}
1591 tim 2696
1592 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1593     variables $x_\alpha$ must be solved exactly first. As an integral
1594     transform which is particularly useful in solving linear ordinary
1595     differential equations, Laplace transform is the appropriate tool to
1596     solve this problem. The basic idea is to transform the difficult
1597     differential equations into simple algebra problems which can be
1598     solved easily. Then applying inverse Laplace transform, also known
1599     as the Bromwich integral, we can retrieve the solutions of the
1600     original problems.
1601 tim 2696
1602 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1603     transform of f(t) is a new function defined as
1604 tim 2696 \[
1605 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1606 tim 2696 \]
1607 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1608     Operator. Below are some important properties of Laplace transform
1609 tim 2696
1610 tim 2789 \begin{eqnarray*}
1611     L(x + y) & = & L(x) + L(y) \\
1612     L(ax) & = & aL(x) \\
1613     L(\dot x) & = & pL(x) - px(0) \\
1614     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1615     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1616     \end{eqnarray*}
1617    
1618    
1619 tim 2719 Applying Laplace transform to the bath coordinates, we obtain
1620 tim 2789 \begin{eqnarray*}
1621     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1622     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1623     \end{eqnarray*}
1624    
1625 tim 2719 By the same way, the system coordinates become
1626 tim 2789 \begin{eqnarray*}
1627     mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1628     & & \mbox{} - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1629     \end{eqnarray*}
1630 tim 2696
1631 tim 2719 With the help of some relatively important inverse Laplace
1632     transformations:
1633 tim 2696 \[
1634 tim 2719 \begin{array}{c}
1635     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1636     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1637     L(1) = \frac{1}{p} \\
1638     \end{array}
1639 tim 2696 \]
1640 tim 2719 , we obtain
1641 tim 2794 \begin{eqnarray*}
1642     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1643 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1644     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1645 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1646     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1647     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1648     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1649     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1650     \end{eqnarray*}
1651     \begin{eqnarray*}
1652     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1653 tim 2696 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1654     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1655 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1656     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1657     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1658     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1659     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1660     \end{eqnarray*}
1661 tim 2719 Introducing a \emph{dynamic friction kernel}
1662 tim 2696 \begin{equation}
1663 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1664     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1665     \label{introEquation:dynamicFrictionKernelDefinition}
1666     \end{equation}
1667     and \emph{a random force}
1668     \begin{equation}
1669     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1670     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1671     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1672     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1673     \label{introEquation:randomForceDefinition}
1674     \end{equation}
1675     the equation of motion can be rewritten as
1676     \begin{equation}
1677 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1678     (t)\dot x(t - \tau )d\tau } + R(t)
1679     \label{introEuqation:GeneralizedLangevinDynamics}
1680     \end{equation}
1681 tim 2719 which is known as the \emph{generalized Langevin equation}.
1682    
1683 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1684 tim 2719
1685     One may notice that $R(t)$ depends only on initial conditions, which
1686     implies it is completely deterministic within the context of a
1687     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1688     uncorrelated to $x$ and $\dot x$,
1689 tim 2696 \[
1690 tim 2719 \begin{array}{l}
1691     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1692     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1693     \end{array}
1694 tim 2696 \]
1695 tim 2719 This property is what we expect from a truly random process. As long
1696     as the model, which is gaussian distribution in general, chosen for
1697     $R(t)$ is a truly random process, the stochastic nature of the GLE
1698     still remains.
