ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2895
Committed: Tue Jun 27 02:42:30 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 75396 byte(s)
Log Message:
minor corrections.

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9 tim 2819 behind classical mechanics. Firstly, one can determine the state of
10 tim 2692 a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20 tim 2819 Newton's first law defines a class of inertial frames. Inertial
21 tim 2694 frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23 tim 2819 With respect to inertial frames, Newton's second law has the form
24 tim 2694 \begin{equation}
25 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
26 tim 2694 \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2819 Newton's third law states that
33 tim 2694 \begin{equation}
34 tim 2702 F_{ij} = -F_{ji}
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 tim 2694 \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62 tim 2819 \dot L = r \times \dot p = \tau
63 tim 2694 \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2696 that if all forces are conservative, Energy
67     \begin{equation}E = T + V \label{introEquation:energyConservation}
68     \end{equation}
69     is conserved. All of these conserved quantities are
70     important factors to determine the quality of numerical integration
71 tim 2819 schemes for rigid bodies \cite{Dullweber1997}.
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75 tim 2819 Newtonian Mechanics suffers from two important limitations: motions
76 tim 2895 can only be described in cartesian coordinate systems. Moreover, it
77     becomes impossible to predict analytically the properties of the
78 tim 2819 system even if we know all of the details of the interaction. In
79     order to overcome some of the practical difficulties which arise in
80     attempts to apply Newton's equation to complex system, approximate
81     numerical procedures may be developed.
82 tim 2692
83 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84     Principle}}
85 tim 2692
86     Hamilton introduced the dynamical principle upon which it is
87 tim 2819 possible to base all of mechanics and most of classical physics.
88     Hamilton's Principle may be stated as follows,
89 tim 2692
90     The actual trajectory, along which a dynamical system may move from
91     one point to another within a specified time, is derived by finding
92     the path which minimizes the time integral of the difference between
93 tim 2819 the kinetic, $K$, and potential energies, $U$.
94 tim 2692 \begin{equation}
95     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
96 tim 2693 \label{introEquation:halmitonianPrinciple1}
97 tim 2692 \end{equation}
98    
99     For simple mechanical systems, where the forces acting on the
100 tim 2819 different parts are derivable from a potential, the Lagrangian
101     function $L$ can be defined as the difference between the kinetic
102     energy of the system and its potential energy,
103 tim 2692 \begin{equation}
104     L \equiv K - U = L(q_i ,\dot q_i ) ,
105     \label{introEquation:lagrangianDef}
106     \end{equation}
107     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
108     \begin{equation}
109 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
110     \label{introEquation:halmitonianPrinciple2}
111 tim 2692 \end{equation}
112    
113 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
114     Equations of Motion in Lagrangian Mechanics}}
115 tim 2692
116 tim 2850 For a system of $f$ degrees of freedom, the equations of motion in
117     the Lagrangian form is
118 tim 2692 \begin{equation}
119     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
120     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
121 tim 2693 \label{introEquation:eqMotionLagrangian}
122 tim 2692 \end{equation}
123     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
124     generalized velocity.
125    
126 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
127 tim 2692
128     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
129     introduced by William Rowan Hamilton in 1833 as a re-formulation of
130     classical mechanics. If the potential energy of a system is
131 tim 2819 independent of velocities, the momenta can be defined as
132 tim 2692 \begin{equation}
133     p_i = \frac{\partial L}{\partial \dot q_i}
134     \label{introEquation:generalizedMomenta}
135     \end{equation}
136 tim 2693 The Lagrange equations of motion are then expressed by
137 tim 2692 \begin{equation}
138 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
139     \label{introEquation:generalizedMomentaDot}
140     \end{equation}
141    
142     With the help of the generalized momenta, we may now define a new
143     quantity $H$ by the equation
144     \begin{equation}
145     H = \sum\limits_k {p_k \dot q_k } - L ,
146 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
147     \end{equation}
148     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
149     $L$ is the Lagrangian function for the system.
150    
151 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
152     one can obtain
153     \begin{equation}
154     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
155     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
156     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
157     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
158     \end{equation}
159     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
160     second and fourth terms in the parentheses cancel. Therefore,
161     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
162     \begin{equation}
163     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
164     \right)} - \frac{{\partial L}}{{\partial t}}dt
165     \label{introEquation:diffHamiltonian2}
166     \end{equation}
167     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
168     find
169     \begin{equation}
170 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
171 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
172     \end{equation}
173     \begin{equation}
174 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
175 tim 2693 \label{introEquation:motionHamiltonianMomentum}
176     \end{equation}
177     and
178     \begin{equation}
179     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
180     t}}
181     \label{introEquation:motionHamiltonianTime}
182     \end{equation}
183    
184     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
185     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
186     equation of motion. Due to their symmetrical formula, they are also
187 tim 2786 known as the canonical equations of motions \cite{Goldstein2001}.
188 tim 2693
189 tim 2692 An important difference between Lagrangian approach and the
190     Hamiltonian approach is that the Lagrangian is considered to be a
191 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
192     $q_i$, while the Hamiltonian is considered to be a function of the
193     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
194     Hamiltonian Mechanics is more appropriate for application to
195     statistical mechanics and quantum mechanics, since it treats the
196     coordinate and its time derivative as independent variables and it
197     only works with 1st-order differential equations\cite{Marion1990}.
198 tim 2692
199 tim 2696 In Newtonian Mechanics, a system described by conservative forces
200     conserves the total energy \ref{introEquation:energyConservation}.
201     It follows that Hamilton's equations of motion conserve the total
202     Hamiltonian.
203     \begin{equation}
204     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
205     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
206     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
207     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
208     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
209 tim 2698 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
210 tim 2696 \end{equation}
211    
212 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
213     Mechanics}
214 tim 2692
215 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
216 tim 2692 simulation are governed by the principle of Statistical Mechanics.
217     The following section will give a brief introduction to some of the
218 tim 2700 Statistical Mechanics concepts and theorem presented in this
219     dissertation.
220 tim 2692
221 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
222 tim 2692
223 tim 2700 Mathematically, phase space is the space which represents all
224     possible states. Each possible state of the system corresponds to
225     one unique point in the phase space. For mechanical systems, the
226     phase space usually consists of all possible values of position and
227 tim 2819 momentum variables. Consider a dynamic system of $f$ particles in a
228     cartesian space, where each of the $6f$ coordinates and momenta is
229     assigned to one of $6f$ mutually orthogonal axes, the phase space of
230 tim 2888 this system is a $6f$ dimensional space. A point, $x = (\rightarrow
231     q_1 , \ldots ,\rightarrow q_f ,\rightarrow p_1 , \ldots ,\rightarrow
232     p_f )$, with a unique set of values of $6f$ coordinates and momenta
233     is a phase space vector.
234     %%%fix me
235 tim 2700
236 tim 2888 In statistical mechanics, the condition of an ensemble at any time
237 tim 2700 can be regarded as appropriately specified by the density $\rho$
238     with which representative points are distributed over the phase
239 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
240     freedom is defined as,
241 tim 2700 \begin{equation}
242     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
243     \label{introEquation:densityDistribution}
244     \end{equation}
245     Governed by the principles of mechanics, the phase points change
246 tim 2819 their locations which would change the density at any time at phase
247     space. Hence, the density distribution is also to be taken as a
248 tim 2700 function of the time.
