ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2904
Committed: Wed Jun 28 17:36:32 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 75606 byte(s)
Log Message:
more corrections

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9 tim 2819 behind classical mechanics. Firstly, one can determine the state of
10 tim 2692 a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20 tim 2819 Newton's first law defines a class of inertial frames. Inertial
21 tim 2694 frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23 tim 2819 With respect to inertial frames, Newton's second law has the form
24 tim 2694 \begin{equation}
25 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
26 tim 2694 \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 tim 2819 Newton's third law states that
33 tim 2694 \begin{equation}
34 tim 2898 F_{ij} = -F_{ji}.
35 tim 2694 \label{introEquation:newtonThirdLaw}
36     \end{equation}
37     Conservation laws of Newtonian Mechanics play very important roles
38     in solving mechanics problems. The linear momentum of a particle is
39     conserved if it is free or it experiences no force. The second
40     conservation theorem concerns the angular momentum of a particle.
41     The angular momentum $L$ of a particle with respect to an origin
42     from which $r$ is measured is defined to be
43     \begin{equation}
44     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
45     \end{equation}
46     The torque $\tau$ with respect to the same origin is defined to be
47     \begin{equation}
48 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
49 tim 2694 \end{equation}
50     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
51     \[
52     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
53     \dot p)
54     \]
55     since
56     \[
57     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
58     \]
59     thus,
60     \begin{equation}
61 tim 2819 \dot L = r \times \dot p = \tau
62 tim 2694 \end{equation}
63     If there are no external torques acting on a body, the angular
64     momentum of it is conserved. The last conservation theorem state
65 tim 2899 that if all forces are conservative, energy is conserved,
66     \begin{equation}E = T + V. \label{introEquation:energyConservation}
67 tim 2696 \end{equation}
68 tim 2899 All of these conserved quantities are important factors to determine
69     the quality of numerical integration schemes for rigid bodies
70     \cite{Dullweber1997}.
71 tim 2694
72 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
73 tim 2692
74 tim 2904 Newtonian Mechanics suffers from a important limitation: motions can
75     only be described in cartesian coordinate systems which make it
76     impossible to predict analytically the properties of the system even
77     if we know all of the details of the interaction. In order to
78     overcome some of the practical difficulties which arise in attempts
79     to apply Newton's equation to complex system, approximate numerical
80     procedures may be developed.
81 tim 2692
82 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
83     Principle}}
84 tim 2692
85     Hamilton introduced the dynamical principle upon which it is
86 tim 2819 possible to base all of mechanics and most of classical physics.
87 tim 2898 Hamilton's Principle may be stated as follows: the actual
88     trajectory, along which a dynamical system may move from one point
89     to another within a specified time, is derived by finding the path
90     which minimizes the time integral of the difference between the
91 tim 2899 kinetic, $K$, and potential energies, $U$,
92 tim 2692 \begin{equation}
93 tim 2899 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
94 tim 2693 \label{introEquation:halmitonianPrinciple1}
95 tim 2692 \end{equation}
96     For simple mechanical systems, where the forces acting on the
97 tim 2819 different parts are derivable from a potential, the Lagrangian
98     function $L$ can be defined as the difference between the kinetic
99     energy of the system and its potential energy,
100 tim 2692 \begin{equation}
101 tim 2904 L \equiv K - U = L(q_i ,\dot q_i ).
102 tim 2692 \label{introEquation:lagrangianDef}
103     \end{equation}
104 tim 2904 Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
105 tim 2692 \begin{equation}
106 tim 2904 \delta \int_{t_1 }^{t_2 } {L dt = 0} .
107 tim 2693 \label{introEquation:halmitonianPrinciple2}
108 tim 2692 \end{equation}
109    
110 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
111     Equations of Motion in Lagrangian Mechanics}}
112 tim 2692
113 tim 2850 For a system of $f$ degrees of freedom, the equations of motion in
114     the Lagrangian form is
115 tim 2692 \begin{equation}
116     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
117     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
118 tim 2693 \label{introEquation:eqMotionLagrangian}
119 tim 2692 \end{equation}
120     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
121     generalized velocity.