1699 tim 2696
1700 tim 2719 %dynamic friction kernel
1701     The convolution integral
1702 tim 2696 \[
1703 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1704 tim 2696 \]
1705 tim 2719 depends on the entire history of the evolution of $x$, which implies
1706     that the bath retains memory of previous motions. In other words,
1707     the bath requires a finite time to respond to change in the motion
1708     of the system. For a sluggish bath which responds slowly to changes
1709     in the system coordinate, we may regard $\xi(t)$ as a constant
1710     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1711     \[
1712     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1713     \]
1714     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1715     \[
1716     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1717     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1718     \]
1719     which can be used to describe dynamic caging effect. The other
1720     extreme is the bath that responds infinitely quickly to motions in
1721     the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1722     time:
1723     \[
1724     \xi (t) = 2\xi _0 \delta (t)
1725     \]
1726     Hence, the convolution integral becomes
1727     \[
1728     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1729     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1730     \]
1731     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1732     \begin{equation}
1733     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1734     x(t) + R(t) \label{introEquation:LangevinEquation}
1735     \end{equation}
1736     which is known as the Langevin equation. The static friction
1737     coefficient $\xi _0$ can either be calculated from spectral density
1738     or be determined by Stokes' law for regular shaped particles.A
1739     briefly review on calculating friction tensor for arbitrary shaped
1740 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1741 tim 2696
1742 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1743 tim 2719
1744     Defining a new set of coordinates,
1745 tim 2696 \[
1746     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1747     ^2 }}x(0)
1748 tim 2719 \],
1749     we can rewrite $R(T)$ as
1750 tim 2696 \[
1751 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1752 tim 2696 \]
1753     And since the $q$ coordinates are harmonic oscillators,
1754 tim 2789
1755     \begin{eqnarray*}
1756     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1757     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1758     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1759     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1760     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1761     & = &kT\xi (t) \\
1762     \end{eqnarray*}
1763    
1764 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1765 tim 2696 \begin{equation}
1766     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1767 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1768 tim 2696 \end{equation}
1769 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1770     can model the random force and friction kernel.
1771 tim 2696
1772     \subsection{\label{introSection:frictionTensor} Friction Tensor}
1773 tim 2716 Theoretically, the friction kernel can be determined using velocity
1774     autocorrelation function. However, this approach become impractical
1775     when the system become more and more complicate. Instead, various
1776     approaches based on hydrodynamics have been developed to calculate
1777     the friction coefficients. The friction effect is isotropic in
1778 tim 2776 Equation, $\zeta$ can be taken as a scalar. In general, friction
1779     tensor $\Xi$ is a $6\times 6$ matrix given by
1780 tim 2716 \[
1781     \Xi = \left( {\begin{array}{*{20}c}
1782     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1783     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1784     \end{array}} \right).
1785     \]
1786     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1787 tim 2718 tensor and rotational resistance (friction) tensor respectively,
1788     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1789     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1790     particle moves in a fluid, it may experience friction force or
1791     torque along the opposite direction of the velocity or angular
1792     velocity,
1793 tim 2716 \[
1794     \left( \begin{array}{l}
1795 tim 2718 F_R \\
1796     \tau _R \\
1797 tim 2716 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1798     {\Xi ^{tt} } & {\Xi ^{rt} } \\
1799     {\Xi ^{tr} } & {\Xi ^{rr} } \\
1800     \end{array}} \right)\left( \begin{array}{l}
1801     v \\
1802     w \\
1803     \end{array} \right)
1804     \]
1805 tim 2718 where $F_r$ is the friction force and $\tau _R$ is the friction
1806     toque.
1807 tim 2696
1808 tim 2819 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shape}}
1809 tim 2718
1810 tim 2716 For a spherical particle, the translational and rotational friction
1811     constant can be calculated from Stoke's law,
1812     \[
1813     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1814     {6\pi \eta R} & 0 & 0 \\
1815     0 & {6\pi \eta R} & 0 \\
1816     0 & 0 & {6\pi \eta R} \\
1817     \end{array}} \right)
1818     \]
1819     and
1820     \[
1821     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1822     {8\pi \eta R^3 } & 0 & 0 \\
1823     0 & {8\pi \eta R^3 } & 0 \\
1824     0 & 0 & {8\pi \eta R^3 } \\
1825     \end{array}} \right)
1826     \]
1827     where $\eta$ is the viscosity of the solvent and $R$ is the
1828     hydrodynamics radius.
