ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2850
Committed: Sun Jun 11 01:55:48 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 76676 byte(s)
Log Message:
move friction tensor section to chapter2

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9 tim 2819 behind classical mechanics. Firstly, one can determine the state of
10 tim 2692 a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20 tim 2819 Newton's first law defines a class of inertial frames. Inertial
21 tim 2694 frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23 tim 2819 With respect to inertial frames, Newton's second law has the form
24 tim 2694 \begin{equation}
25 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
26 tim 2694 \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2819 Newton's third law states that
33 tim 2694 \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 tim 2694 \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62 tim 2819 \dot L = r \times \dot p = \tau
63 tim 2694 \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71 tim 2819 schemes for rigid bodies \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75 tim 2819 Newtonian Mechanics suffers from two important limitations: motions
76     can only be described in cartesian coordinate systems. Moreover, It
77     become impossible to predict analytically the properties of the
78     system even if we know all of the details of the interaction. In
79     order to overcome some of the practical difficulties which arise in
80     attempts to apply Newton's equation to complex system, approximate
81     numerical procedures may be developed.
82 tim 2692
83 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84     Principle}}
85 tim 2692
86     Hamilton introduced the dynamical principle upon which it is
87 tim 2819 possible to base all of mechanics and most of classical physics.
88     Hamilton's Principle may be stated as follows,
89 tim 2692
90     The actual trajectory, along which a dynamical system may move from
91     one point to another within a specified time, is derived by finding
92     the path which minimizes the time integral of the difference between
93 tim 2819 the kinetic, $K$, and potential energies, $U$.
94 tim 2692 \begin{equation}
95     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
96 tim 2693 \label{introEquation:halmitonianPrinciple1}
97 tim 2692 \end{equation}
98    
99     For simple mechanical systems, where the forces acting on the
100 tim 2819 different parts are derivable from a potential, the Lagrangian
101     function $L$ can be defined as the difference between the kinetic
102     energy of the system and its potential energy,
103 tim 2692 \begin{equation}
104     L \equiv K - U = L(q_i ,\dot q_i ) ,
105     \label{introEquation:lagrangianDef}
106     \end{equation}
107     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
108     \begin{equation}
109 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
110     \label{introEquation:halmitonianPrinciple2}
111 tim 2692 \end{equation}
112    
113 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
114     Equations of Motion in Lagrangian Mechanics}}
115 tim 2692
116 tim 2850 For a system of $f$ degrees of freedom, the equations of motion in
117     the Lagrangian form is
118 tim 2692 \begin{equation}
119     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
120     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
121 tim 2693 \label{introEquation:eqMotionLagrangian}
122 tim 2692 \end{equation}
123     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
124     generalized velocity.
125    
126 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
127 tim 2692
128     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
129     introduced by William Rowan Hamilton in 1833 as a re-formulation of
130     classical mechanics. If the potential energy of a system is
131 tim 2819 independent of velocities, the momenta can be defined as
132 tim 2692 \begin{equation}
133     p_i = \frac{\partial L}{\partial \dot q_i}
134     \label{introEquation:generalizedMomenta}
135     \end{equation}
136 tim 2693 The Lagrange equations of motion are then expressed by
137 tim 2692 \begin{equation}
138 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
139     \label{introEquation:generalizedMomentaDot}
140     \end{equation}
141    
142     With the help of the generalized momenta, we may now define a new
143     quantity $H$ by the equation
144     \begin{equation}
145     H = \sum\limits_k {p_k \dot q_k } - L ,
146 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
147     \end{equation}
148     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
149     $L$ is the Lagrangian function for the system.
150    
151 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
152     one can obtain
153     \begin{equation}
154     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
155     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
156     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
157     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
158     \end{equation}
159     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
160     second and fourth terms in the parentheses cancel. Therefore,
161     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
162     \begin{equation}
163     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
164     \right)} - \frac{{\partial L}}{{\partial t}}dt
165     \label{introEquation:diffHamiltonian2}
166     \end{equation}
167     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
168     find
169     \begin{equation}
170 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
171 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
172     \end{equation}
173     \begin{equation}
174 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
175 tim 2693 \label{introEquation:motionHamiltonianMomentum}
176     \end{equation}
177     and
178     \begin{equation}
179     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
180     t}}
181     \label{introEquation:motionHamiltonianTime}
182     \end{equation}
183    
184     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
185     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
186     equation of motion. Due to their symmetrical formula, they are also
187 tim 2786 known as the canonical equations of motions \cite{Goldstein2001}.
188 tim 2693
189 tim 2692 An important difference between Lagrangian approach and the
190     Hamiltonian approach is that the Lagrangian is considered to be a
191 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
192     $q_i$, while the Hamiltonian is considered to be a function of the
193     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
194     Hamiltonian Mechanics is more appropriate for application to
195     statistical mechanics and quantum mechanics, since it treats the
196     coordinate and its time derivative as independent variables and it
197     only works with 1st-order differential equations\cite{Marion1990}.
198 tim 2692
199 tim 2696 In Newtonian Mechanics, a system described by conservative forces
200     conserves the total energy \ref{introEquation:energyConservation}.
201     It follows that Hamilton's equations of motion conserve the total
202     Hamiltonian.
203     \begin{equation}
204     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
205     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
206     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
207     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
208     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
209 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
210 tim 2696 \end{equation}
211    
212 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
213     Mechanics}
214 tim 2692
215 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
216 tim 2692 simulation are governed by the principle of Statistical Mechanics.
217     The following section will give a brief introduction to some of the
218 tim 2700 Statistical Mechanics concepts and theorem presented in this
219     dissertation.
220 tim 2692
221 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
222 tim 2692
223 tim 2700 Mathematically, phase space is the space which represents all
224     possible states. Each possible state of the system corresponds to
225     one unique point in the phase space. For mechanical systems, the
226     phase space usually consists of all possible values of position and
227 tim 2819 momentum variables. Consider a dynamic system of $f$ particles in a
228     cartesian space, where each of the $6f$ coordinates and momenta is
229     assigned to one of $6f$ mutually orthogonal axes, the phase space of
230     this system is a $6f$ dimensional space. A point, $x = (q_1 , \ldots
231     ,q_f ,p_1 , \ldots ,p_f )$, with a unique set of values of $6f$
232     coordinates and momenta is a phase space vector.
233 tim 2700
234 tim 2850 %%%fix me
235 tim 2700 A microscopic state or microstate of a classical system is
236     specification of the complete phase space vector of a system at any
237     instant in time. An ensemble is defined as a collection of systems
238     sharing one or more macroscopic characteristics but each being in a
239     unique microstate. The complete ensemble is specified by giving all
240     systems or microstates consistent with the common macroscopic
241     characteristics of the ensemble. Although the state of each
242     individual system in the ensemble could be precisely described at
243     any instance in time by a suitable phase space vector, when using
244     ensembles for statistical purposes, there is no need to maintain
245     distinctions between individual systems, since the numbers of
246     systems at any time in the different states which correspond to
247     different regions of the phase space are more interesting. Moreover,
248     in the point of view of statistical mechanics, one would prefer to
249     use ensembles containing a large enough population of separate
250     members so that the numbers of systems in such different states can
251     be regarded as changing continuously as we traverse different
252     regions of the phase space. The condition of an ensemble at any time
253     can be regarded as appropriately specified by the density $\rho$
254     with which representative points are distributed over the phase
255 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
256     freedom is defined as,
257 tim 2700 \begin{equation}
258     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
259     \label{introEquation:densityDistribution}
260     \end{equation}
261     Governed by the principles of mechanics, the phase points change
262 tim 2819 their locations which would change the density at any time at phase
263     space. Hence, the density distribution is also to be taken as a
264 tim 2700 function of the time.