249    
250     The number of systems $\delta N$ at time $t$ can be determined by,
251     \begin{equation}
252     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
253     \label{introEquation:deltaN}
254     \end{equation}
255 tim 2819 Assuming a large enough population of systems, we can sufficiently
256     approximate $\delta N$ without introducing discontinuity when we go
257     from one region in the phase space to another. By integrating over
258     the whole phase space,
259 tim 2700 \begin{equation}
260     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
261     \label{introEquation:totalNumberSystem}
262     \end{equation}
263     gives us an expression for the total number of the systems. Hence,
264     the probability per unit in the phase space can be obtained by,
265     \begin{equation}
266     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
267     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
268     \label{introEquation:unitProbability}
269     \end{equation}
270 tim 2850 With the help of Eq.~\ref{introEquation:unitProbability} and the
271     knowledge of the system, it is possible to calculate the average
272 tim 2700 value of any desired quantity which depends on the coordinates and
273     momenta of the system. Even when the dynamics of the real system is
274     complex, or stochastic, or even discontinuous, the average
275 tim 2819 properties of the ensemble of possibilities as a whole remaining
276     well defined. For a classical system in thermal equilibrium with its
277     environment, the ensemble average of a mechanical quantity, $\langle
278     A(q , p) \rangle_t$, takes the form of an integral over the phase
279     space of the system,
280 tim 2700 \begin{equation}
281     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
282     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
283     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
284     \label{introEquation:ensembelAverage}
285     \end{equation}
286    
287     There are several different types of ensembles with different
288     statistical characteristics. As a function of macroscopic
289 tim 2819 parameters, such as temperature \textit{etc}, the partition function
290     can be used to describe the statistical properties of a system in
291 tim 2700 thermodynamic equilibrium.
292    
293     As an ensemble of systems, each of which is known to be thermally
294 tim 2850 isolated and conserve energy, the Microcanonical ensemble (NVE) has
295     a partition function like,
296 tim 2700 \begin{equation}
297 tim 2706 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
298 tim 2700 \end{equation}
299 tim 2850 A canonical ensemble (NVT)is an ensemble of systems, each of which
300 tim 2700 can share its energy with a large heat reservoir. The distribution
301     of the total energy amongst the possible dynamical states is given
302     by the partition function,
303     \begin{equation}
304     \Omega (N,V,T) = e^{ - \beta A}
305     \label{introEquation:NVTPartition}
306     \end{equation}
307     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
308 tim 2819 TS$. Since most experiments are carried out under constant pressure
309 tim 2850 condition, the isothermal-isobaric ensemble (NPT) plays a very
310 tim 2819 important role in molecular simulations. The isothermal-isobaric
311     ensemble allow the system to exchange energy with a heat bath of
312     temperature $T$ and to change the volume as well. Its partition
313     function is given as
314 tim 2700 \begin{equation}
315     \Delta (N,P,T) = - e^{\beta G}.
316     \label{introEquation:NPTPartition}
317     \end{equation}
318     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
319    
320     \subsection{\label{introSection:liouville}Liouville's theorem}
321    
322 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
323     rests. It describes the time evolution of the phase space
324 tim 2700 distribution function. In order to calculate the rate of change of
325 tim 2850 $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
326     the two faces perpendicular to the $q_1$ axis, which are located at
327     $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
328     opposite face is given by the expression,
329 tim 2700 \begin{equation}
330     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
331     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
332     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
333     \ldots \delta p_f .
334     \end{equation}
335     Summing all over the phase space, we obtain
336     \begin{equation}
337     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
338     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
339     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
340     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
341     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
342     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
343     \end{equation}
344     Differentiating the equations of motion in Hamiltonian formalism
345     (\ref{introEquation:motionHamiltonianCoordinate},
346     \ref{introEquation:motionHamiltonianMomentum}), we can show,
347     \begin{equation}
348     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
349     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
350     \end{equation}
351     which cancels the first terms of the right hand side. Furthermore,
352 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
353 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
354     simple form,
355     \begin{equation}
356     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
357     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
358     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
359     \label{introEquation:liouvilleTheorem}
360     \end{equation}
361    
362     Liouville's theorem states that the distribution function is
363     constant along any trajectory in phase space. In classical
364 tim 2850 statistical mechanics, since the number of members in an ensemble is
365     huge and constant, we can assume the local density has no reason
366     (other than classical mechanics) to change,
367 tim 2700 \begin{equation}
368     \frac{{\partial \rho }}{{\partial t}} = 0.
369     \label{introEquation:stationary}
370     \end{equation}
371     In such stationary system, the density of distribution $\rho$ can be
372     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
373     distribution,
374     \begin{equation}
375     \rho \propto e^{ - \beta H}
376     \label{introEquation:densityAndHamiltonian}
377     \end{equation}
378    
379 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
380 tim 2702 Lets consider a region in the phase space,
381     \begin{equation}
382     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
383     \end{equation}
384     If this region is small enough, the density $\rho$ can be regarded
385 tim 2819 as uniform over the whole integral. Thus, the number of phase points
386     inside this region is given by,
387 tim 2702 \begin{equation}
388     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
389     dp_1 } ..dp_f.
390     \end{equation}
391    
392     \begin{equation}
393     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
394     \frac{d}{{dt}}(\delta v) = 0.
395     \end{equation}
396     With the help of stationary assumption
397     (\ref{introEquation:stationary}), we obtain the principle of the
398 tim 2819 \emph{conservation of volume in phase space},
399 tim 2702 \begin{equation}
400     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
401     ...dq_f dp_1 } ..dp_f = 0.
402     \label{introEquation:volumePreserving}
403     \end{equation}
404    
405 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
406 tim 2702
407 tim 2700 Liouville's theorem can be expresses in a variety of different forms
408     which are convenient within different contexts. For any two function
409     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
410     bracket ${F, G}$ is defined as
411     \begin{equation}
412     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
413     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
414     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
415     q_i }}} \right)}.
416     \label{introEquation:poissonBracket}
417     \end{equation}
418     Substituting equations of motion in Hamiltonian formalism(
419 tim 2850 Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
420     Eq.~\ref{introEquation:motionHamiltonianMomentum} ) into
421     (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
422     Liouville's theorem using Poisson bracket notion,
423 tim 2700 \begin{equation}
424     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
425     {\rho ,H} \right\}.
426     \label{introEquation:liouvilleTheromInPoissin}
427     \end{equation}
428     Moreover, the Liouville operator is defined as
429     \begin{equation}
430     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
431     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
432     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
433     \label{introEquation:liouvilleOperator}
434     \end{equation}
435     In terms of Liouville operator, Liouville's equation can also be
436     expressed as
437     \begin{equation}
438     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
439     \label{introEquation:liouvilleTheoremInOperator}
440     \end{equation}
441    
442 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
443 tim 2692
444 tim 2695 Various thermodynamic properties can be calculated from Molecular
445     Dynamics simulation. By comparing experimental values with the
446     calculated properties, one can determine the accuracy of the
447 tim 2819 simulation and the quality of the underlying model. However, both
448     experiments and computer simulations are usually performed during a
449 tim 2695 certain time interval and the measurements are averaged over a
450     period of them which is different from the average behavior of
451 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
452     Hypothesis makes a connection between time average and the ensemble
453     average. It states that the time average and average over the
454 tim 2786 statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
455 tim 2695 \begin{equation}
456 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
457     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
458     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
459 tim 2695 \end{equation}
460 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
461     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
462     distribution function. If an observation is averaged over a
463     sufficiently long time (longer than relaxation time), all accessible
464     microstates in phase space are assumed to be equally probed, giving
465     a properly weighted statistical average. This allows the researcher
466     freedom of choice when deciding how best to measure a given
467     observable. In case an ensemble averaged approach sounds most
468 tim 2786 reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
469 tim 2700 utilized. Or if the system lends itself to a time averaging
470     approach, the Molecular Dynamics techniques in
471     Sec.~\ref{introSection:molecularDynamics} will be the best
472     choice\cite{Frenkel1996}.
473 tim 2694
474 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
475 tim 2819 A variety of numerical integrators have been proposed to simulate
476     the motions of atoms in MD simulation. They usually begin with
477     initial conditionals and move the objects in the direction governed
478     by the differential equations. However, most of them ignore the
479     hidden physical laws contained within the equations. Since 1990,
480     geometric integrators, which preserve various phase-flow invariants
481     such as symplectic structure, volume and time reversal symmetry, are
482     developed to address this issue\cite{Dullweber1997, McLachlan1998,
483 tim 2872 Leimkuhler1999}. The velocity Verlet method, which happens to be a
484 tim 2819 simple example of symplectic integrator, continues to gain
485     popularity in the molecular dynamics community. This fact can be
486     partly explained by its geometric nature.