1829 tim 2706
1830 tim 2718 Other non-spherical shape, such as cylinder and ellipsoid
1831     \textit{etc}, are widely used as reference for developing new
1832     hydrodynamics theory, because their properties can be calculated
1833     exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1834     also called a triaxial ellipsoid, which is given in Cartesian
1835 tim 2789 coordinates by\cite{Perrin1934, Perrin1936}
1836 tim 2716 \[
1837 tim 2718 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1838     }} = 1
1839     \]
1840     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1841     due to the complexity of the elliptic integral, only the ellipsoid
1842     with the restriction of two axes having to be equal, \textit{i.e.}
1843     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1844     exactly. Introducing an elliptic integral parameter $S$ for prolate,
1845     \[
1846 tim 2716 S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1847 tim 2718 } }}{b},
1848 tim 2716 \]
1849 tim 2718 and oblate,
1850 tim 2716 \[
1851     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1852     }}{a}
1853 tim 2718 \],
1854     one can write down the translational and rotational resistance
1855     tensors
1856 tim 2716 \[
1857     \begin{array}{l}
1858     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1859     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1860 tim 2718 \end{array},
1861 tim 2716 \]
1862 tim 2718 and
1863 tim 2716 \[
1864     \begin{array}{l}
1865     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1866     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1867 tim 2718 \end{array}.
1868 tim 2716 \]
1869    
1870 tim 2819 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shape}}
1871 tim 2716
1872     Unlike spherical and other regular shaped molecules, there is not
1873     analytical solution for friction tensor of any arbitrary shaped
1874     rigid molecules. The ellipsoid of revolution model and general
1875     triaxial ellipsoid model have been used to approximate the
1876     hydrodynamic properties of rigid bodies. However, since the mapping
1877     from all possible ellipsoidal space, $r$-space, to all possible
1878     combination of rotational diffusion coefficients, $D$-space is not
1879 tim 2786 unique\cite{Wegener1979} as well as the intrinsic coupling between
1880 tim 2789 translational and rotational motion of rigid body, general ellipsoid
1881     is not always suitable for modeling arbitrarily shaped rigid
1882     molecule. A number of studies have been devoted to determine the
1883     friction tensor for irregularly shaped rigid bodies using more
1884     advanced method where the molecule of interest was modeled by
1885     combinations of spheres(beads)\cite{Carrasco1999} and the
1886     hydrodynamics properties of the molecule can be calculated using the
1887     hydrodynamic interaction tensor. Let us consider a rigid assembly of
1888     $N$ beads immersed in a continuous medium. Due to hydrodynamics
1889     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
1890     than its unperturbed velocity $v_i$,
1891 tim 2716 \[
1892     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1893     \]
1894     where $F_i$ is the frictional force, and $T_{ij}$ is the
1895     hydrodynamic interaction tensor. The friction force of $i$th bead is
1896     proportional to its ``net'' velocity
1897     \begin{equation}
1898     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1899     \label{introEquation:tensorExpression}
1900     \end{equation}
1901     This equation is the basis for deriving the hydrodynamic tensor. In
1902     1930, Oseen and Burgers gave a simple solution to Equation
1903     \ref{introEquation:tensorExpression}
1904     \begin{equation}
1905     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1906     R_{ij}^T }}{{R_{ij}^2 }}} \right).