265    
266     The number of systems $\delta N$ at time $t$ can be determined by,
267     \begin{equation}
268     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
269     \label{introEquation:deltaN}
270     \end{equation}
271 tim 2819 Assuming a large enough population of systems, we can sufficiently
272     approximate $\delta N$ without introducing discontinuity when we go
273     from one region in the phase space to another. By integrating over
274     the whole phase space,
275 tim 2700 \begin{equation}
276     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
277     \label{introEquation:totalNumberSystem}
278     \end{equation}
279     gives us an expression for the total number of the systems. Hence,
280     the probability per unit in the phase space can be obtained by,
281     \begin{equation}
282     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
283     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
284     \label{introEquation:unitProbability}
285     \end{equation}
286 tim 2850 With the help of Eq.~\ref{introEquation:unitProbability} and the
287     knowledge of the system, it is possible to calculate the average
288 tim 2700 value of any desired quantity which depends on the coordinates and
289     momenta of the system. Even when the dynamics of the real system is
290     complex, or stochastic, or even discontinuous, the average
291 tim 2819 properties of the ensemble of possibilities as a whole remaining
292     well defined. For a classical system in thermal equilibrium with its
293     environment, the ensemble average of a mechanical quantity, $\langle
294     A(q , p) \rangle_t$, takes the form of an integral over the phase
295     space of the system,
296 tim 2700 \begin{equation}
297     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
298     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
299     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
300     \label{introEquation:ensembelAverage}
301     \end{equation}
302    
303     There are several different types of ensembles with different
304     statistical characteristics. As a function of macroscopic
305 tim 2819 parameters, such as temperature \textit{etc}, the partition function
306     can be used to describe the statistical properties of a system in
307 tim 2700 thermodynamic equilibrium.
308    
309     As an ensemble of systems, each of which is known to be thermally
310 tim 2850 isolated and conserve energy, the Microcanonical ensemble (NVE) has
311     a partition function like,
312 tim 2700 \begin{equation}
313 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
314 tim 2700 \end{equation}
315 tim 2850 A canonical ensemble (NVT)is an ensemble of systems, each of which
316 tim 2700 can share its energy with a large heat reservoir. The distribution
317     of the total energy amongst the possible dynamical states is given
318     by the partition function,
319     \begin{equation}
320     \Omega (N,V,T) = e^{ - \beta A}
321     \label{introEquation:NVTPartition}
322     \end{equation}
323     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
324 tim 2819 TS$. Since most experiments are carried out under constant pressure
325 tim 2850 condition, the isothermal-isobaric ensemble (NPT) plays a very
326 tim 2819 important role in molecular simulations. The isothermal-isobaric
327     ensemble allow the system to exchange energy with a heat bath of
328     temperature $T$ and to change the volume as well. Its partition
329     function is given as
330 tim 2700 \begin{equation}
331     \Delta (N,P,T) = - e^{\beta G}.
332     \label{introEquation:NPTPartition}
333     \end{equation}
334     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
335    
336     \subsection{\label{introSection:liouville}Liouville's theorem}
337    
338 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
339     rests. It describes the time evolution of the phase space
340 tim 2700 distribution function. In order to calculate the rate of change of
341 tim 2850 $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
342     the two faces perpendicular to the $q_1$ axis, which are located at
343     $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
344     opposite face is given by the expression,
345 tim 2700 \begin{equation}
346     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
347     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
348     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
349     \ldots \delta p_f .
350     \end{equation}
351     Summing all over the phase space, we obtain
352     \begin{equation}
353     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
354     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
355     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
356     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
357     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
358     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
359     \end{equation}
360     Differentiating the equations of motion in Hamiltonian formalism
361     (\ref{introEquation:motionHamiltonianCoordinate},
362     \ref{introEquation:motionHamiltonianMomentum}), we can show,
363     \begin{equation}
364     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
365     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
366     \end{equation}
367     which cancels the first terms of the right hand side. Furthermore,
368 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
369 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
370     simple form,
371     \begin{equation}
372     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
373     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
374     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
375     \label{introEquation:liouvilleTheorem}
376     \end{equation}
377    
378     Liouville's theorem states that the distribution function is
379     constant along any trajectory in phase space. In classical
380 tim 2850 statistical mechanics, since the number of members in an ensemble is
381     huge and constant, we can assume the local density has no reason
382     (other than classical mechanics) to change,
383 tim 2700 \begin{equation}
384     \frac{{\partial \rho }}{{\partial t}} = 0.
385     \label{introEquation:stationary}
386     \end{equation}
387     In such stationary system, the density of distribution $\rho$ can be
388     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
389     distribution,
390     \begin{equation}
391     \rho \propto e^{ - \beta H}
392     \label{introEquation:densityAndHamiltonian}
393     \end{equation}
394    
395 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
396 tim 2702 Lets consider a region in the phase space,
397     \begin{equation}
398     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
399     \end{equation}
400     If this region is small enough, the density $\rho$ can be regarded
401 tim 2819 as uniform over the whole integral. Thus, the number of phase points
402     inside this region is given by,
403 tim 2702 \begin{equation}
404     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
405     dp_1 } ..dp_f.
406     \end{equation}
407    
408     \begin{equation}
409     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
410     \frac{d}{{dt}}(\delta v) = 0.
411     \end{equation}
412     With the help of stationary assumption
413     (\ref{introEquation:stationary}), we obtain the principle of the
414 tim 2819 \emph{conservation of volume in phase space},
415 tim 2702 \begin{equation}
416     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
417     ...dq_f dp_1 } ..dp_f = 0.
418     \label{introEquation:volumePreserving}
419     \end{equation}
420    
421 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
422 tim 2702
423 tim 2700 Liouville's theorem can be expresses in a variety of different forms
424     which are convenient within different contexts. For any two function
425     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
426     bracket ${F, G}$ is defined as
427     \begin{equation}
428     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
429     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
430     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
431     q_i }}} \right)}.
432     \label{introEquation:poissonBracket}
433     \end{equation}
434     Substituting equations of motion in Hamiltonian formalism(
435 tim 2850 Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
436     Eq.~\ref{introEquation:motionHamiltonianMomentum} ) into
437     (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
438     Liouville's theorem using Poisson bracket notion,
439 tim 2700 \begin{equation}
440     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
441     {\rho ,H} \right\}.
442     \label{introEquation:liouvilleTheromInPoissin}
443     \end{equation}
444     Moreover, the Liouville operator is defined as
445     \begin{equation}
446     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
447     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
448     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
449     \label{introEquation:liouvilleOperator}
450     \end{equation}
451     In terms of Liouville operator, Liouville's equation can also be
452     expressed as
453     \begin{equation}
454     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
455     \label{introEquation:liouvilleTheoremInOperator}
456     \end{equation}
457    
458 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
459 tim 2692
460 tim 2695 Various thermodynamic properties can be calculated from Molecular
461     Dynamics simulation. By comparing experimental values with the
462     calculated properties, one can determine the accuracy of the
463 tim 2819 simulation and the quality of the underlying model. However, both
464     experiments and computer simulations are usually performed during a
465 tim 2695 certain time interval and the measurements are averaged over a
466     period of them which is different from the average behavior of
467 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
468     Hypothesis makes a connection between time average and the ensemble
469     average. It states that the time average and average over the
470 tim 2786 statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
471 tim 2695 \begin{equation}
472 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
473     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
474     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
475 tim 2695 \end{equation}
476 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
477     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
478     distribution function. If an observation is averaged over a
479     sufficiently long time (longer than relaxation time), all accessible
480     microstates in phase space are assumed to be equally probed, giving
481     a properly weighted statistical average. This allows the researcher
482     freedom of choice when deciding how best to measure a given
483     observable. In case an ensemble averaged approach sounds most
484 tim 2786 reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
485 tim 2700 utilized. Or if the system lends itself to a time averaging
486     approach, the Molecular Dynamics techniques in
487     Sec.~\ref{introSection:molecularDynamics} will be the best
488     choice\cite{Frenkel1996}.