122    
123 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
124 tim 2692
125     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
126     introduced by William Rowan Hamilton in 1833 as a re-formulation of
127     classical mechanics. If the potential energy of a system is
128 tim 2819 independent of velocities, the momenta can be defined as
129 tim 2692 \begin{equation}
130     p_i = \frac{\partial L}{\partial \dot q_i}
131     \label{introEquation:generalizedMomenta}
132     \end{equation}
133 tim 2693 The Lagrange equations of motion are then expressed by
134 tim 2692 \begin{equation}
135 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
136     \label{introEquation:generalizedMomentaDot}
137     \end{equation}
138     With the help of the generalized momenta, we may now define a new
139     quantity $H$ by the equation
140     \begin{equation}
141     H = \sum\limits_k {p_k \dot q_k } - L ,
142 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
143     \end{equation}
144     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
145 tim 2898 $L$ is the Lagrangian function for the system. Differentiating
146     Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
147 tim 2693 \begin{equation}
148     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
149     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
150     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
151 tim 2904 L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
152 tim 2693 \end{equation}
153 tim 2899 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
154     and fourth terms in the parentheses cancel. Therefore,
155 tim 2693 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
156     \begin{equation}
157     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
158 tim 2904 \right)} - \frac{{\partial L}}{{\partial t}}dt .
159 tim 2693 \label{introEquation:diffHamiltonian2}
160     \end{equation}
161     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
162     find
163     \begin{equation}
164 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
165 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
166     \end{equation}
167     \begin{equation}
168 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
169 tim 2693 \label{introEquation:motionHamiltonianMomentum}
170     \end{equation}
171     and
172     \begin{equation}
173     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
174     t}}
175     \label{introEquation:motionHamiltonianTime}
176     \end{equation}
177 tim 2899 where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
178 tim 2693 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
179     equation of motion. Due to their symmetrical formula, they are also
180 tim 2786 known as the canonical equations of motions \cite{Goldstein2001}.
181 tim 2693
182 tim 2692 An important difference between Lagrangian approach and the
183     Hamiltonian approach is that the Lagrangian is considered to be a
184 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
185     $q_i$, while the Hamiltonian is considered to be a function of the
186     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
187     Hamiltonian Mechanics is more appropriate for application to
188     statistical mechanics and quantum mechanics, since it treats the
189     coordinate and its time derivative as independent variables and it
190     only works with 1st-order differential equations\cite{Marion1990}.
191 tim 2696 In Newtonian Mechanics, a system described by conservative forces
192 tim 2899 conserves the total energy
193     (Eq.~\ref{introEquation:energyConservation}). It follows that
194 tim 2904 Hamilton's equations of motion conserve the total Hamiltonian
195 tim 2696 \begin{equation}
196     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
197     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
198     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
199     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
200     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
201 tim 2904 q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
202 tim 2696 \end{equation}
203    
204 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
205     Mechanics}
206 tim 2692
207 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
208 tim 2692 simulation are governed by the principle of Statistical Mechanics.
209     The following section will give a brief introduction to some of the
210 tim 2700 Statistical Mechanics concepts and theorem presented in this
211     dissertation.
212 tim 2692
213 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
214 tim 2692
215 tim 2700 Mathematically, phase space is the space which represents all
216     possible states. Each possible state of the system corresponds to
217     one unique point in the phase space. For mechanical systems, the
218     phase space usually consists of all possible values of position and
219 tim 2819 momentum variables. Consider a dynamic system of $f$ particles in a
220     cartesian space, where each of the $6f$ coordinates and momenta is
221     assigned to one of $6f$ mutually orthogonal axes, the phase space of
222 tim 2904 this system is a $6f$ dimensional space. A point, $x =
223     (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
224     \over q} _1 , \ldots
225     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226     \over q} _f
227     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228     \over p} _1 \ldots
229     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230     \over p} _f )$ , with a unique set of values of $6f$ coordinates and
231     momenta is a phase space vector.
232 tim 2888 %%%fix me
233 tim 2700
234 tim 2888 In statistical mechanics, the condition of an ensemble at any time
235 tim 2700 can be regarded as appropriately specified by the density $\rho$
236     with which representative points are distributed over the phase
237 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
238     freedom is defined as,
239 tim 2700 \begin{equation}
240     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
241     \label{introEquation:densityDistribution}
242     \end{equation}
243     Governed by the principles of mechanics, the phase points change
244 tim 2819 their locations which would change the density at any time at phase
245     space. Hence, the density distribution is also to be taken as a
246 tim 2700 function of the time.