1907     \label{introEquation:oseenTensor}
1908     \end{equation}
1909     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1910     A second order expression for element of different size was
1911 tim 2789 introduced by Rotne and Prager\cite{Rotne1969} and improved by
1912     Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
1913 tim 2716 \begin{equation}
1914     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1915     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1916     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1917     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1918     \label{introEquation:RPTensorNonOverlapped}
1919     \end{equation}
1920     Both of the Equation \ref{introEquation:oseenTensor} and Equation
1921     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1922     \ge \sigma _i + \sigma _j$. An alternative expression for
1923     overlapping beads with the same radius, $\sigma$, is given by
1924     \begin{equation}
1925     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1926     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1927     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1928     \label{introEquation:RPTensorOverlapped}
1929     \end{equation}
1930    
1931 tim 2718 To calculate the resistance tensor at an arbitrary origin $O$, we
1932     construct a $3N \times 3N$ matrix consisting of $N \times N$
1933     $B_{ij}$ blocks
1934     \begin{equation}
1935 tim 2716 B = \left( {\begin{array}{*{20}c}
1936 tim 2718 {B_{11} } & \ldots & {B_{1N} } \\
1937 tim 2716 \vdots & \ddots & \vdots \\
1938 tim 2718 {B_{N1} } & \cdots & {B_{NN} } \\
1939     \end{array}} \right),
1940     \end{equation}
1941     where $B_{ij}$ is given by
1942     \[
1943     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1944     )T_{ij}
1945 tim 2716 \]
1946 tim 2719 where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1947 tim 2718 $B$, we obtain
1948 tim 2716
1949     \[
1950     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1951     {C_{11} } & \ldots & {C_{1N} } \\
1952     \vdots & \ddots & \vdots \\
1953     {C_{N1} } & \cdots & {C_{NN} } \\
1954     \end{array}} \right)
1955     \]
1956 tim 2718 , which can be partitioned into $N \times N$ $3 \times 3$ block
1957     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1958     \[
1959     U_i = \left( {\begin{array}{*{20}c}
1960     0 & { - z_i } & {y_i } \\
1961     {z_i } & 0 & { - x_i } \\
1962     { - y_i } & {x_i } & 0 \\
1963     \end{array}} \right)
1964     \]
1965     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1966     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1967     arbitrary origin $O$ can be written as
1968 tim 2716 \begin{equation}
1969     \begin{array}{l}
1970     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1971     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1972     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1973     \end{array}
1974 tim 2718 \label{introEquation:ResistanceTensorArbitraryOrigin}
1975 tim 2716 \end{equation}
1976 tim 2718
1977     The resistance tensor depends on the origin to which they refer. The
1978     proper location for applying friction force is the center of
1979     resistance (reaction), at which the trace of rotational resistance
1980     tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1981     resistance is defined as an unique point of the rigid body at which
1982     the translation-rotation coupling tensor are symmetric,
1983     \begin{equation}
1984     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
1985     \label{introEquation:definitionCR}
1986     \end{equation}
1987     Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1988     we can easily find out that the translational resistance tensor is
1989     origin independent, while the rotational resistance tensor and
1990 tim 2719 translation-rotation coupling resistance tensor depend on the
1991 tim 2718 origin. Given resistance tensor at an arbitrary origin $O$, and a
1992     vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1993     obtain the resistance tensor at $P$ by
1994     \begin{equation}
1995     \begin{array}{l}
1996     \Xi _P^{tt} = \Xi _O^{tt} \\
1997     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
1998 tim 2797 \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
1999 tim 2718 \end{array}
2000     \label{introEquation:resistanceTensorTransformation}
2001     \end{equation}
2002 tim 2716 where
2003     \[
2004 tim 2718 U_{OP} = \left( {\begin{array}{*{20}c}
2005     0 & { - z_{OP} } & {y_{OP} } \\
2006     {z_i } & 0 & { - x_{OP} } \\
2007     { - y_{OP} } & {x_{OP} } & 0 \\
2008 tim 2716 \end{array}} \right)
2009     \]
2010 tim 2718 Using Equations \ref{introEquation:definitionCR} and
2011     \ref{introEquation:resistanceTensorTransformation}, one can locate
2012     the position of center of resistance,
2013 tim 2789 \begin{eqnarray*}
2014     \left( \begin{array}{l}
2015     x_{OR} \\
2016     y_{OR} \\
2017     z_{OR} \\
2018     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
2019     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
2020     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
2021     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
2022     \end{array}} \right)^{ - 1} \\
2023     & & \left( \begin{array}{l}
2024     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
2025     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
2026     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
2027     \end{array} \right) \\
2028     \end{eqnarray*}
2029    
2030    
2031    
2032 tim 2718 where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2033     joining center of resistance $R$ and origin $O$.