489 tim 2694
490 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
491 tim 2819 A variety of numerical integrators have been proposed to simulate
492     the motions of atoms in MD simulation. They usually begin with
493     initial conditionals and move the objects in the direction governed
494     by the differential equations. However, most of them ignore the
495     hidden physical laws contained within the equations. Since 1990,
496     geometric integrators, which preserve various phase-flow invariants
497     such as symplectic structure, volume and time reversal symmetry, are
498     developed to address this issue\cite{Dullweber1997, McLachlan1998,
499     Leimkuhler1999}. The velocity verlet method, which happens to be a
500     simple example of symplectic integrator, continues to gain
501     popularity in the molecular dynamics community. This fact can be
502     partly explained by its geometric nature.
503 tim 2697
504 tim 2819 \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
505     A \emph{manifold} is an abstract mathematical space. It looks
506     locally like Euclidean space, but when viewed globally, it may have
507     more complicated structure. A good example of manifold is the
508     surface of Earth. It seems to be flat locally, but it is round if
509     viewed as a whole. A \emph{differentiable manifold} (also known as
510     \emph{smooth manifold}) is a manifold on which it is possible to
511     apply calculus on \emph{differentiable manifold}. A \emph{symplectic
512     manifold} is defined as a pair $(M, \omega)$ which consists of a
513 tim 2697 \emph{differentiable manifold} $M$ and a close, non-degenerated,
514     bilinear symplectic form, $\omega$. A symplectic form on a vector
515     space $V$ is a function $\omega(x, y)$ which satisfies
516     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
517     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
518 tim 2819 $\omega(x, x) = 0$. The cross product operation in vector field is
519     an example of symplectic form.
520 tim 2697
521 tim 2819 One of the motivations to study \emph{symplectic manifolds} in
522 tim 2697 Hamiltonian Mechanics is that a symplectic manifold can represent
523     all possible configurations of the system and the phase space of the
524     system can be described by it's cotangent bundle. Every symplectic
525     manifold is even dimensional. For instance, in Hamilton equations,
526     coordinate and momentum always appear in pairs.
527    
528 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
529 tim 2697
530 tim 2819 For an ordinary differential system defined as
531 tim 2698 \begin{equation}
532     \dot x = f(x)
533     \end{equation}
534 tim 2819 where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
535 tim 2698 \begin{equation}
536 tim 2699 f(r) = J\nabla _x H(r).
537 tim 2698 \end{equation}
538     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
539     matrix
540     \begin{equation}
541     J = \left( {\begin{array}{*{20}c}
542     0 & I \\
543     { - I} & 0 \\
544     \end{array}} \right)
545     \label{introEquation:canonicalMatrix}
546     \end{equation}
547     where $I$ is an identity matrix. Using this notation, Hamiltonian
548     system can be rewritten as,
549     \begin{equation}
550     \frac{d}{{dt}}x = J\nabla _x H(x)
551     \label{introEquation:compactHamiltonian}
552     \end{equation}In this case, $f$ is
553     called a \emph{Hamiltonian vector field}.
554 tim 2697
555 tim 2789 Another generalization of Hamiltonian dynamics is Poisson
556     Dynamics\cite{Olver1986},
557 tim 2698 \begin{equation}
558     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
559     \end{equation}
560     The most obvious change being that matrix $J$ now depends on $x$.
561    
562 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
563    
564 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
565     \begin{equation}
566     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
567     \end{equation}
568     The exact flow(solution) $\varphi_\tau$ is defined by
569     \[
570     x(t+\tau) =\varphi_\tau(x(t))
571     \]
572     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
573 tim 2702 space to itself. The flow has the continuous group property,
574 tim 2698 \begin{equation}
575 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
576     + \tau _2 } .
577     \end{equation}
578     In particular,
579     \begin{equation}
580     \varphi _\tau \circ \varphi _{ - \tau } = I
581     \end{equation}
582     Therefore, the exact flow is self-adjoint,
583     \begin{equation}
584     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
585     \end{equation}
586     The exact flow can also be written in terms of the of an operator,
587     \begin{equation}
588     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
589     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
590     \label{introEquation:exponentialOperator}
591     \end{equation}
592    
593     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
594     Instead, we use a approximate map, $\psi_\tau$, which is usually
595     called integrator. The order of an integrator $\psi_\tau$ is $p$, if
596     the Taylor series of $\psi_\tau$ agree to order $p$,
597     \begin{equation}
598 tim 2698 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
599     \end{equation}
600    
601 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
602    
603 tim 2789 The hidden geometric properties\cite{Budd1999, Marsden1998} of ODE
604     and its flow play important roles in numerical studies. Many of them
605     can be found in systems which occur naturally in applications.
606 tim 2702
607     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
608     a \emph{symplectic} flow if it satisfies,
609 tim 2698 \begin{equation}
610 tim 2703 {\varphi '}^T J \varphi ' = J.
611 tim 2698 \end{equation}
612     According to Liouville's theorem, the symplectic volume is invariant
613     under a Hamiltonian flow, which is the basis for classical
614 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
615     field on a symplectic manifold can be shown to be a
616     symplectomorphism. As to the Poisson system,
617 tim 2698 \begin{equation}
618 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
619 tim 2698 \end{equation}
620 tim 2702 is the property must be preserved by the integrator.
621    
622     It is possible to construct a \emph{volume-preserving} flow for a
623     source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
624     \det d\varphi = 1$. One can show easily that a symplectic flow will
625     be volume-preserving.
626    
627     Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
628     will result in a new system,
629 tim 2698 \[
630     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
631     \]
632     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
633     In other words, the flow of this vector field is reversible if and
634 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
635 tim 2698
636 tim 2705 A \emph{first integral}, or conserved quantity of a general
637     differential function is a function $ G:R^{2d} \to R^d $ which is
638     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
639     \[
640     \frac{{dG(x(t))}}{{dt}} = 0.
641     \]
642     Using chain rule, one may obtain,
643     \[
644     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
645     \]
646     which is the condition for conserving \emph{first integral}. For a
647     canonical Hamiltonian system, the time evolution of an arbitrary
648     smooth function $G$ is given by,
649 tim 2789
650     \begin{eqnarray}
651     \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
652     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
653 tim 2705 \label{introEquation:firstIntegral1}
654 tim 2789 \end{eqnarray}
655    
656    
657 tim 2705 Using poisson bracket notion, Equation
658     \ref{introEquation:firstIntegral1} can be rewritten as
659     \[
660     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
661     \]
662     Therefore, the sufficient condition for $G$ to be the \emph{first
663     integral} of a Hamiltonian system is
664     \[
665     \left\{ {G,H} \right\} = 0.
666     \]
667     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
668     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
669     0$.
670    
671 tim 2789 When designing any numerical methods, one should always try to
672 tim 2702 preserve the structural properties of the original ODE and its flow.
673    
674 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
675     A lot of well established and very effective numerical methods have
676     been successful precisely because of their symplecticities even
677     though this fact was not recognized when they were first
678 tim 2819 constructed. The most famous example is the Verlet-leapfrog methods
679     in molecular dynamics. In general, symplectic integrators can be
680 tim 2699 constructed using one of four different methods.