247    
248     The number of systems $\delta N$ at time $t$ can be determined by,
249     \begin{equation}
250     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
251     \label{introEquation:deltaN}
252     \end{equation}
253 tim 2819 Assuming a large enough population of systems, we can sufficiently
254     approximate $\delta N$ without introducing discontinuity when we go
255     from one region in the phase space to another. By integrating over
256     the whole phase space,
257 tim 2700 \begin{equation}
258     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
259     \label{introEquation:totalNumberSystem}
260     \end{equation}
261     gives us an expression for the total number of the systems. Hence,
262     the probability per unit in the phase space can be obtained by,
263     \begin{equation}
264     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
265     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
266     \label{introEquation:unitProbability}
267     \end{equation}
268 tim 2850 With the help of Eq.~\ref{introEquation:unitProbability} and the
269     knowledge of the system, it is possible to calculate the average
270 tim 2700 value of any desired quantity which depends on the coordinates and
271     momenta of the system. Even when the dynamics of the real system is
272     complex, or stochastic, or even discontinuous, the average
273 tim 2819 properties of the ensemble of possibilities as a whole remaining
274     well defined. For a classical system in thermal equilibrium with its
275     environment, the ensemble average of a mechanical quantity, $\langle
276     A(q , p) \rangle_t$, takes the form of an integral over the phase
277     space of the system,
278 tim 2700 \begin{equation}
279     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
280     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
281     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
282     \label{introEquation:ensembelAverage}
283     \end{equation}
284    
285     There are several different types of ensembles with different
286     statistical characteristics. As a function of macroscopic
287 tim 2819 parameters, such as temperature \textit{etc}, the partition function
288     can be used to describe the statistical properties of a system in
289 tim 2898 thermodynamic equilibrium. As an ensemble of systems, each of which
290     is known to be thermally isolated and conserve energy, the
291     Microcanonical ensemble (NVE) has a partition function like,
292 tim 2700 \begin{equation}
293 tim 2904 \Omega (N,V,E) = e^{\beta TS}. \label{introEquation:NVEPartition}
294 tim 2700 \end{equation}
295 tim 2850 A canonical ensemble (NVT)is an ensemble of systems, each of which
296 tim 2700 can share its energy with a large heat reservoir. The distribution
297     of the total energy amongst the possible dynamical states is given
298     by the partition function,
299     \begin{equation}
300 tim 2899 \Omega (N,V,T) = e^{ - \beta A}.
301 tim 2700 \label{introEquation:NVTPartition}
302     \end{equation}
303     Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
304 tim 2819 TS$. Since most experiments are carried out under constant pressure
305 tim 2850 condition, the isothermal-isobaric ensemble (NPT) plays a very
306 tim 2819 important role in molecular simulations. The isothermal-isobaric
307     ensemble allow the system to exchange energy with a heat bath of
308     temperature $T$ and to change the volume as well. Its partition
309     function is given as
310 tim 2700 \begin{equation}
311     \Delta (N,P,T) = - e^{\beta G}.
312     \label{introEquation:NPTPartition}
313     \end{equation}
314     Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
315    
316     \subsection{\label{introSection:liouville}Liouville's theorem}
317    
318 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
319     rests. It describes the time evolution of the phase space
320 tim 2700 distribution function. In order to calculate the rate of change of
321 tim 2850 $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
322     the two faces perpendicular to the $q_1$ axis, which are located at
323     $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
324     opposite face is given by the expression,
325 tim 2700 \begin{equation}
326     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
327     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
328     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
329     \ldots \delta p_f .
330     \end{equation}
331     Summing all over the phase space, we obtain
332     \begin{equation}
333     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
334     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
335     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
336     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
337     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
338     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
339     \end{equation}
340     Differentiating the equations of motion in Hamiltonian formalism
341     (\ref{introEquation:motionHamiltonianCoordinate},
342     \ref{introEquation:motionHamiltonianMomentum}), we can show,
343     \begin{equation}
344     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
345     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
346     \end{equation}
347     which cancels the first terms of the right hand side. Furthermore,
348 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
349 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
350     simple form,
351     \begin{equation}
352     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
353     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
354     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
355     \label{introEquation:liouvilleTheorem}
356     \end{equation}
357     Liouville's theorem states that the distribution function is
358     constant along any trajectory in phase space. In classical
359 tim 2850 statistical mechanics, since the number of members in an ensemble is
360     huge and constant, we can assume the local density has no reason
361     (other than classical mechanics) to change,
362 tim 2700 \begin{equation}
363     \frac{{\partial \rho }}{{\partial t}} = 0.