487 tim 2697
488 tim 2819 \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
489     A \emph{manifold} is an abstract mathematical space. It looks
490     locally like Euclidean space, but when viewed globally, it may have
491     more complicated structure. A good example of manifold is the
492     surface of Earth. It seems to be flat locally, but it is round if
493     viewed as a whole. A \emph{differentiable manifold} (also known as
494     \emph{smooth manifold}) is a manifold on which it is possible to
495     apply calculus on \emph{differentiable manifold}. A \emph{symplectic
496     manifold} is defined as a pair $(M, \omega)$ which consists of a
497 tim 2697 \emph{differentiable manifold} $M$ and a close, non-degenerated,
498     bilinear symplectic form, $\omega$. A symplectic form on a vector
499     space $V$ is a function $\omega(x, y)$ which satisfies
500     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
501     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
502 tim 2819 $\omega(x, x) = 0$. The cross product operation in vector field is
503     an example of symplectic form.
504 tim 2697
505 tim 2819 One of the motivations to study \emph{symplectic manifolds} in
506 tim 2697 Hamiltonian Mechanics is that a symplectic manifold can represent
507     all possible configurations of the system and the phase space of the
508     system can be described by it's cotangent bundle. Every symplectic
509     manifold is even dimensional. For instance, in Hamilton equations,
510     coordinate and momentum always appear in pairs.
511    
512 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
513 tim 2697
514 tim 2819 For an ordinary differential system defined as
515 tim 2698 \begin{equation}
516     \dot x = f(x)
517     \end{equation}
518 tim 2819 where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
519 tim 2698 \begin{equation}
520 tim 2699 f(r) = J\nabla _x H(r).
521 tim 2698 \end{equation}
522     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
523     matrix
524     \begin{equation}
525     J = \left( {\begin{array}{*{20}c}
526     0 & I \\
527     { - I} & 0 \\
528     \end{array}} \right)
529     \label{introEquation:canonicalMatrix}
530     \end{equation}
531     where $I$ is an identity matrix. Using this notation, Hamiltonian
532     system can be rewritten as,
533     \begin{equation}
534     \frac{d}{{dt}}x = J\nabla _x H(x)
535     \label{introEquation:compactHamiltonian}
536     \end{equation}In this case, $f$ is
537     called a \emph{Hamiltonian vector field}.
538 tim 2697
539 tim 2789 Another generalization of Hamiltonian dynamics is Poisson
540     Dynamics\cite{Olver1986},
541 tim 2698 \begin{equation}
542     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
543     \end{equation}
544     The most obvious change being that matrix $J$ now depends on $x$.
545    
546 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
547    
548 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
549     \begin{equation}
550     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
551     \end{equation}
552     The exact flow(solution) $\varphi_\tau$ is defined by
553     \[
554     x(t+\tau) =\varphi_\tau(x(t))
555     \]
556     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
557 tim 2702 space to itself. The flow has the continuous group property,
558 tim 2698 \begin{equation}
559 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
560     + \tau _2 } .
561     \end{equation}
562     In particular,
563     \begin{equation}
564     \varphi _\tau \circ \varphi _{ - \tau } = I
565     \end{equation}
566     Therefore, the exact flow is self-adjoint,
567     \begin{equation}
568     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
569     \end{equation}
570     The exact flow can also be written in terms of the of an operator,
571     \begin{equation}
572     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
573     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
574     \label{introEquation:exponentialOperator}
575     \end{equation}
576    
577     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
578 tim 2872 Instead, we use an approximate map, $\psi_\tau$, which is usually
579 tim 2702 called integrator. The order of an integrator $\psi_\tau$ is $p$, if
580     the Taylor series of $\psi_\tau$ agree to order $p$,
581     \begin{equation}
582 tim 2872 \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
583 tim 2698 \end{equation}
584    
585 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
586    
587 tim 2872 The hidden geometric properties\cite{Budd1999, Marsden1998} of an
588     ODE and its flow play important roles in numerical studies. Many of
589     them can be found in systems which occur naturally in applications.
590 tim 2702
591     Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
592     a \emph{symplectic} flow if it satisfies,
593 tim 2698 \begin{equation}
594 tim 2703 {\varphi '}^T J \varphi ' = J.
595 tim 2698 \end{equation}
596     According to Liouville's theorem, the symplectic volume is invariant
597     under a Hamiltonian flow, which is the basis for classical
598 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
599     field on a symplectic manifold can be shown to be a
600     symplectomorphism. As to the Poisson system,
601 tim 2698 \begin{equation}
602 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
603 tim 2698 \end{equation}
604 tim 2872 is the property that must be preserved by the integrator.
605 tim 2702
606     It is possible to construct a \emph{volume-preserving} flow for a
607 tim 2872 source free ODE ($ \nabla \cdot f = 0 $), if the flow satisfies $
608 tim 2702 \det d\varphi = 1$. One can show easily that a symplectic flow will
609     be volume-preserving.
610    
611 tim 2872 Changing the variables $y = h(x)$ in an ODE
612     (Eq.~\ref{introEquation:ODE}) will result in a new system,
613 tim 2698 \[
614     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
615     \]
616     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
617     In other words, the flow of this vector field is reversible if and
618 tim 2702 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
619 tim 2698
620 tim 2705 A \emph{first integral}, or conserved quantity of a general
621     differential function is a function $ G:R^{2d} \to R^d $ which is
622     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
623     \[
624     \frac{{dG(x(t))}}{{dt}} = 0.
625     \]
626     Using chain rule, one may obtain,
627     \[
628     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
629     \]
630     which is the condition for conserving \emph{first integral}. For a
631     canonical Hamiltonian system, the time evolution of an arbitrary
632     smooth function $G$ is given by,
633 tim 2789
634     \begin{eqnarray}
635     \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
636     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
637 tim 2705 \label{introEquation:firstIntegral1}
638 tim 2789 \end{eqnarray}
639    
640    
641 tim 2705 Using poisson bracket notion, Equation
642     \ref{introEquation:firstIntegral1} can be rewritten as
643     \[
644     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
645     \]
646     Therefore, the sufficient condition for $G$ to be the \emph{first
647     integral} of a Hamiltonian system is
648     \[
649     \left\{ {G,H} \right\} = 0.
650     \]
651     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
652     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
653     0$.
654    
655 tim 2789 When designing any numerical methods, one should always try to
656 tim 2702 preserve the structural properties of the original ODE and its flow.
657    
658 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
659     A lot of well established and very effective numerical methods have
660     been successful precisely because of their symplecticities even
661     though this fact was not recognized when they were first
662 tim 2872 constructed. The most famous example is the Verlet-leapfrog method
663 tim 2819 in molecular dynamics. In general, symplectic integrators can be
664 tim 2699 constructed using one of four different methods.
665     \begin{enumerate}
666     \item Generating functions
667     \item Variational methods
668     \item Runge-Kutta methods
669     \item Splitting methods
670     \end{enumerate}
671 tim 2698
672 tim 2789 Generating function\cite{Channell1990} tends to lead to methods
673     which are cumbersome and difficult to use. In dissipative systems,
674     variational methods can capture the decay of energy
675     accurately\cite{Kane2000}. Since their geometrically unstable nature
676     against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
677     methods are not suitable for Hamiltonian system. Recently, various
678     high-order explicit Runge-Kutta methods
679     \cite{Owren1992,Chen2003}have been developed to overcome this
680 tim 2703 instability. However, due to computational penalty involved in
681 tim 2819 implementing the Runge-Kutta methods, they have not attracted much
682     attention from the Molecular Dynamics community. Instead, splitting
683     methods have been widely accepted since they exploit natural
684     decompositions of the system\cite{Tuckerman1992, McLachlan1998}.