681     \begin{enumerate}
682     \item Generating functions
683     \item Variational methods
684     \item Runge-Kutta methods
685     \item Splitting methods
686     \end{enumerate}
687 tim 2698
688 tim 2789 Generating function\cite{Channell1990} tends to lead to methods
689     which are cumbersome and difficult to use. In dissipative systems,
690     variational methods can capture the decay of energy
691     accurately\cite{Kane2000}. Since their geometrically unstable nature
692     against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
693     methods are not suitable for Hamiltonian system. Recently, various
694     high-order explicit Runge-Kutta methods
695     \cite{Owren1992,Chen2003}have been developed to overcome this
696 tim 2703 instability. However, due to computational penalty involved in
697 tim 2819 implementing the Runge-Kutta methods, they have not attracted much
698     attention from the Molecular Dynamics community. Instead, splitting
699     methods have been widely accepted since they exploit natural
700     decompositions of the system\cite{Tuckerman1992, McLachlan1998}.
701 tim 2702
702 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
703 tim 2702
704     The main idea behind splitting methods is to decompose the discrete
705     $\varphi_h$ as a composition of simpler flows,
706 tim 2699 \begin{equation}
707     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
708     \varphi _{h_n }
709     \label{introEquation:FlowDecomposition}
710     \end{equation}
711     where each of the sub-flow is chosen such that each represent a
712 tim 2702 simpler integration of the system.
713    
714     Suppose that a Hamiltonian system takes the form,
715     \[
716     H = H_1 + H_2.
717     \]
718     Here, $H_1$ and $H_2$ may represent different physical processes of
719     the system. For instance, they may relate to kinetic and potential
720     energy respectively, which is a natural decomposition of the
721     problem. If $H_1$ and $H_2$ can be integrated using exact flows
722     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
723 tim 2819 order expression is then given by the Lie-Trotter formula
724 tim 2699 \begin{equation}
725 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
726     \label{introEquation:firstOrderSplitting}
727     \end{equation}
728     where $\varphi _h$ is the result of applying the corresponding
729     continuous $\varphi _i$ over a time $h$. By definition, as
730     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
731     must follow that each operator $\varphi_i(t)$ is a symplectic map.
732     It is easy to show that any composition of symplectic flows yields a
733     symplectic map,
734     \begin{equation}
735 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
736 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
737 tim 2699 \label{introEquation:SymplecticFlowComposition}
738     \end{equation}
739 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
740     splitting in this context automatically generates a symplectic map.
741 tim 2699
742 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
743     introduces local errors proportional to $h^2$, while Strang
744     splitting gives a second-order decomposition,
745     \begin{equation}
746     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
747 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
748 tim 2702 \end{equation}
749 tim 2819 which has a local error proportional to $h^3$. The Sprang
750     splitting's popularity in molecular simulation community attribute
751     to its symmetric property,
752 tim 2702 \begin{equation}
753     \varphi _h^{ - 1} = \varphi _{ - h}.
754 tim 2703 \label{introEquation:timeReversible}
755 tim 2844 \end{equation},appendixFig:architecture
756 tim 2702
757 tim 2819 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Example of Splitting Method}}
758 tim 2702 The classical equation for a system consisting of interacting
759     particles can be written in Hamiltonian form,
760     \[
761     H = T + V
762     \]
763     where $T$ is the kinetic energy and $V$ is the potential energy.
764     Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
765     obtains the following:
766     \begin{align}
767     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
768     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
769     \label{introEquation:Lp10a} \\%
770     %
771     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
772     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
773     \label{introEquation:Lp10b}
774     \end{align}
775     where $F(t)$ is the force at time $t$. This integration scheme is
776     known as \emph{velocity verlet} which is
777     symplectic(\ref{introEquation:SymplecticFlowComposition}),
778     time-reversible(\ref{introEquation:timeReversible}) and
779     volume-preserving (\ref{introEquation:volumePreserving}). These
780     geometric properties attribute to its long-time stability and its
781     popularity in the community. However, the most commonly used
782     velocity verlet integration scheme is written as below,
783     \begin{align}
784     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
785     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
786     %
787     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
788     \label{introEquation:Lp9b}\\%
789     %
790     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
791     \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
792     \end{align}
793     From the preceding splitting, one can see that the integration of
794     the equations of motion would follow:
795     \begin{enumerate}
796     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
797    
798     \item Use the half step velocities to move positions one whole step, $\Delta t$.
799    
800     \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
801    
802     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
803     \end{enumerate}
804    
805     Simply switching the order of splitting and composing, a new
806     integrator, the \emph{position verlet} integrator, can be generated,
807     \begin{align}
808     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
809     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
810     \label{introEquation:positionVerlet1} \\%
811     %
812 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
813 tim 2702 q(\Delta t)} \right]. %
814 tim 2719 \label{introEquation:positionVerlet2}
815 tim 2702 \end{align}
816    
817 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
818 tim 2702
819     Baker-Campbell-Hausdorff formula can be used to determine the local
820     error of splitting method in terms of commutator of the
821     operators(\ref{introEquation:exponentialOperator}) associated with
822     the sub-flow. For operators $hX$ and $hY$ which are associate to
823 tim 2726 $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
824 tim 2702 \begin{equation}
825     \exp (hX + hY) = \exp (hZ)
826     \end{equation}
827     where
828     \begin{equation}
829     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
830     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
831     \end{equation}
832     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
833     \[
834     [X,Y] = XY - YX .
835     \]
836 tim 2789 Applying Baker-Campbell-Hausdorff formula\cite{Varadarajan1974} to
837     Sprang splitting, we can obtain
838 tim 2779 \begin{eqnarray*}
839 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
840     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
841 tim 2779 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
842     \end{eqnarray*}
843 tim 2702 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
844     error of Spring splitting is proportional to $h^3$. The same
845     procedure can be applied to general splitting, of the form
846     \begin{equation}
847     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
848     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
849     \end{equation}
850 tim 2795 Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
851 tim 2702 order method. Yoshida proposed an elegant way to compose higher
852 tim 2789 order methods based on symmetric splitting\cite{Yoshida1990}. Given
853     a symmetric second order base method $ \varphi _h^{(2)} $, a
854     fourth-order symmetric method can be constructed by composing,
855 tim 2702 \[
856     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
857     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
858     \]
859     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
860     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
861     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
862     \begin{equation}
863     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
864     _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
865     \end{equation}
866     , if the weights are chosen as
867     \[
868     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
869     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
870     \]
871    
872 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
873    
874 tim 2720 As one of the principal tools of molecular modeling, Molecular
875     dynamics has proven to be a powerful tool for studying the functions
876     of biological systems, providing structural, thermodynamic and
877     dynamical information. The basic idea of molecular dynamics is that
878     macroscopic properties are related to microscopic behavior and
879     microscopic behavior can be calculated from the trajectories in
880     simulations. For instance, instantaneous temperature of an
881     Hamiltonian system of $N$ particle can be measured by
882     \[
883 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
884 tim 2720 \]
885     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
886     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
887     the boltzman constant.
888 tim 2694
889 tim 2720 A typical molecular dynamics run consists of three essential steps:
890     \begin{enumerate}
891     \item Initialization
892     \begin{enumerate}
893     \item Preliminary preparation
894     \item Minimization
895     \item Heating
896     \item Equilibration
897     \end{enumerate}
898     \item Production
899     \item Analysis
900     \end{enumerate}
901     These three individual steps will be covered in the following
902     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
903 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
904     will discusses issues in production run.
905     Sec.~\ref{introSection:Analysis} provides the theoretical tools for
906     trajectory analysis.
907 tim 2719
908 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
909 tim 2719
910 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
911 tim 2719
912 tim 2720 When selecting the starting structure of a molecule for molecular
913     simulation, one may retrieve its Cartesian coordinates from public
914     databases, such as RCSB Protein Data Bank \textit{etc}. Although
915     thousands of crystal structures of molecules are discovered every
916     year, many more remain unknown due to the difficulties of
917     purification and crystallization. Even for the molecule with known
918     structure, some important information is missing. For example, the
919     missing hydrogen atom which acts as donor in hydrogen bonding must
920     be added. Moreover, in order to include electrostatic interaction,
921     one may need to specify the partial charges for individual atoms.