364     \label{introEquation:stationary}
365     \end{equation}
366     In such stationary system, the density of distribution $\rho$ can be
367     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
368     distribution,
369     \begin{equation}
370     \rho \propto e^{ - \beta H}
371     \label{introEquation:densityAndHamiltonian}
372     \end{equation}
373    
374 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
375 tim 2702 Lets consider a region in the phase space,
376     \begin{equation}
377     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
378     \end{equation}
379     If this region is small enough, the density $\rho$ can be regarded
380 tim 2819 as uniform over the whole integral. Thus, the number of phase points
381     inside this region is given by,
382 tim 2702 \begin{equation}
383     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
384     dp_1 } ..dp_f.
385     \end{equation}
386    
387     \begin{equation}
388     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
389     \frac{d}{{dt}}(\delta v) = 0.
390     \end{equation}
391     With the help of stationary assumption
392     (\ref{introEquation:stationary}), we obtain the principle of the
393 tim 2819 \emph{conservation of volume in phase space},
394 tim 2702 \begin{equation}
395     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
396     ...dq_f dp_1 } ..dp_f = 0.
397     \label{introEquation:volumePreserving}
398     \end{equation}
399    
400 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
401 tim 2702
402 tim 2700 Liouville's theorem can be expresses in a variety of different forms
403     which are convenient within different contexts. For any two function
404     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
405     bracket ${F, G}$ is defined as
406     \begin{equation}
407     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
408     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
409     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
410     q_i }}} \right)}.
411     \label{introEquation:poissonBracket}
412     \end{equation}
413     Substituting equations of motion in Hamiltonian formalism(
414 tim 2850 Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
415     Eq.~\ref{introEquation:motionHamiltonianMomentum} ) into
416     (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
417     Liouville's theorem using Poisson bracket notion,
418 tim 2700 \begin{equation}
419     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
420     {\rho ,H} \right\}.
421     \label{introEquation:liouvilleTheromInPoissin}
422     \end{equation}
423     Moreover, the Liouville operator is defined as
424     \begin{equation}
425     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
426     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
427     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
428     \label{introEquation:liouvilleOperator}
429     \end{equation}
430     In terms of Liouville operator, Liouville's equation can also be
431     expressed as
432     \begin{equation}
433     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
434     \label{introEquation:liouvilleTheoremInOperator}
435     \end{equation}
436    
437 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
438 tim 2692
439 tim 2695 Various thermodynamic properties can be calculated from Molecular
440     Dynamics simulation. By comparing experimental values with the
441     calculated properties, one can determine the accuracy of the
442 tim 2819 simulation and the quality of the underlying model. However, both
443     experiments and computer simulations are usually performed during a
444 tim 2695 certain time interval and the measurements are averaged over a
445     period of them which is different from the average behavior of
446 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
447     Hypothesis makes a connection between time average and the ensemble
448     average. It states that the time average and average over the
449 tim 2786 statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
450 tim 2695 \begin{equation}
451 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
452     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
453     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
454 tim 2695 \end{equation}
455 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
456     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
457     distribution function. If an observation is averaged over a
458     sufficiently long time (longer than relaxation time), all accessible
459     microstates in phase space are assumed to be equally probed, giving
460     a properly weighted statistical average. This allows the researcher
461     freedom of choice when deciding how best to measure a given
462     observable. In case an ensemble averaged approach sounds most
463 tim 2786 reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
464 tim 2700 utilized. Or if the system lends itself to a time averaging
465     approach, the Molecular Dynamics techniques in
466     Sec.~\ref{introSection:molecularDynamics} will be the best
467     choice\cite{Frenkel1996}.
468 tim 2694
469 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
470 tim 2819 A variety of numerical integrators have been proposed to simulate
471     the motions of atoms in MD simulation. They usually begin with
472     initial conditionals and move the objects in the direction governed
473     by the differential equations. However, most of them ignore the
474     hidden physical laws contained within the equations. Since 1990,
475     geometric integrators, which preserve various phase-flow invariants
476     such as symplectic structure, volume and time reversal symmetry, are
477     developed to address this issue\cite{Dullweber1997, McLachlan1998,
478 tim 2872 Leimkuhler1999}. The velocity Verlet method, which happens to be a
479 tim 2819 simple example of symplectic integrator, continues to gain
480     popularity in the molecular dynamics community. This fact can be
481     partly explained by its geometric nature.