685 tim 2702
686 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
687 tim 2702
688     The main idea behind splitting methods is to decompose the discrete
689     $\varphi_h$ as a composition of simpler flows,
690 tim 2699 \begin{equation}
691     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
692     \varphi _{h_n }
693     \label{introEquation:FlowDecomposition}
694     \end{equation}
695     where each of the sub-flow is chosen such that each represent a
696 tim 2702 simpler integration of the system.
697    
698     Suppose that a Hamiltonian system takes the form,
699     \[
700     H = H_1 + H_2.
701     \]
702     Here, $H_1$ and $H_2$ may represent different physical processes of
703     the system. For instance, they may relate to kinetic and potential
704     energy respectively, which is a natural decomposition of the
705     problem. If $H_1$ and $H_2$ can be integrated using exact flows
706     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
707 tim 2819 order expression is then given by the Lie-Trotter formula
708 tim 2699 \begin{equation}
709 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
710     \label{introEquation:firstOrderSplitting}
711     \end{equation}
712     where $\varphi _h$ is the result of applying the corresponding
713     continuous $\varphi _i$ over a time $h$. By definition, as
714     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
715     must follow that each operator $\varphi_i(t)$ is a symplectic map.
716     It is easy to show that any composition of symplectic flows yields a
717     symplectic map,
718     \begin{equation}
719 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
720 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
721 tim 2699 \label{introEquation:SymplecticFlowComposition}
722     \end{equation}
723 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
724     splitting in this context automatically generates a symplectic map.
725 tim 2699
726 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
727     introduces local errors proportional to $h^2$, while Strang
728     splitting gives a second-order decomposition,
729     \begin{equation}
730     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
731 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
732 tim 2702 \end{equation}
733 tim 2819 which has a local error proportional to $h^3$. The Sprang
734     splitting's popularity in molecular simulation community attribute
735     to its symmetric property,
736 tim 2702 \begin{equation}
737     \varphi _h^{ - 1} = \varphi _{ - h}.
738 tim 2703 \label{introEquation:timeReversible}
739 tim 2882 \end{equation}
740 tim 2702
741 tim 2872 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
742 tim 2702 The classical equation for a system consisting of interacting
743     particles can be written in Hamiltonian form,
744     \[
745     H = T + V
746     \]
747     where $T$ is the kinetic energy and $V$ is the potential energy.
748 tim 2872 Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
749 tim 2702 obtains the following:
750     \begin{align}
751     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
752     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
753     \label{introEquation:Lp10a} \\%
754     %
755     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
756     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
757     \label{introEquation:Lp10b}
758     \end{align}
759     where $F(t)$ is the force at time $t$. This integration scheme is
760     known as \emph{velocity verlet} which is
761     symplectic(\ref{introEquation:SymplecticFlowComposition}),
762     time-reversible(\ref{introEquation:timeReversible}) and
763     volume-preserving (\ref{introEquation:volumePreserving}). These
764     geometric properties attribute to its long-time stability and its
765     popularity in the community. However, the most commonly used
766     velocity verlet integration scheme is written as below,
767     \begin{align}
768     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
769     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
770     %
771     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
772     \label{introEquation:Lp9b}\\%
773     %
774     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
775 tim 2872 \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
776 tim 2702 \end{align}
777     From the preceding splitting, one can see that the integration of
778     the equations of motion would follow:
779     \begin{enumerate}
780     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
781    
782     \item Use the half step velocities to move positions one whole step, $\Delta t$.
783    
784 tim 2872 \item Evaluate the forces at the new positions, $\mathbf{q}(\Delta t)$, and use the new forces to complete the velocity move.
785 tim 2702
786     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
787     \end{enumerate}
788    
789 tim 2872 By simply switching the order of the propagators in the splitting
790     and composing a new integrator, the \emph{position verlet}
791     integrator, can be generated,
792 tim 2702 \begin{align}
793     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
794     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
795     \label{introEquation:positionVerlet1} \\%
796     %
797 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
798 tim 2702 q(\Delta t)} \right]. %
799 tim 2719 \label{introEquation:positionVerlet2}
800 tim 2702 \end{align}
801    
802 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
803 tim 2702
804 tim 2872 The Baker-Campbell-Hausdorff formula can be used to determine the
805     local error of splitting method in terms of the commutator of the
806 tim 2702 operators(\ref{introEquation:exponentialOperator}) associated with
807 tim 2872 the sub-flow. For operators $hX$ and $hY$ which are associated with
808 tim 2726 $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
809 tim 2702 \begin{equation}
810     \exp (hX + hY) = \exp (hZ)
811     \end{equation}
812     where
813     \begin{equation}
814     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
815     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
816     \end{equation}
817     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
818     \[
819     [X,Y] = XY - YX .
820     \]
821 tim 2872 Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
822     to the Sprang splitting, we can obtain
823 tim 2779 \begin{eqnarray*}
824 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
825     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
826 tim 2779 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
827     \end{eqnarray*}
828 tim 2872 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0,\] the dominant local
829 tim 2702 error of Spring splitting is proportional to $h^3$. The same
830 tim 2872 procedure can be applied to a general splitting, of the form
831 tim 2702 \begin{equation}
832     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
833     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
834     \end{equation}
835 tim 2872 A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
836     order methods. Yoshida proposed an elegant way to compose higher
837 tim 2789 order methods based on symmetric splitting\cite{Yoshida1990}. Given
838     a symmetric second order base method $ \varphi _h^{(2)} $, a
839     fourth-order symmetric method can be constructed by composing,
840 tim 2702 \[
841     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
842     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
843     \]
844     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
845     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
846     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
847     \begin{equation}
848     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
849 tim 2872 _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)},
850 tim 2702 \end{equation}
851 tim 2872 if the weights are chosen as
852 tim 2702 \[
853     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
854     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
855     \]
856    
857 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
858    
859 tim 2720 As one of the principal tools of molecular modeling, Molecular
860     dynamics has proven to be a powerful tool for studying the functions
861     of biological systems, providing structural, thermodynamic and
862     dynamical information. The basic idea of molecular dynamics is that
863     macroscopic properties are related to microscopic behavior and
864     microscopic behavior can be calculated from the trajectories in
865     simulations. For instance, instantaneous temperature of an
866     Hamiltonian system of $N$ particle can be measured by
867     \[
868 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
869 tim 2720 \]
870     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
871     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
872     the boltzman constant.
873 tim 2694
874 tim 2720 A typical molecular dynamics run consists of three essential steps:
875     \begin{enumerate}
876     \item Initialization
877     \begin{enumerate}
878     \item Preliminary preparation
879     \item Minimization
880     \item Heating
881     \item Equilibration
882     \end{enumerate}
883     \item Production
884     \item Analysis
885     \end{enumerate}
886     These three individual steps will be covered in the following
887     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
888 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
889 tim 2872 will discusse issues in production run.
890 tim 2801 Sec.~\ref{introSection:Analysis} provides the theoretical tools for
891     trajectory analysis.
892 tim 2719
893 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
894 tim 2719
895 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
896 tim 2719
897 tim 2720 When selecting the starting structure of a molecule for molecular
898     simulation, one may retrieve its Cartesian coordinates from public
899     databases, such as RCSB Protein Data Bank \textit{etc}. Although
900     thousands of crystal structures of molecules are discovered every
901     year, many more remain unknown due to the difficulties of
902 tim 2872 purification and crystallization. Even for molecules with known
903     structure, some important information is missing. For example, a
904 tim 2720 missing hydrogen atom which acts as donor in hydrogen bonding must
905     be added. Moreover, in order to include electrostatic interaction,
906     one may need to specify the partial charges for individual atoms.
907     Under some circumstances, we may even need to prepare the system in
908 tim 2872 a special configuration. For instance, when studying transport
909     phenomenon in membrane systems, we may prepare the lipids in a
910     bilayer structure instead of placing lipids randomly in solvent,
911     since we are not interested in the slow self-aggregation process.