922     Under some circumstances, we may even need to prepare the system in
923     a special setup. For instance, when studying transport phenomenon in
924     membrane system, we may prepare the lipids in bilayer structure
925     instead of placing lipids randomly in solvent, since we are not
926     interested in self-aggregation and it takes a long time to happen.
927 tim 2694
928 tim 2819 \subsubsection{\textbf{Minimization}}
929 tim 2705
930 tim 2720 It is quite possible that some of molecules in the system from
931     preliminary preparation may be overlapped with each other. This
932     close proximity leads to high potential energy which consequently
933     jeopardizes any molecular dynamics simulations. To remove these
934     steric overlaps, one typically performs energy minimization to find
935     a more reasonable conformation. Several energy minimization methods
936     have been developed to exploit the energy surface and to locate the
937     local minimum. While converging slowly near the minimum, steepest
938     descent method is extremely robust when systems are far from
939     harmonic. Thus, it is often used to refine structure from
940     crystallographic data. Relied on the gradient or hessian, advanced
941     methods like conjugate gradient and Newton-Raphson converge rapidly
942     to a local minimum, while become unstable if the energy surface is
943     far from quadratic. Another factor must be taken into account, when
944     choosing energy minimization method, is the size of the system.
945     Steepest descent and conjugate gradient can deal with models of any
946     size. Because of the limit of computation power to calculate hessian
947     matrix and insufficient storage capacity to store them, most
948     Newton-Raphson methods can not be used with very large models.
949 tim 2694
950 tim 2819 \subsubsection{\textbf{Heating}}
951 tim 2720
952     Typically, Heating is performed by assigning random velocities
953     according to a Gaussian distribution for a temperature. Beginning at
954     a lower temperature and gradually increasing the temperature by
955     assigning greater random velocities, we end up with setting the
956     temperature of the system to a final temperature at which the
957     simulation will be conducted. In heating phase, we should also keep
958     the system from drifting or rotating as a whole. Equivalently, the
959     net linear momentum and angular momentum of the system should be
960     shifted to zero.
961    
962 tim 2819 \subsubsection{\textbf{Equilibration}}
963 tim 2720
964     The purpose of equilibration is to allow the system to evolve
965     spontaneously for a period of time and reach equilibrium. The
966     procedure is continued until various statistical properties, such as
967     temperature, pressure, energy, volume and other structural
968     properties \textit{etc}, become independent of time. Strictly
969     speaking, minimization and heating are not necessary, provided the
970     equilibration process is long enough. However, these steps can serve
971     as a means to arrive at an equilibrated structure in an effective
972     way.
973    
974     \subsection{\label{introSection:production}Production}
975    
976 tim 2789 Production run is the most important step of the simulation, in
977 tim 2725 which the equilibrated structure is used as a starting point and the
978     motions of the molecules are collected for later analysis. In order
979     to capture the macroscopic properties of the system, the molecular
980     dynamics simulation must be performed in correct and efficient way.
981 tim 2720
982 tim 2725 The most expensive part of a molecular dynamics simulation is the
983     calculation of non-bonded forces, such as van der Waals force and
984     Coulombic forces \textit{etc}. For a system of $N$ particles, the
985     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
986     which making large simulations prohibitive in the absence of any
987     computation saving techniques.
988 tim 2720
989 tim 2725 A natural approach to avoid system size issue is to represent the
990     bulk behavior by a finite number of the particles. However, this
991     approach will suffer from the surface effect. To offset this,
992 tim 2789 \textit{Periodic boundary condition} (see Fig.~\ref{introFig:pbc})
993     is developed to simulate bulk properties with a relatively small
994     number of particles. In this method, the simulation box is
995     replicated throughout space to form an infinite lattice. During the
996     simulation, when a particle moves in the primary cell, its image in
997     other cells move in exactly the same direction with exactly the same
998     orientation. Thus, as a particle leaves the primary cell, one of its
999     images will enter through the opposite face.
1000     \begin{figure}
1001     \centering
1002     \includegraphics[width=\linewidth]{pbc.eps}
1003     \caption[An illustration of periodic boundary conditions]{A 2-D
1004     illustration of periodic boundary conditions. As one particle leaves
1005     the left of the simulation box, an image of it enters the right.}
1006     \label{introFig:pbc}
1007     \end{figure}
1008 tim 2725
1009     %cutoff and minimum image convention
1010     Another important technique to improve the efficiency of force
1011     evaluation is to apply cutoff where particles farther than a
1012     predetermined distance, are not included in the calculation
1013     \cite{Frenkel1996}. The use of a cutoff radius will cause a
1014 tim 2730 discontinuity in the potential energy curve. Fortunately, one can
1015     shift the potential to ensure the potential curve go smoothly to
1016     zero at the cutoff radius. Cutoff strategy works pretty well for
1017     Lennard-Jones interaction because of its short range nature.
1018     However, simply truncating the electrostatic interaction with the
1019     use of cutoff has been shown to lead to severe artifacts in
1020     simulations. Ewald summation, in which the slowly conditionally
1021     convergent Coulomb potential is transformed into direct and
1022     reciprocal sums with rapid and absolute convergence, has proved to
1023     minimize the periodicity artifacts in liquid simulations. Taking the
1024     advantages of the fast Fourier transform (FFT) for calculating
1025 tim 2789 discrete Fourier transforms, the particle mesh-based
1026     methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1027     $O(N^{3/2})$ to $O(N logN)$. An alternative approach is \emph{fast
1028     multipole method}\cite{Greengard1987, Greengard1994}, which treats
1029     Coulombic interaction exactly at short range, and approximate the
1030     potential at long range through multipolar expansion. In spite of
1031     their wide acceptances at the molecular simulation community, these
1032     two methods are hard to be implemented correctly and efficiently.
1033     Instead, we use a damped and charge-neutralized Coulomb potential
1034     method developed by Wolf and his coworkers\cite{Wolf1999}. The
1035     shifted Coulomb potential for particle $i$ and particle $j$ at
1036     distance $r_{rj}$ is given by:
1037 tim 2725 \begin{equation}
1038     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1039     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1040     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1041     r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1042     \end{equation}
1043     where $\alpha$ is the convergence parameter. Due to the lack of
1044     inherent periodicity and rapid convergence,this method is extremely
1045     efficient and easy to implement.
1046 tim 2789 \begin{figure}
1047     \centering
1048     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1049     \caption[An illustration of shifted Coulomb potential]{An
1050     illustration of shifted Coulomb potential.}
1051     \label{introFigure:shiftedCoulomb}
1052     \end{figure}
1053 tim 2725
1054     %multiple time step
1055    
1056 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
1057    
1058 tim 2721 Recently, advanced visualization technique are widely applied to
1059     monitor the motions of molecules. Although the dynamics of the
1060     system can be described qualitatively from animation, quantitative
1061     trajectory analysis are more appreciable. According to the
1062     principles of Statistical Mechanics,
1063     Sec.~\ref{introSection:statisticalMechanics}, one can compute
1064     thermodynamics properties, analyze fluctuations of structural
1065     parameters, and investigate time-dependent processes of the molecule
1066     from the trajectories.
1067    
1068 tim 2819 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamics Properties}}
1069 tim 2721
1070 tim 2725 Thermodynamics properties, which can be expressed in terms of some
1071     function of the coordinates and momenta of all particles in the
1072     system, can be directly computed from molecular dynamics. The usual
1073     way to measure the pressure is based on virial theorem of Clausius
1074     which states that the virial is equal to $-3Nk_BT$. For a system
1075     with forces between particles, the total virial, $W$, contains the
1076     contribution from external pressure and interaction between the
1077     particles:
1078     \[
1079     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1080     f_{ij} } } \right\rangle
1081     \]
1082     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1083     distance $r_{ij}$. Thus, the expression for the pressure is given
1084     by:
1085     \begin{equation}
1086     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1087     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1088     \end{equation}
1089    
1090 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1091 tim 2721
1092     Structural Properties of a simple fluid can be described by a set of
1093     distribution functions. Among these functions,\emph{pair
1094     distribution function}, also known as \emph{radial distribution
1095 tim 2725 function}, is of most fundamental importance to liquid-state theory.