482 tim 2697
483 tim 2819 \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
484     A \emph{manifold} is an abstract mathematical space. It looks
485     locally like Euclidean space, but when viewed globally, it may have
486     more complicated structure. A good example of manifold is the
487     surface of Earth. It seems to be flat locally, but it is round if
488     viewed as a whole. A \emph{differentiable manifold} (also known as
489     \emph{smooth manifold}) is a manifold on which it is possible to
490     apply calculus on \emph{differentiable manifold}. A \emph{symplectic
491     manifold} is defined as a pair $(M, \omega)$ which consists of a
492 tim 2697 \emph{differentiable manifold} $M$ and a close, non-degenerated,
493     bilinear symplectic form, $\omega$. A symplectic form on a vector
494     space $V$ is a function $\omega(x, y)$ which satisfies
495     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
496     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
497 tim 2819 $\omega(x, x) = 0$. The cross product operation in vector field is
498 tim 2899 an example of symplectic form. One of the motivations to study
499     \emph{symplectic manifolds} in Hamiltonian Mechanics is that a
500     symplectic manifold can represent all possible configurations of the
501     system and the phase space of the system can be described by it's
502     cotangent bundle. Every symplectic manifold is even dimensional. For
503     instance, in Hamilton equations, coordinate and momentum always
504     appear in pairs.
505 tim 2697
506 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
507 tim 2697
508 tim 2819 For an ordinary differential system defined as
509 tim 2698 \begin{equation}
510     \dot x = f(x)
511     \end{equation}
512 tim 2819 where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
513 tim 2698 \begin{equation}
514 tim 2699 f(r) = J\nabla _x H(r).
515 tim 2698 \end{equation}
516     $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
517     matrix
518     \begin{equation}
519     J = \left( {\begin{array}{*{20}c}
520     0 & I \\
521     { - I} & 0 \\
522     \end{array}} \right)
523     \label{introEquation:canonicalMatrix}
524     \end{equation}
525     where $I$ is an identity matrix. Using this notation, Hamiltonian
526     system can be rewritten as,
527     \begin{equation}
528     \frac{d}{{dt}}x = J\nabla _x H(x)
529     \label{introEquation:compactHamiltonian}
530     \end{equation}In this case, $f$ is
531 tim 2899 called a \emph{Hamiltonian vector field}. Another generalization of
532     Hamiltonian dynamics is Poisson Dynamics\cite{Olver1986},
533 tim 2698 \begin{equation}
534     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
535     \end{equation}
536     The most obvious change being that matrix $J$ now depends on $x$.
537    
538 tim 2702 \subsection{\label{introSection:exactFlow}Exact Flow}
539    
540 tim 2698 Let $x(t)$ be the exact solution of the ODE system,
541     \begin{equation}
542     \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
543     \end{equation}
544     The exact flow(solution) $\varphi_\tau$ is defined by
545     \[
546     x(t+\tau) =\varphi_\tau(x(t))
547     \]
548     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
549 tim 2702 space to itself. The flow has the continuous group property,
550 tim 2698 \begin{equation}
551 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
552     + \tau _2 } .
553     \end{equation}
554     In particular,
555     \begin{equation}
556     \varphi _\tau \circ \varphi _{ - \tau } = I
557     \end{equation}
558     Therefore, the exact flow is self-adjoint,
559     \begin{equation}
560     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
561     \end{equation}
562     The exact flow can also be written in terms of the of an operator,
563     \begin{equation}
564     \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
565     }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
566     \label{introEquation:exponentialOperator}
567     \end{equation}
568    
569     In most cases, it is not easy to find the exact flow $\varphi_\tau$.
570 tim 2872 Instead, we use an approximate map, $\psi_\tau$, which is usually
571 tim 2702 called integrator. The order of an integrator $\psi_\tau$ is $p$, if
572     the Taylor series of $\psi_\tau$ agree to order $p$,
573     \begin{equation}
574 tim 2872 \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
575 tim 2698 \end{equation}
576    
577 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
578    
579 tim 2872 The hidden geometric properties\cite{Budd1999, Marsden1998} of an
580     ODE and its flow play important roles in numerical studies. Many of
581     them can be found in systems which occur naturally in applications.