912 tim 2694
913 tim 2819 \subsubsection{\textbf{Minimization}}
914 tim 2705
915 tim 2720 It is quite possible that some of molecules in the system from
916 tim 2872 preliminary preparation may be overlapping with each other. This
917     close proximity leads to high initial potential energy which
918     consequently jeopardizes any molecular dynamics simulations. To
919     remove these steric overlaps, one typically performs energy
920     minimization to find a more reasonable conformation. Several energy
921     minimization methods have been developed to exploit the energy
922     surface and to locate the local minimum. While converging slowly
923     near the minimum, steepest descent method is extremely robust when
924     systems are strongly anharmonic. Thus, it is often used to refine
925     structure from crystallographic data. Relied on the gradient or
926     hessian, advanced methods like Newton-Raphson converge rapidly to a
927     local minimum, but become unstable if the energy surface is far from
928     quadratic. Another factor that must be taken into account, when
929 tim 2720 choosing energy minimization method, is the size of the system.
930     Steepest descent and conjugate gradient can deal with models of any
931 tim 2872 size. Because of the limits on computer memory to store the hessian
932     matrix and the computing power needed to diagonalized these
933     matrices, most Newton-Raphson methods can not be used with very
934     large systems.
935 tim 2694
936 tim 2819 \subsubsection{\textbf{Heating}}
937 tim 2720
938     Typically, Heating is performed by assigning random velocities
939 tim 2872 according to a Maxwell-Boltzman distribution for a desired
940     temperature. Beginning at a lower temperature and gradually
941     increasing the temperature by assigning larger random velocities, we
942     end up with setting the temperature of the system to a final
943     temperature at which the simulation will be conducted. In heating
944     phase, we should also keep the system from drifting or rotating as a
945     whole. To do this, the net linear momentum and angular momentum of
946     the system is shifted to zero after each resampling from the Maxwell
947     -Boltzman distribution.
948 tim 2720
949 tim 2819 \subsubsection{\textbf{Equilibration}}
950 tim 2720
951     The purpose of equilibration is to allow the system to evolve
952     spontaneously for a period of time and reach equilibrium. The
953     procedure is continued until various statistical properties, such as
954     temperature, pressure, energy, volume and other structural
955     properties \textit{etc}, become independent of time. Strictly
956     speaking, minimization and heating are not necessary, provided the
957     equilibration process is long enough. However, these steps can serve
958     as a means to arrive at an equilibrated structure in an effective
959     way.
960    
961     \subsection{\label{introSection:production}Production}
962    
963 tim 2872 The production run is the most important step of the simulation, in
964 tim 2725 which the equilibrated structure is used as a starting point and the
965     motions of the molecules are collected for later analysis. In order
966     to capture the macroscopic properties of the system, the molecular
967 tim 2872 dynamics simulation must be performed by sampling correctly and
968     efficiently from the relevant thermodynamic ensemble.
969 tim 2720
970 tim 2725 The most expensive part of a molecular dynamics simulation is the
971     calculation of non-bonded forces, such as van der Waals force and
972     Coulombic forces \textit{etc}. For a system of $N$ particles, the
973     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
974     which making large simulations prohibitive in the absence of any
975 tim 2872 algorithmic tricks.
976 tim 2720
977 tim 2872 A natural approach to avoid system size issues is to represent the
978 tim 2725 bulk behavior by a finite number of the particles. However, this
979 tim 2872 approach will suffer from the surface effect at the edges of the
980     simulation. To offset this, \textit{Periodic boundary conditions}
981     (see Fig.~\ref{introFig:pbc}) is developed to simulate bulk
982     properties with a relatively small number of particles. In this
983     method, the simulation box is replicated throughout space to form an
984     infinite lattice. During the simulation, when a particle moves in
985     the primary cell, its image in other cells move in exactly the same
986     direction with exactly the same orientation. Thus, as a particle
987     leaves the primary cell, one of its images will enter through the
988     opposite face.
989 tim 2789 \begin{figure}
990     \centering
991     \includegraphics[width=\linewidth]{pbc.eps}
992     \caption[An illustration of periodic boundary conditions]{A 2-D
993     illustration of periodic boundary conditions. As one particle leaves
994     the left of the simulation box, an image of it enters the right.}
995     \label{introFig:pbc}
996     \end{figure}
997 tim 2725
998     %cutoff and minimum image convention
999     Another important technique to improve the efficiency of force
1000 tim 2872 evaluation is to apply spherical cutoff where particles farther than
1001     a predetermined distance are not included in the calculation
1002 tim 2725 \cite{Frenkel1996}. The use of a cutoff radius will cause a
1003 tim 2730 discontinuity in the potential energy curve. Fortunately, one can
1004 tim 2872 shift simple radial potential to ensure the potential curve go
1005     smoothly to zero at the cutoff radius. The cutoff strategy works
1006     well for Lennard-Jones interaction because of its short range
1007     nature. However, simply truncating the electrostatic interaction
1008     with the use of cutoffs has been shown to lead to severe artifacts
1009     in simulations. The Ewald summation, in which the slowly decaying
1010     Coulomb potential is transformed into direct and reciprocal sums
1011     with rapid and absolute convergence, has proved to minimize the
1012     periodicity artifacts in liquid simulations. Taking the advantages
1013     of the fast Fourier transform (FFT) for calculating discrete Fourier
1014     transforms, the particle mesh-based
1015 tim 2789 methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1016 tim 2872 $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
1017     \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
1018     which treats Coulombic interactions exactly at short range, and
1019     approximate the potential at long range through multipolar
1020     expansion. In spite of their wide acceptance at the molecular
1021     simulation community, these two methods are difficult to implement
1022     correctly and efficiently. Instead, we use a damped and
1023     charge-neutralized Coulomb potential method developed by Wolf and
1024     his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
1025     particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1026 tim 2725 \begin{equation}
1027     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1028     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1029     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1030     r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1031     \end{equation}
1032     where $\alpha$ is the convergence parameter. Due to the lack of
1033     inherent periodicity and rapid convergence,this method is extremely
1034     efficient and easy to implement.
1035 tim 2789 \begin{figure}
1036     \centering
1037     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1038     \caption[An illustration of shifted Coulomb potential]{An
1039     illustration of shifted Coulomb potential.}
1040     \label{introFigure:shiftedCoulomb}
1041     \end{figure}
1042 tim 2725
1043     %multiple time step
1044    
1045 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
1046    
1047 tim 2872 Recently, advanced visualization technique have become applied to
1048 tim 2721 monitor the motions of molecules. Although the dynamics of the
1049     system can be described qualitatively from animation, quantitative
1050 tim 2872 trajectory analysis are more useful. According to the principles of
1051     Statistical Mechanics, Sec.~\ref{introSection:statisticalMechanics},
1052     one can compute thermodynamic properties, analyze fluctuations of
1053     structural parameters, and investigate time-dependent processes of
1054     the molecule from the trajectories.
1055 tim 2721
1056 tim 2872 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1057 tim 2721
1058 tim 2872 Thermodynamic properties, which can be expressed in terms of some
1059 tim 2725 function of the coordinates and momenta of all particles in the
1060     system, can be directly computed from molecular dynamics. The usual
1061     way to measure the pressure is based on virial theorem of Clausius
1062     which states that the virial is equal to $-3Nk_BT$. For a system
1063     with forces between particles, the total virial, $W$, contains the
1064     contribution from external pressure and interaction between the
1065     particles:
1066     \[
1067     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1068     f_{ij} } } \right\rangle
1069     \]
1070     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1071     distance $r_{ij}$. Thus, the expression for the pressure is given
1072     by:
1073     \begin{equation}
1074     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1075     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1076     \end{equation}
1077    
1078 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1079 tim 2721
1080     Structural Properties of a simple fluid can be described by a set of
1081 tim 2872 distribution functions. Among these functions,the \emph{pair
1082 tim 2721 distribution function}, also known as \emph{radial distribution
1083 tim 2872 function}, is of most fundamental importance to liquid theory.