1096     Pair distribution function can be gathered by Fourier transforming
1097     raw data from a series of neutron diffraction experiments and
1098 tim 2786 integrating over the surface factor \cite{Powles1973}. The
1099     experiment result can serve as a criterion to justify the
1100     correctness of the theory. Moreover, various equilibrium
1101     thermodynamic and structural properties can also be expressed in
1102     terms of radial distribution function \cite{Allen1987}.
1103 tim 2721
1104     A pair distribution functions $g(r)$ gives the probability that a
1105     particle $i$ will be located at a distance $r$ from a another
1106     particle $j$ in the system
1107     \[
1108     g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1109     \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1110     \]
1111     Note that the delta function can be replaced by a histogram in
1112     computer simulation. Figure
1113     \ref{introFigure:pairDistributionFunction} shows a typical pair
1114     distribution function for the liquid argon system. The occurrence of
1115     several peaks in the plot of $g(r)$ suggests that it is more likely
1116     to find particles at certain radial values than at others. This is a
1117     result of the attractive interaction at such distances. Because of
1118     the strong repulsive forces at short distance, the probability of
1119     locating particles at distances less than about 2.5{\AA} from each
1120     other is essentially zero.
1121    
1122     %\begin{figure}
1123     %\centering
1124     %\includegraphics[width=\linewidth]{pdf.eps}
1125     %\caption[Pair distribution function for the liquid argon
1126     %]{Pair distribution function for the liquid argon}
1127     %\label{introFigure:pairDistributionFunction}
1128     %\end{figure}
1129    
1130 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1131     Properties}}
1132 tim 2721
1133     Time-dependent properties are usually calculated using \emph{time
1134     correlation function}, which correlates random variables $A$ and $B$
1135     at two different time
1136     \begin{equation}
1137     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1138     \label{introEquation:timeCorrelationFunction}
1139     \end{equation}
1140     If $A$ and $B$ refer to same variable, this kind of correlation
1141     function is called \emph{auto correlation function}. One example of
1142     auto correlation function is velocity auto-correlation function
1143     which is directly related to transport properties of molecular
1144 tim 2725 liquids:
1145     \[
1146     D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1147     \right\rangle } dt
1148     \]
1149     where $D$ is diffusion constant. Unlike velocity autocorrelation
1150     function which is averaging over time origins and over all the
1151     atoms, dipole autocorrelation are calculated for the entire system.
1152     The dipole autocorrelation function is given by:
1153     \[
1154     c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1155     \right\rangle
1156     \]
1157     Here $u_{tot}$ is the net dipole of the entire system and is given
1158     by
1159     \[
1160     u_{tot} (t) = \sum\limits_i {u_i (t)}
1161     \]
1162     In principle, many time correlation functions can be related with
1163     Fourier transforms of the infrared, Raman, and inelastic neutron
1164     scattering spectra of molecular liquids. In practice, one can
1165     extract the IR spectrum from the intensity of dipole fluctuation at
1166     each frequency using the following relationship:
1167     \[
1168     \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1169     i2\pi vt} dt}
1170     \]
1171 tim 2721
1172 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1173 tim 2692
1174 tim 2705 Rigid bodies are frequently involved in the modeling of different
1175     areas, from engineering, physics, to chemistry. For example,
1176     missiles and vehicle are usually modeled by rigid bodies. The
1177     movement of the objects in 3D gaming engine or other physics
1178     simulator is governed by the rigid body dynamics. In molecular
1179     simulation, rigid body is used to simplify the model in
1180 tim 2789 protein-protein docking study\cite{Gray2003}.
1181 tim 2694
1182 tim 2705 It is very important to develop stable and efficient methods to
1183     integrate the equations of motion of orientational degrees of
1184     freedom. Euler angles are the nature choice to describe the
1185     rotational degrees of freedom. However, due to its singularity, the
1186     numerical integration of corresponding equations of motion is very
1187     inefficient and inaccurate. Although an alternative integrator using
1188 tim 2789 different sets of Euler angles can overcome this
1189     difficulty\cite{Barojas1973}, the computational penalty and the lost
1190     of angular momentum conservation still remain. A singularity free
1191     representation utilizing quaternions was developed by Evans in
1192     1977\cite{Evans1977}. Unfortunately, this approach suffer from the
1193     nonseparable Hamiltonian resulted from quaternion representation,
1194     which prevents the symplectic algorithm to be utilized. Another
1195     different approach is to apply holonomic constraints to the atoms
1196     belonging to the rigid body. Each atom moves independently under the
1197     normal forces deriving from potential energy and constraint forces
1198     which are used to guarantee the rigidness. However, due to their
1199     iterative nature, SHAKE and Rattle algorithm converge very slowly
1200     when the number of constraint increases\cite{Ryckaert1977,
1201     Andersen1983}.
1202 tim 2694
1203 tim 2705 The break through in geometric literature suggests that, in order to
1204     develop a long-term integration scheme, one should preserve the
1205     symplectic structure of the flow. Introducing conjugate momentum to
1206 tim 2719 rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1207 tim 2789 symplectic integrator, RSHAKE\cite{Kol1997}, was proposed to evolve
1208     the Hamiltonian system in a constraint manifold by iteratively
1209 tim 2719 satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1210 tim 2789 method using quaternion representation was developed by
1211     Omelyan\cite{Omelyan1998}. However, both of these methods are
1212     iterative and inefficient. In this section, we will present a
1213     symplectic Lie-Poisson integrator for rigid body developed by
1214     Dullweber and his coworkers\cite{Dullweber1997} in depth.
1215 tim 2705
1216 tim 2706 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1217 tim 2713 The motion of the rigid body is Hamiltonian with the Hamiltonian
1218     function
1219 tim 2706 \begin{equation}
1220     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1221     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1222     \label{introEquation:RBHamiltonian}
1223     \end{equation}
1224     Here, $q$ and $Q$ are the position and rotation matrix for the
1225     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1226     $J$, a diagonal matrix, is defined by
1227     \[
1228     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1229     \]
1230     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1231     constrained Hamiltonian equation subjects to a holonomic constraint,
1232     \begin{equation}
1233 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1234 tim 2706 \end{equation}
1235     which is used to ensure rotation matrix's orthogonality.
1236     Differentiating \ref{introEquation:orthogonalConstraint} and using
1237     Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1238     \begin{equation}
1239 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1240 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1241     \end{equation}
1242    
1243     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1244     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1245     the equations of motion,
1246    
1247 tim 2796 \begin{eqnarray}
1248     \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1249     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1250     \frac{{dQ}}{{dt}} & = & PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1251     \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1252     \end{eqnarray}
1253    
1254 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1255     We can use constraint force provided by lagrange multiplier on the
1256     normal manifold to keep the motion on constraint space. Or we can
1257 tim 2776 simply evolve the system in constraint manifold. These two methods
1258     are proved to be equivalent. The holonomic constraint and equations
1259     of motions define a constraint manifold for rigid body
1260 tim 2707 \[
1261     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1262     \right\}.