582 tim 2702 Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
583     a \emph{symplectic} flow if it satisfies,
584 tim 2698 \begin{equation}
585 tim 2703 {\varphi '}^T J \varphi ' = J.
586 tim 2698 \end{equation}
587     According to Liouville's theorem, the symplectic volume is invariant
588     under a Hamiltonian flow, which is the basis for classical
589 tim 2699 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
590     field on a symplectic manifold can be shown to be a
591     symplectomorphism. As to the Poisson system,
592 tim 2698 \begin{equation}
593 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
594 tim 2698 \end{equation}
595 tim 2898 is the property that must be preserved by the integrator. It is
596     possible to construct a \emph{volume-preserving} flow for a source
597     free ODE ($ \nabla \cdot f = 0 $), if the flow satisfies $ \det
598     d\varphi = 1$. One can show easily that a symplectic flow will be
599     volume-preserving. Changing the variables $y = h(x)$ in an ODE
600 tim 2872 (Eq.~\ref{introEquation:ODE}) will result in a new system,
601 tim 2698 \[
602     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
603     \]
604     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
605     In other words, the flow of this vector field is reversible if and
606 tim 2898 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $. A
607     \emph{first integral}, or conserved quantity of a general
608 tim 2705 differential function is a function $ G:R^{2d} \to R^d $ which is
609     constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
610     \[
611     \frac{{dG(x(t))}}{{dt}} = 0.
612     \]
613     Using chain rule, one may obtain,
614     \[
615     \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
616     \]
617     which is the condition for conserving \emph{first integral}. For a
618     canonical Hamiltonian system, the time evolution of an arbitrary
619     smooth function $G$ is given by,
620 tim 2789 \begin{eqnarray}
621     \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
622     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
623 tim 2705 \label{introEquation:firstIntegral1}
624 tim 2789 \end{eqnarray}
625 tim 2705 Using poisson bracket notion, Equation
626     \ref{introEquation:firstIntegral1} can be rewritten as
627     \[
628     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
629     \]
630     Therefore, the sufficient condition for $G$ to be the \emph{first
631     integral} of a Hamiltonian system is
632     \[
633     \left\{ {G,H} \right\} = 0.
634     \]
635     As well known, the Hamiltonian (or energy) H of a Hamiltonian system
636     is a \emph{first integral}, which is due to the fact $\{ H,H\} =
637 tim 2898 0$. When designing any numerical methods, one should always try to
638 tim 2702 preserve the structural properties of the original ODE and its flow.
639    
640 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
641     A lot of well established and very effective numerical methods have
642     been successful precisely because of their symplecticities even
643     though this fact was not recognized when they were first
644 tim 2872 constructed. The most famous example is the Verlet-leapfrog method
645 tim 2819 in molecular dynamics. In general, symplectic integrators can be
646 tim 2699 constructed using one of four different methods.
647     \begin{enumerate}
648     \item Generating functions
649     \item Variational methods
650     \item Runge-Kutta methods
651     \item Splitting methods
652     \end{enumerate}
653 tim 2698
654 tim 2789 Generating function\cite{Channell1990} tends to lead to methods
655     which are cumbersome and difficult to use. In dissipative systems,
656     variational methods can capture the decay of energy
657     accurately\cite{Kane2000}. Since their geometrically unstable nature
658     against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
659     methods are not suitable for Hamiltonian system. Recently, various
660     high-order explicit Runge-Kutta methods
661     \cite{Owren1992,Chen2003}have been developed to overcome this
662 tim 2703 instability. However, due to computational penalty involved in
663 tim 2819 implementing the Runge-Kutta methods, they have not attracted much
664     attention from the Molecular Dynamics community. Instead, splitting
665     methods have been widely accepted since they exploit natural
666     decompositions of the system\cite{Tuckerman1992, McLachlan1998}.