1084     Experimentally, pair distribution function can be gathered by
1085     Fourier transforming raw data from a series of neutron diffraction
1086     experiments and integrating over the surface factor
1087     \cite{Powles1973}. The experimental results can serve as a criterion
1088     to justify the correctness of a liquid model. Moreover, various
1089     equilibrium thermodynamic and structural properties can also be
1090     expressed in terms of radial distribution function \cite{Allen1987}.
1091 tim 2721
1092 tim 2872 The pair distribution functions $g(r)$ gives the probability that a
1093 tim 2721 particle $i$ will be located at a distance $r$ from a another
1094     particle $j$ in the system
1095     \[
1096     g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1097 tim 2874 \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1098 tim 2872 (r)}{\rho}.
1099 tim 2721 \]
1100     Note that the delta function can be replaced by a histogram in
1101 tim 2881 computer simulation. Peaks in $g(r)$ represent solvent shells, and
1102     the height of these peaks gradually decreases to 1 as the liquid of
1103     large distance approaches the bulk density.
1104 tim 2721
1105    
1106 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1107     Properties}}
1108 tim 2721
1109     Time-dependent properties are usually calculated using \emph{time
1110 tim 2872 correlation functions}, which correlate random variables $A$ and $B$
1111     at two different times,
1112 tim 2721 \begin{equation}
1113     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1114     \label{introEquation:timeCorrelationFunction}
1115     \end{equation}
1116     If $A$ and $B$ refer to same variable, this kind of correlation
1117 tim 2872 function is called an \emph{autocorrelation function}. One example
1118     of an auto correlation function is the velocity auto-correlation
1119     function which is directly related to transport properties of
1120     molecular liquids:
1121 tim 2725 \[
1122     D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1123     \right\rangle } dt
1124     \]
1125 tim 2872 where $D$ is diffusion constant. Unlike the velocity autocorrelation
1126     function, which is averaging over time origins and over all the
1127     atoms, the dipole autocorrelation functions are calculated for the
1128     entire system. The dipole autocorrelation function is given by:
1129 tim 2725 \[
1130     c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1131     \right\rangle
1132     \]
1133     Here $u_{tot}$ is the net dipole of the entire system and is given
1134     by
1135     \[
1136     u_{tot} (t) = \sum\limits_i {u_i (t)}
1137     \]
1138     In principle, many time correlation functions can be related with
1139     Fourier transforms of the infrared, Raman, and inelastic neutron
1140     scattering spectra of molecular liquids. In practice, one can
1141     extract the IR spectrum from the intensity of dipole fluctuation at
1142     each frequency using the following relationship:
1143     \[
1144     \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1145     i2\pi vt} dt}
1146     \]
1147 tim 2721
1148 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1149 tim 2692
1150 tim 2705 Rigid bodies are frequently involved in the modeling of different
1151     areas, from engineering, physics, to chemistry. For example,
1152     missiles and vehicle are usually modeled by rigid bodies. The
1153     movement of the objects in 3D gaming engine or other physics
1154 tim 2872 simulator is governed by rigid body dynamics. In molecular
1155     simulations, rigid bodies are used to simplify protein-protein
1156     docking studies\cite{Gray2003}.
1157 tim 2694
1158 tim 2705 It is very important to develop stable and efficient methods to
1159 tim 2872 integrate the equations of motion for orientational degrees of
1160     freedom. Euler angles are the natural choice to describe the
1161     rotational degrees of freedom. However, due to $\frac {1}{sin
1162     \theta}$ singularities, the numerical integration of corresponding
1163     equations of motion is very inefficient and inaccurate. Although an
1164     alternative integrator using multiple sets of Euler angles can
1165     overcome this difficulty\cite{Barojas1973}, the computational
1166     penalty and the loss of angular momentum conservation still remain.
1167     A singularity-free representation utilizing quaternions was
1168     developed by Evans in 1977\cite{Evans1977}. Unfortunately, this
1169     approach uses a nonseparable Hamiltonian resulting from the
1170     quaternion representation, which prevents the symplectic algorithm
1171     to be utilized. Another different approach is to apply holonomic
1172     constraints to the atoms belonging to the rigid body. Each atom
1173     moves independently under the normal forces deriving from potential
1174     energy and constraint forces which are used to guarantee the
1175     rigidness. However, due to their iterative nature, the SHAKE and
1176     Rattle algorithms also converge very slowly when the number of
1177     constraints increases\cite{Ryckaert1977, Andersen1983}.
1178 tim 2694
1179 tim 2872 A break-through in geometric literature suggests that, in order to
1180 tim 2705 develop a long-term integration scheme, one should preserve the
1181 tim 2872 symplectic structure of the flow. By introducing a conjugate
1182     momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1183     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1184     proposed to evolve the Hamiltonian system in a constraint manifold
1185     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1186     An alternative method using the quaternion representation was
1187     developed by Omelyan\cite{Omelyan1998}. However, both of these
1188     methods are iterative and inefficient. In this section, we descibe a
1189 tim 2789 symplectic Lie-Poisson integrator for rigid body developed by
1190     Dullweber and his coworkers\cite{Dullweber1997} in depth.
1191 tim 2705
1192 tim 2872 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1193     The motion of a rigid body is Hamiltonian with the Hamiltonian
1194 tim 2713 function
1195 tim 2706 \begin{equation}
1196     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1197     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1198     \label{introEquation:RBHamiltonian}
1199     \end{equation}
1200     Here, $q$ and $Q$ are the position and rotation matrix for the
1201     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1202     $J$, a diagonal matrix, is defined by
1203     \[
1204     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1205     \]
1206     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1207 tim 2872 constrained Hamiltonian equation is subjected to a holonomic
1208     constraint,
1209 tim 2706 \begin{equation}
1210 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1211 tim 2706 \end{equation}
1212 tim 2872 which is used to ensure rotation matrix's unitarity. Differentiating
1213     \ref{introEquation:orthogonalConstraint} and using Equation
1214     \ref{introEquation:RBMotionMomentum}, one may obtain,
1215 tim 2706 \begin{equation}
1216 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1217 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1218     \end{equation}
1219    
1220     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1221     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1222     the equations of motion,
1223    
1224 tim 2796 \begin{eqnarray}
1225     \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1226     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1227     \frac{{dQ}}{{dt}} & = & PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1228     \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1229     \end{eqnarray}
1230    
1231 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1232 tim 2872 We can use a constraint force provided by a Lagrange multiplier on
1233     the normal manifold to keep the motion on constraint space. Or we
1234     can simply evolve the system on the constraint manifold. These two
1235     methods have been proved to be equivalent. The holonomic constraint
1236     and equations of motions define a constraint manifold for rigid
1237     bodies
1238 tim 2707 \[
1239     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1240     \right\}.
1241     \]
1242 tim 2706
1243 tim 2707 Unfortunately, this constraint manifold is not the cotangent bundle
1244 tim 2888 $T^* SO(3)$ which can be consider as a symplectic manifold on Lie
1245     rotation group $SO(3)$. However, it turns out that under symplectic
1246 tim 2707 transformation, the cotangent space and the phase space are
1247 tim 2872 diffeomorphic. By introducing
1248 tim 2706 \[
1249 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1250 tim 2706 \]
1251 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1252     can be re-formulated as a Hamiltonian system on the cotangent space
1253     \[
1254     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1255     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1256     \]
1257 tim 2706
1258 tim 2707 For a body fixed vector $X_i$ with respect to the center of mass of
1259     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1260     given as
1261     \begin{equation}
1262     X_i^{lab} = Q X_i + q.
1263     \end{equation}
1264     Therefore, potential energy $V(q,Q)$ is defined by
1265     \[
1266     V(q,Q) = V(Q X_0 + q).
1267     \]
1268 tim 2713 Hence, the force and torque are given by
1269 tim 2707 \[
1270 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1271 tim 2707 \]
1272 tim 2713 and
1273 tim 2707 \[
1274     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1275     \]
1276 tim 2713 respectively.