1263     \]
1264 tim 2706
1265 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1266     $T_{\star}SO(3)$. However, it turns out that under symplectic
1267     transformation, the cotangent space and the phase space are
1268     diffeomorphic. Introducing
1269 tim 2706 \[
1270 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1271 tim 2706 \]
1272 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1273     can be re-formulated as a Hamiltonian system on the cotangent space
1274     \[
1275     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1276     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1277     \]
1278 tim 2706
1279 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1280     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1281     given as
1282     \begin{equation}
1283     X_i^{lab} = Q X_i + q.
1284     \end{equation}
1285     Therefore, potential energy $V(q,Q)$ is defined by
1286     \[
1287     V(q,Q) = V(Q X_0 + q).
1288     \]
1289 tim 2713 Hence, the force and torque are given by
1290 tim 2707 \[
1291 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1292 tim 2707 \]
1293 tim 2713 and
1294 tim 2707 \[
1295     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1296     \]
1297 tim 2713 respectively.
1298 tim 2695
1299 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1300     body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1301     rewrite the equations of motion,
1302     \begin{equation}
1303     \begin{array}{l}
1304     \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1305     \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1306     \end{array}
1307     \label{introEqaution:RBMotionPI}
1308     \end{equation}
1309     , as well as holonomic constraints,
1310     \[
1311     \begin{array}{l}
1312     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1313     Q^T Q = 1 \\
1314     \end{array}
1315     \]
1316 tim 2692
1317 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1318     so(3)^ \star$, the hat-map isomorphism,
1319     \begin{equation}
1320     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1321     {\begin{array}{*{20}c}
1322     0 & { - v_3 } & {v_2 } \\
1323     {v_3 } & 0 & { - v_1 } \\
1324     { - v_2 } & {v_1 } & 0 \\
1325     \end{array}} \right),
1326     \label{introEquation:hatmapIsomorphism}
1327     \end{equation}
1328     will let us associate the matrix products with traditional vector
1329     operations
1330     \[
1331     \hat vu = v \times u
1332     \]
1333     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1334     matrix,
1335     \begin{equation}
1336 tim 2797 (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ {\bullet ^T}
1337 tim 2707 ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1338     - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1339     (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1340     \end{equation}
1341     Since $\Lambda$ is symmetric, the last term of Equation
1342 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1343     multiplier $\Lambda$ is absent from the equations of motion. This
1344     unique property eliminate the requirement of iterations which can
1345 tim 2789 not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1346 tim 2707
1347 tim 2713 Applying hat-map isomorphism, we obtain the equation of motion for
1348     angular momentum on body frame
1349     \begin{equation}
1350     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1351     F_i (r,Q)} \right) \times X_i }.
1352     \label{introEquation:bodyAngularMotion}
1353     \end{equation}
1354 tim 2707 In the same manner, the equation of motion for rotation matrix is
1355     given by
1356     \[
1357 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1358 tim 2707 \]
1359    
1360 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1361     Lie-Poisson Integrator for Free Rigid Body}
1362 tim 2707
1363 tim 2713 If there is not external forces exerted on the rigid body, the only
1364     contribution to the rotational is from the kinetic potential (the
1365 tim 2801 first term of \ref{introEquation:bodyAngularMotion}). The free rigid
1366     body is an example of Lie-Poisson system with Hamiltonian function
1367 tim 2713 \begin{equation}
1368     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1369     \label{introEquation:rotationalKineticRB}
1370     \end{equation}
1371     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1372     Lie-Poisson structure matrix,
1373     \begin{equation}
1374     J(\pi ) = \left( {\begin{array}{*{20}c}
1375     0 & {\pi _3 } & { - \pi _2 } \\
1376     { - \pi _3 } & 0 & {\pi _1 } \\
1377     {\pi _2 } & { - \pi _1 } & 0 \\
1378     \end{array}} \right)
1379     \end{equation}
1380     Thus, the dynamics of free rigid body is governed by
1381     \begin{equation}
1382     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1383     \end{equation}
1384 tim 2707
1385 tim 2713 One may notice that each $T_i^r$ in Equation
1386     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1387     instance, the equations of motion due to $T_1^r$ are given by
1388     \begin{equation}
1389     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1390     \label{introEqaution:RBMotionSingleTerm}
1391     \end{equation}
1392     where
1393     \[ R_1 = \left( {\begin{array}{*{20}c}
1394     0 & 0 & 0 \\
1395     0 & 0 & {\pi _1 } \\
1396     0 & { - \pi _1 } & 0 \\
1397     \end{array}} \right).
1398     \]
1399     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1400 tim 2707 \[
1401 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1402     Q(0)e^{\Delta tR_1 }
1403 tim 2707 \]
1404 tim 2713 with
1405 tim 2707 \[
1406 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1407     0 & 0 & 0 \\
1408     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1409     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1410     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1411 tim 2707 \]
1412 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1413     tR_1 }$, we can use Cayley transformation,
1414 tim 2713 \[
1415     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1416     )
1417     \]
1418 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1419 tim 2713 manner.
1420    
1421     In order to construct a second-order symplectic method, we split the
1422     angular kinetic Hamiltonian function can into five terms
1423 tim 2707 \[
1424 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1425     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1426     (\pi _1 )
1427     \].
1428     Concatenating flows corresponding to these five terms, we can obtain
1429     an symplectic integrator,
1430     \[
1431     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1432 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1433     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1434 tim 2713 _1 }.
1435 tim 2707 \]
1436    
1437 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1438     $F(\pi )$ and $G(\pi )$ is defined by
1439 tim 2707 \[
1440 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1441     )
1442     \]
1443     If the Poisson bracket of a function $F$ with an arbitrary smooth
1444     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1445     conserved quantity in Poisson system. We can easily verify that the
1446     norm of the angular momentum, $\parallel \pi
1447     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1448     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1449     then by the chain rule
1450     \[
1451     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1452     }}{2})\pi
1453     \]
1454     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1455     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1456     Lie-Poisson integrator is found to be extremely efficient and stable
1457     which can be explained by the fact the small angle approximation is
1458     used and the norm of the angular momentum is conserved.
1459    
1460     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1461     Splitting for Rigid Body}
1462    
1463     The Hamiltonian of rigid body can be separated in terms of kinetic
1464     energy and potential energy,
1465     \[
1466     H = T(p,\pi ) + V(q,Q)
1467     \]
1468     The equations of motion corresponding to potential energy and
1469     kinetic energy are listed in the below table,
1470 tim 2776 \begin{table}
1471     \caption{Equations of motion due to Potential and Kinetic Energies}
1472 tim 2713 \begin{center}
1473     \begin{tabular}{|l|l|}
1474     \hline
1475     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1476     Potential & Kinetic \\
1477     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1478     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1479     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1480     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1481     \hline
1482     \end{tabular}
1483     \end{center}
1484 tim 2776 \end{table}
1485     A second-order symplectic method is now obtained by the
1486     composition of the flow maps,
1487 tim 2713 \[
1488     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1489     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1490     \]
1491 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1492     sub-flows which corresponding to force and torque respectively,
1493 tim 2713 \[
1494 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1495 tim 2713 _{\Delta t/2,\tau }.
1496 tim 2707 \]
1497 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1498     $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1499 tim 2719 order inside $\varphi _{\Delta t/2,V}$ does not matter.
1500 tim 2707
1501 tim 2713 Furthermore, kinetic potential can be separated to translational
1502     kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1503     \begin{equation}
1504     T(p,\pi ) =T^t (p) + T^r (\pi ).
1505     \end{equation}
1506     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1507     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1508     corresponding flow maps are given by
1509     \[
1510     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1511     _{\Delta t,T^r }.