667 tim 2702
668 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
669 tim 2702
670     The main idea behind splitting methods is to decompose the discrete
671     $\varphi_h$ as a composition of simpler flows,
672 tim 2699 \begin{equation}
673     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
674     \varphi _{h_n }
675     \label{introEquation:FlowDecomposition}
676     \end{equation}
677     where each of the sub-flow is chosen such that each represent a
678 tim 2898 simpler integration of the system. Suppose that a Hamiltonian system
679     takes the form,
680 tim 2702 \[
681     H = H_1 + H_2.
682     \]
683     Here, $H_1$ and $H_2$ may represent different physical processes of
684     the system. For instance, they may relate to kinetic and potential
685     energy respectively, which is a natural decomposition of the
686     problem. If $H_1$ and $H_2$ can be integrated using exact flows
687     $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
688 tim 2819 order expression is then given by the Lie-Trotter formula
689 tim 2699 \begin{equation}
690 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
691     \label{introEquation:firstOrderSplitting}
692     \end{equation}
693     where $\varphi _h$ is the result of applying the corresponding
694     continuous $\varphi _i$ over a time $h$. By definition, as
695     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
696     must follow that each operator $\varphi_i(t)$ is a symplectic map.
697     It is easy to show that any composition of symplectic flows yields a
698     symplectic map,
699     \begin{equation}
700 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
701 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
702 tim 2699 \label{introEquation:SymplecticFlowComposition}
703     \end{equation}
704 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
705     splitting in this context automatically generates a symplectic map.
706 tim 2699
707 tim 2702 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
708     introduces local errors proportional to $h^2$, while Strang
709     splitting gives a second-order decomposition,
710     \begin{equation}
711     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
712 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
713 tim 2702 \end{equation}
714 tim 2819 which has a local error proportional to $h^3$. The Sprang
715     splitting's popularity in molecular simulation community attribute
716     to its symmetric property,
717 tim 2702 \begin{equation}
718     \varphi _h^{ - 1} = \varphi _{ - h}.
719 tim 2703 \label{introEquation:timeReversible}
720 tim 2882 \end{equation}
721 tim 2702
722 tim 2872 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
723 tim 2702 The classical equation for a system consisting of interacting
724     particles can be written in Hamiltonian form,
725     \[
726     H = T + V
727     \]
728     where $T$ is the kinetic energy and $V$ is the potential energy.
729 tim 2872 Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
730 tim 2702 obtains the following:
731     \begin{align}
732     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
733     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
734     \label{introEquation:Lp10a} \\%
735     %
736     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
737     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
738     \label{introEquation:Lp10b}
739     \end{align}
740     where $F(t)$ is the force at time $t$. This integration scheme is
741     known as \emph{velocity verlet} which is
742     symplectic(\ref{introEquation:SymplecticFlowComposition}),
743     time-reversible(\ref{introEquation:timeReversible}) and
744     volume-preserving (\ref{introEquation:volumePreserving}). These
745     geometric properties attribute to its long-time stability and its
746     popularity in the community. However, the most commonly used
747     velocity verlet integration scheme is written as below,
748     \begin{align}
749     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
750     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
751     %
752     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
753     \label{introEquation:Lp9b}\\%
754     %
755     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
756 tim 2872 \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
757 tim 2702 \end{align}
758     From the preceding splitting, one can see that the integration of
759     the equations of motion would follow:
760     \begin{enumerate}
761     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
762    
763     \item Use the half step velocities to move positions one whole step, $\Delta t$.
764    
765 tim 2872 \item Evaluate the forces at the new positions, $\mathbf{q}(\Delta t)$, and use the new forces to complete the velocity move.
766 tim 2702
767     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
768     \end{enumerate}
769 tim 2872 By simply switching the order of the propagators in the splitting
770     and composing a new integrator, the \emph{position verlet}
771     integrator, can be generated,
772 tim 2702 \begin{align}
773     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
774     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
775     \label{introEquation:positionVerlet1} \\%
776     %
777 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
778 tim 2702 q(\Delta t)} \right]. %
779 tim 2719 \label{introEquation:positionVerlet2}
780 tim 2702 \end{align}
781    
782 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
783 tim 2702
784 tim 2872 The Baker-Campbell-Hausdorff formula can be used to determine the
785     local error of splitting method in terms of the commutator of the
786 tim 2702 operators(\ref{introEquation:exponentialOperator}) associated with
787 tim 2872 the sub-flow. For operators $hX$ and $hY$ which are associated with
788 tim 2726 $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
789 tim 2702 \begin{equation}
790     \exp (hX + hY) = \exp (hZ)
791     \end{equation}
792     where
793     \begin{equation}
794     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
795     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
796     \end{equation}
797     Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
798     \[
799     [X,Y] = XY - YX .