1277 tim 2695
1278 tim 2707 As a common choice to describe the rotation dynamics of the rigid
1279 tim 2872 body, the angular momentum on the body fixed frame $\Pi = Q^t P$ is
1280     introduced to rewrite the equations of motion,
1281 tim 2707 \begin{equation}
1282     \begin{array}{l}
1283 tim 2888 \dot \Pi = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1284     \dot Q = Q\Pi {\rm{ }}J^{ - 1} \\
1285 tim 2707 \end{array}
1286     \label{introEqaution:RBMotionPI}
1287     \end{equation}
1288     , as well as holonomic constraints,
1289     \[
1290     \begin{array}{l}
1291     \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1292     Q^T Q = 1 \\
1293     \end{array}
1294     \]
1295 tim 2692
1296 tim 2707 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1297     so(3)^ \star$, the hat-map isomorphism,
1298     \begin{equation}
1299     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1300     {\begin{array}{*{20}c}
1301     0 & { - v_3 } & {v_2 } \\
1302     {v_3 } & 0 & { - v_1 } \\
1303     { - v_2 } & {v_1 } & 0 \\
1304     \end{array}} \right),
1305     \label{introEquation:hatmapIsomorphism}
1306     \end{equation}
1307     will let us associate the matrix products with traditional vector
1308     operations
1309     \[
1310     \hat vu = v \times u
1311     \]
1312     Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1313     matrix,
1314 tim 2888
1315 tim 2890 \begin{eqnarray*}
1316 tim 2888 (\dot \Pi - \dot \Pi ^T ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{
1317     }}(J^{ - 1} \Pi + \Pi J^{ - 1} ) + \sum\limits_i {[Q^T F_i
1318     (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} - (\Lambda - \Lambda ^T ).
1319     \label{introEquation:skewMatrixPI}
1320     \end{eqnarray*}
1321    
1322 tim 2707 Since $\Lambda$ is symmetric, the last term of Equation
1323 tim 2713 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1324     multiplier $\Lambda$ is absent from the equations of motion. This
1325 tim 2872 unique property eliminates the requirement of iterations which can
1326 tim 2789 not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1327 tim 2707
1328 tim 2872 Applying the hat-map isomorphism, we obtain the equation of motion
1329     for angular momentum on body frame
1330 tim 2713 \begin{equation}
1331     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1332     F_i (r,Q)} \right) \times X_i }.
1333     \label{introEquation:bodyAngularMotion}
1334     \end{equation}
1335 tim 2707 In the same manner, the equation of motion for rotation matrix is
1336     given by
1337     \[
1338 tim 2713 \dot Q = Qskew(I^{ - 1} \pi )
1339 tim 2707 \]
1340    
1341 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1342     Lie-Poisson Integrator for Free Rigid Body}
1343 tim 2707
1344 tim 2872 If there are no external forces exerted on the rigid body, the only
1345     contribution to the rotational motion is from the kinetic energy
1346     (the first term of \ref{introEquation:bodyAngularMotion}). The free
1347     rigid body is an example of a Lie-Poisson system with Hamiltonian
1348     function
1349 tim 2713 \begin{equation}
1350     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1351     \label{introEquation:rotationalKineticRB}
1352     \end{equation}
1353     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1354     Lie-Poisson structure matrix,
1355     \begin{equation}
1356     J(\pi ) = \left( {\begin{array}{*{20}c}
1357     0 & {\pi _3 } & { - \pi _2 } \\
1358     { - \pi _3 } & 0 & {\pi _1 } \\
1359     {\pi _2 } & { - \pi _1 } & 0 \\
1360     \end{array}} \right)
1361     \end{equation}
1362     Thus, the dynamics of free rigid body is governed by
1363     \begin{equation}
1364     \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1365     \end{equation}
1366 tim 2707
1367 tim 2713 One may notice that each $T_i^r$ in Equation
1368     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1369     instance, the equations of motion due to $T_1^r$ are given by
1370     \begin{equation}
1371     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1372     \label{introEqaution:RBMotionSingleTerm}
1373     \end{equation}
1374     where
1375     \[ R_1 = \left( {\begin{array}{*{20}c}
1376     0 & 0 & 0 \\
1377     0 & 0 & {\pi _1 } \\
1378     0 & { - \pi _1 } & 0 \\
1379     \end{array}} \right).
1380     \]
1381     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1382 tim 2707 \[
1383 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1384     Q(0)e^{\Delta tR_1 }
1385 tim 2707 \]
1386 tim 2713 with
1387 tim 2707 \[
1388 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1389     0 & 0 & 0 \\
1390     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1391     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1392     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1393 tim 2707 \]
1394 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1395 tim 2872 tR_1 }$, we can use Cayley transformation to obtain a single-aixs
1396     propagator,
1397 tim 2713 \[
1398     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1399     )
1400     \]
1401 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1402 tim 2872 manner. In order to construct a second-order symplectic method, we
1403     split the angular kinetic Hamiltonian function can into five terms
1404 tim 2707 \[
1405 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1406     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1407 tim 2872 (\pi _1 ).
1408     \]
1409     By concatenating the propagators corresponding to these five terms,
1410     we can obtain an symplectic integrator,
1411 tim 2713 \[
1412     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1413 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1414     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1415 tim 2713 _1 }.
1416 tim 2707 \]
1417    
1418 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1419     $F(\pi )$ and $G(\pi )$ is defined by
1420 tim 2707 \[
1421 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1422     )
1423     \]
1424     If the Poisson bracket of a function $F$ with an arbitrary smooth
1425     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1426     conserved quantity in Poisson system. We can easily verify that the
1427     norm of the angular momentum, $\parallel \pi
1428     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1429     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1430     then by the chain rule
1431     \[
1432     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1433     }}{2})\pi
1434     \]
1435     Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1436     \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1437 tim 2872 Lie-Poisson integrator is found to be both extremely efficient and
1438     stable. These properties can be explained by the fact the small
1439     angle approximation is used and the norm of the angular momentum is
1440     conserved.
1441 tim 2713
1442     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1443     Splitting for Rigid Body}
1444    
1445     The Hamiltonian of rigid body can be separated in terms of kinetic
1446     energy and potential energy,
1447     \[
1448     H = T(p,\pi ) + V(q,Q)
1449     \]
1450     The equations of motion corresponding to potential energy and
1451     kinetic energy are listed in the below table,
1452 tim 2776 \begin{table}
1453 tim 2889 \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1454 tim 2713 \begin{center}
1455     \begin{tabular}{|l|l|}
1456     \hline
1457     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1458     Potential & Kinetic \\
1459     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1460     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1461     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1462     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1463     \hline
1464     \end{tabular}
1465     \end{center}
1466 tim 2776 \end{table}
1467 tim 2872 A second-order symplectic method is now obtained by the composition
1468     of the position and velocity propagators,
1469 tim 2713 \[
1470     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1471     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1472     \]
1473 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1474 tim 2872 sub-propagators which corresponding to force and torque
1475     respectively,
1476 tim 2713 \[
1477 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1478 tim 2713 _{\Delta t/2,\tau }.
1479 tim 2707 \]
1480 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1481 tim 2872 $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1482     inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1483     kinetic energy can be separated to translational kinetic term, $T^t
1484     (p)$, and rotational kinetic term, $T^r (\pi )$,
1485 tim 2713 \begin{equation}
1486     T(p,\pi ) =T^t (p) + T^r (\pi ).
1487     \end{equation}
1488     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1489     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1490 tim 2872 corresponding propagators are given by
1491 tim 2713 \[
1492     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1493     _{\Delta t,T^r }.
1494     \]
1495 tim 2872 Finally, we obtain the overall symplectic propagators for freely
1496     moving rigid bodies
1497 tim 2713 \begin{equation}
1498     \begin{array}{c}
1499     \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1500     \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1501     \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1502     \end{array}
1503     \label{introEquation:overallRBFlowMaps}
1504     \end{equation}
1505 tim 2707
1506 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1507 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1508     mimics a simple heat bath with stochastic and dissipative forces,
1509     has been applied in a variety of studies. This section will review
1510 tim 2872 the theory of Langevin dynamics. A brief derivation of generalized
1511     Langevin equation will be given first. Following that, we will
1512     discuss the physical meaning of the terms appearing in the equation
1513     as well as the calculation of friction tensor from hydrodynamics
1514     theory.