1512     \]
1513     Finally, we obtain the overall symplectic flow maps for free moving
1514     rigid body
1515     \begin{equation}
1516     \begin{array}{c}
1517     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1518     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1519     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1520     \end{array}
1521     \label{introEquation:overallRBFlowMaps}
1522     \end{equation}
1523 tim 2707
1524 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1525 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1526     mimics a simple heat bath with stochastic and dissipative forces,
1527     has been applied in a variety of studies. This section will review
1528     the theory of Langevin dynamics simulation. A brief derivation of
1529 tim 2719 generalized Langevin equation will be given first. Follow that, we
1530 tim 2716 will discuss the physical meaning of the terms appearing in the
1531     equation as well as the calculation of friction tensor from
1532     hydrodynamics theory.
1533 tim 2685
1534 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1535 tim 2685
1536 tim 2719 Harmonic bath model, in which an effective set of harmonic
1537     oscillators are used to mimic the effect of a linearly responding
1538     environment, has been widely used in quantum chemistry and
1539     statistical mechanics. One of the successful applications of
1540     Harmonic bath model is the derivation of Deriving Generalized
1541     Langevin Dynamics. Lets consider a system, in which the degree of
1542     freedom $x$ is assumed to couple to the bath linearly, giving a
1543     Hamiltonian of the form
1544 tim 2696 \begin{equation}
1545     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1546 tim 2719 \label{introEquation:bathGLE}.
1547 tim 2696 \end{equation}
1548 tim 2719 Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1549     with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1550 tim 2696 \[
1551 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1552     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1553     \right\}}
1554 tim 2696 \]
1555 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1556     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1557     the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1558     coupling,
1559 tim 2696 \[
1560     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1561     \]
1562 tim 2719 where $g_\alpha$ are the coupling constants between the bath and the
1563     coordinate $x$. Introducing
1564 tim 2696 \[
1565 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1566     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1567     \] and combining the last two terms in Equation
1568     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1569     Hamiltonian as
1570 tim 2696 \[
1571     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1572     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1573     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1574     w_\alpha ^2 }}x} \right)^2 } \right\}}
1575     \]
1576     Since the first two terms of the new Hamiltonian depend only on the
1577     system coordinates, we can get the equations of motion for
1578     Generalized Langevin Dynamics by Hamilton's equations
1579     \ref{introEquation:motionHamiltonianCoordinate,
1580     introEquation:motionHamiltonianMomentum},
1581 tim 2719 \begin{equation}
1582     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1583     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1584     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1585     \label{introEquation:coorMotionGLE}
1586     \end{equation}
1587     and
1588     \begin{equation}
1589     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1590     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1591     \label{introEquation:bathMotionGLE}
1592     \end{equation}
1593 tim 2696
1594 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1595     variables $x_\alpha$ must be solved exactly first. As an integral
1596     transform which is particularly useful in solving linear ordinary
1597     differential equations, Laplace transform is the appropriate tool to
1598     solve this problem. The basic idea is to transform the difficult
1599     differential equations into simple algebra problems which can be
1600     solved easily. Then applying inverse Laplace transform, also known
1601     as the Bromwich integral, we can retrieve the solutions of the
1602     original problems.
1603 tim 2696
1604 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1605     transform of f(t) is a new function defined as
1606 tim 2696 \[
1607 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1608 tim 2696 \]
1609 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1610     Operator. Below are some important properties of Laplace transform
1611 tim 2696
1612 tim 2789 \begin{eqnarray*}
1613     L(x + y) & = & L(x) + L(y) \\
1614     L(ax) & = & aL(x) \\
1615     L(\dot x) & = & pL(x) - px(0) \\
1616     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1617     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1618     \end{eqnarray*}
1619    
1620    
1621 tim 2719 Applying Laplace transform to the bath coordinates, we obtain
1622 tim 2789 \begin{eqnarray*}
1623     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1624     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1625     \end{eqnarray*}
1626    
1627 tim 2719 By the same way, the system coordinates become
1628 tim 2789 \begin{eqnarray*}
1629     mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1630     & & \mbox{} - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1631     \end{eqnarray*}
1632 tim 2696
1633 tim 2719 With the help of some relatively important inverse Laplace
1634     transformations:
1635 tim 2696 \[
1636 tim 2719 \begin{array}{c}
1637     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1638     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1639     L(1) = \frac{1}{p} \\
1640     \end{array}
1641 tim 2696 \]
1642 tim 2719 , we obtain
1643 tim 2794 \begin{eqnarray*}
1644     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1645 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1646     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1647 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1648     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1649     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1650     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1651     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1652     \end{eqnarray*}
1653     \begin{eqnarray*}
1654     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1655 tim 2696 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1656     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1657 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1658     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1659     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1660     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1661     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1662     \end{eqnarray*}
1663 tim 2719 Introducing a \emph{dynamic friction kernel}
1664 tim 2696 \begin{equation}
1665 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1666     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1667     \label{introEquation:dynamicFrictionKernelDefinition}
1668     \end{equation}
1669     and \emph{a random force}
1670     \begin{equation}
1671     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1672     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1673     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1674     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1675     \label{introEquation:randomForceDefinition}
1676     \end{equation}
1677     the equation of motion can be rewritten as
1678     \begin{equation}
1679 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1680     (t)\dot x(t - \tau )d\tau } + R(t)
1681     \label{introEuqation:GeneralizedLangevinDynamics}
1682     \end{equation}
1683 tim 2719 which is known as the \emph{generalized Langevin equation}.
1684    
1685 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1686 tim 2719
1687     One may notice that $R(t)$ depends only on initial conditions, which
1688     implies it is completely deterministic within the context of a
1689     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1690     uncorrelated to $x$ and $\dot x$,
1691 tim 2696 \[
1692 tim 2719 \begin{array}{l}
1693     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1694     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1695     \end{array}
1696 tim 2696 \]
1697 tim 2719 This property is what we expect from a truly random process. As long
1698     as the model, which is gaussian distribution in general, chosen for
1699     $R(t)$ is a truly random process, the stochastic nature of the GLE
1700     still remains.
1701 tim 2696
1702 tim 2719 %dynamic friction kernel
1703     The convolution integral
1704 tim 2696 \[
1705 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1706 tim 2696 \]
1707 tim 2719 depends on the entire history of the evolution of $x$, which implies
1708     that the bath retains memory of previous motions. In other words,
1709     the bath requires a finite time to respond to change in the motion
1710     of the system. For a sluggish bath which responds slowly to changes
1711     in the system coordinate, we may regard $\xi(t)$ as a constant
1712     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1713     \[
1714     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1715     \]
1716     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1717     \[
1718     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1719     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1720     \]
1721     which can be used to describe dynamic caging effect. The other
1722     extreme is the bath that responds infinitely quickly to motions in
1723     the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1724     time:
1725     \[
1726     \xi (t) = 2\xi _0 \delta (t)
1727     \]
1728     Hence, the convolution integral becomes
1729     \[
1730     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1731     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1732     \]
1733     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1734     \begin{equation}
1735     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1736     x(t) + R(t) \label{introEquation:LangevinEquation}
1737     \end{equation}
1738     which is known as the Langevin equation. The static friction
1739     coefficient $\xi _0$ can either be calculated from spectral density
1740 tim 2850 or be determined by Stokes' law for regular shaped particles. A
1741 tim 2719 briefly review on calculating friction tensor for arbitrary shaped
1742 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1743 tim 2696
1744 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1745 tim 2719
1746     Defining a new set of coordinates,
1747 tim 2696 \[
1748     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1749     ^2 }}x(0)
1750 tim 2719 \],
1751     we can rewrite $R(T)$ as
1752 tim 2696 \[
1753 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1754 tim 2696 \]
1755     And since the $q$ coordinates are harmonic oscillators,
1756 tim 2789
1757     \begin{eqnarray*}
1758     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1759     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1760     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1761     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1762     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1763     & = &kT\xi (t) \\
1764     \end{eqnarray*}
1765    
1766 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1767 tim 2696 \begin{equation}
1768     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1769 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1770 tim 2696 \end{equation}
1771 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1772     can model the random force and friction kernel.