1515 tim 2685
1516 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1517 tim 2685
1518 tim 2872 A harmonic bath model, in which an effective set of harmonic
1519 tim 2719 oscillators are used to mimic the effect of a linearly responding
1520     environment, has been widely used in quantum chemistry and
1521     statistical mechanics. One of the successful applications of
1522 tim 2872 Harmonic bath model is the derivation of the Generalized Langevin
1523     Dynamics (GLE). Lets consider a system, in which the degree of
1524 tim 2719 freedom $x$ is assumed to couple to the bath linearly, giving a
1525     Hamiltonian of the form
1526 tim 2696 \begin{equation}
1527     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1528 tim 2719 \label{introEquation:bathGLE}.
1529 tim 2696 \end{equation}
1530 tim 2872 Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1531     with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1532 tim 2696 \[
1533 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1534     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1535     \right\}}
1536 tim 2696 \]
1537 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1538     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1539 tim 2872 the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1540 tim 2719 coupling,
1541 tim 2696 \[
1542     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1543     \]
1544 tim 2872 where $g_\alpha$ are the coupling constants between the bath
1545 tim 2874 coordinates ($x_ \alpha$) and the system coordinate ($x$).
1546 tim 2872 Introducing
1547 tim 2696 \[
1548 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1549     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1550     \] and combining the last two terms in Equation
1551     \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1552     Hamiltonian as
1553 tim 2696 \[
1554     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1555     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1556     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1557     w_\alpha ^2 }}x} \right)^2 } \right\}}
1558     \]
1559     Since the first two terms of the new Hamiltonian depend only on the
1560     system coordinates, we can get the equations of motion for
1561 tim 2872 Generalized Langevin Dynamics by Hamilton's equations,
1562 tim 2719 \begin{equation}
1563     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1564     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1565     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1566     \label{introEquation:coorMotionGLE}
1567     \end{equation}
1568     and
1569     \begin{equation}
1570     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1571     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1572     \label{introEquation:bathMotionGLE}
1573     \end{equation}
1574 tim 2696
1575 tim 2719 In order to derive an equation for $x$, the dynamics of the bath
1576     variables $x_\alpha$ must be solved exactly first. As an integral
1577     transform which is particularly useful in solving linear ordinary
1578 tim 2872 differential equations,the Laplace transform is the appropriate tool
1579     to solve this problem. The basic idea is to transform the difficult
1580 tim 2719 differential equations into simple algebra problems which can be
1581 tim 2872 solved easily. Then, by applying the inverse Laplace transform, also
1582     known as the Bromwich integral, we can retrieve the solutions of the
1583 tim 2719 original problems.
1584 tim 2696
1585 tim 2719 Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1586     transform of f(t) is a new function defined as
1587 tim 2696 \[
1588 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1589 tim 2696 \]
1590 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1591     Operator. Below are some important properties of Laplace transform
1592 tim 2696
1593 tim 2789 \begin{eqnarray*}
1594     L(x + y) & = & L(x) + L(y) \\
1595     L(ax) & = & aL(x) \\
1596     L(\dot x) & = & pL(x) - px(0) \\
1597     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1598     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1599     \end{eqnarray*}
1600    
1601    
1602 tim 2872 Applying the Laplace transform to the bath coordinates, we obtain
1603 tim 2789 \begin{eqnarray*}
1604     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1605     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1606     \end{eqnarray*}
1607    
1608 tim 2719 By the same way, the system coordinates become
1609 tim 2789 \begin{eqnarray*}
1610     mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1611     & & \mbox{} - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1612     \end{eqnarray*}
1613 tim 2696
1614 tim 2719 With the help of some relatively important inverse Laplace
1615     transformations:
1616 tim 2696 \[
1617 tim 2719 \begin{array}{c}
1618     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1619     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1620     L(1) = \frac{1}{p} \\
1621     \end{array}
1622 tim 2696 \]
1623 tim 2719 , we obtain
1624 tim 2794 \begin{eqnarray*}
1625     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1626 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1627     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1628 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1629     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1630     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1631     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1632     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1633     \end{eqnarray*}
1634     \begin{eqnarray*}
1635     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1636 tim 2696 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1637     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1638 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1639     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1640     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1641     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1642     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1643     \end{eqnarray*}
1644 tim 2719 Introducing a \emph{dynamic friction kernel}
1645 tim 2696 \begin{equation}
1646 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1647     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1648     \label{introEquation:dynamicFrictionKernelDefinition}
1649     \end{equation}
1650     and \emph{a random force}
1651     \begin{equation}
1652     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1653     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1654     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1655     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1656     \label{introEquation:randomForceDefinition}
1657     \end{equation}
1658     the equation of motion can be rewritten as
1659     \begin{equation}
1660 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1661     (t)\dot x(t - \tau )d\tau } + R(t)
1662     \label{introEuqation:GeneralizedLangevinDynamics}
1663     \end{equation}
1664 tim 2719 which is known as the \emph{generalized Langevin equation}.
1665    
1666 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1667 tim 2719
1668     One may notice that $R(t)$ depends only on initial conditions, which
1669     implies it is completely deterministic within the context of a
1670     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1671     uncorrelated to $x$ and $\dot x$,
1672 tim 2696 \[
1673 tim 2719 \begin{array}{l}
1674     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1675     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1676     \end{array}
1677 tim 2696 \]
1678 tim 2719 This property is what we expect from a truly random process. As long
1679 tim 2872 as the model chosen for $R(t)$ was a gaussian distribution in
1680     general, the stochastic nature of the GLE still remains.
1681 tim 2696
1682 tim 2719 %dynamic friction kernel
1683     The convolution integral
1684 tim 2696 \[
1685 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1686 tim 2696 \]
1687 tim 2719 depends on the entire history of the evolution of $x$, which implies
1688     that the bath retains memory of previous motions. In other words,
1689     the bath requires a finite time to respond to change in the motion
1690     of the system. For a sluggish bath which responds slowly to changes
1691     in the system coordinate, we may regard $\xi(t)$ as a constant
1692     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1693     \[
1694     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1695     \]
1696     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1697     \[
1698     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1699     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1700     \]
1701 tim 2872 which can be used to describe the effect of dynamic caging in
1702     viscous solvents. The other extreme is the bath that responds
1703     infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1704     taken as a $delta$ function in time:
1705 tim 2719 \[
1706     \xi (t) = 2\xi _0 \delta (t)
1707     \]
1708     Hence, the convolution integral becomes
1709     \[
1710     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1711     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1712     \]
1713     and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1714     \begin{equation}
1715     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1716     x(t) + R(t) \label{introEquation:LangevinEquation}
1717     \end{equation}
1718     which is known as the Langevin equation. The static friction
1719     coefficient $\xi _0$ can either be calculated from spectral density
1720 tim 2850 or be determined by Stokes' law for regular shaped particles. A
1721 tim 2719 briefly review on calculating friction tensor for arbitrary shaped
1722 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1723 tim 2696
1724 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1725 tim 2719
1726     Defining a new set of coordinates,
1727 tim 2696 \[
1728     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1729     ^2 }}x(0)
1730 tim 2719 \],
1731     we can rewrite $R(T)$ as
1732 tim 2696 \[
1733 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1734 tim 2696 \]
1735     And since the $q$ coordinates are harmonic oscillators,
1736 tim 2789
1737     \begin{eqnarray*}
1738     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1739     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1740     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1741     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1742     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1743     & = &kT\xi (t) \\
1744     \end{eqnarray*}
1745    
1746 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1747 tim 2696 \begin{equation}
1748     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1749 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1750 tim 2696 \end{equation}
1751 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1752     can model the random force and friction kernel.