800     \]
801 tim 2872 Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
802     to the Sprang splitting, we can obtain
803 tim 2779 \begin{eqnarray*}
804 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
805     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
806 tim 2779 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
807     \end{eqnarray*}
808 tim 2872 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0,\] the dominant local
809 tim 2702 error of Spring splitting is proportional to $h^3$. The same
810 tim 2872 procedure can be applied to a general splitting, of the form
811 tim 2702 \begin{equation}
812     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
813     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
814     \end{equation}
815 tim 2872 A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
816     order methods. Yoshida proposed an elegant way to compose higher
817 tim 2789 order methods based on symmetric splitting\cite{Yoshida1990}. Given
818     a symmetric second order base method $ \varphi _h^{(2)} $, a
819     fourth-order symmetric method can be constructed by composing,
820 tim 2702 \[
821     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
822     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
823     \]
824     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
825     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
826     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
827     \begin{equation}
828     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
829 tim 2872 _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)},
830 tim 2702 \end{equation}
831 tim 2872 if the weights are chosen as
832 tim 2702 \[
833     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
834     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
835     \]
836    
837 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
838    
839 tim 2720 As one of the principal tools of molecular modeling, Molecular
840     dynamics has proven to be a powerful tool for studying the functions
841     of biological systems, providing structural, thermodynamic and
842     dynamical information. The basic idea of molecular dynamics is that
843     macroscopic properties are related to microscopic behavior and
844     microscopic behavior can be calculated from the trajectories in
845     simulations. For instance, instantaneous temperature of an
846     Hamiltonian system of $N$ particle can be measured by
847     \[
848 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
849 tim 2720 \]
850     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
851     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
852     the boltzman constant.
853 tim 2694
854 tim 2720 A typical molecular dynamics run consists of three essential steps:
855     \begin{enumerate}
856     \item Initialization
857     \begin{enumerate}
858     \item Preliminary preparation
859     \item Minimization
860     \item Heating
861     \item Equilibration
862     \end{enumerate}
863     \item Production
864     \item Analysis
865     \end{enumerate}
866     These three individual steps will be covered in the following
867     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
868 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
869 tim 2872 will discusse issues in production run.
870 tim 2801 Sec.~\ref{introSection:Analysis} provides the theoretical tools for
871     trajectory analysis.
872 tim 2719
873 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
874 tim 2719
875 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
876 tim 2719
877 tim 2720 When selecting the starting structure of a molecule for molecular
878     simulation, one may retrieve its Cartesian coordinates from public
879     databases, such as RCSB Protein Data Bank \textit{etc}. Although
880     thousands of crystal structures of molecules are discovered every
881     year, many more remain unknown due to the difficulties of
882 tim 2872 purification and crystallization. Even for molecules with known
883     structure, some important information is missing. For example, a
884 tim 2720 missing hydrogen atom which acts as donor in hydrogen bonding must
885     be added. Moreover, in order to include electrostatic interaction,
886     one may need to specify the partial charges for individual atoms.
887     Under some circumstances, we may even need to prepare the system in
888 tim 2872 a special configuration. For instance, when studying transport
889     phenomenon in membrane systems, we may prepare the lipids in a
890     bilayer structure instead of placing lipids randomly in solvent,
891     since we are not interested in the slow self-aggregation process.
892 tim 2694
893 tim 2819 \subsubsection{\textbf{Minimization}}
894 tim 2705
895 tim 2720 It is quite possible that some of molecules in the system from
896 tim 2872 preliminary preparation may be overlapping with each other. This
897     close proximity leads to high initial potential energy which
898     consequently jeopardizes any molecular dynamics simulations. To
899     remove these steric overlaps, one typically performs energy
900     minimization to find a more reasonable conformation. Several energy
901     minimization methods have been developed to exploit the energy
902     surface and to locate the local minimum. While converging slowly
903     near the minimum, steepest descent method is extremely robust when
904     systems are strongly anharmonic. Thus, it is often used to refine
905     structure from crystallographic data. Relied on the gradient or
906     hessian, advanced methods like Newton-Raphson converge rapidly to a
907     local minimum, but become unstable if the energy surface is far from
908     quadratic. Another factor that must be taken into account, when
909 tim 2720 choosing energy minimization method, is the size of the system.
910     Steepest descent and conjugate gradient can deal with models of any
911 tim 2872 size. Because of the limits on computer memory to store the hessian
912     matrix and the computing power needed to diagonalized these
913     matrices, most Newton-Raphson methods can not be used with very
914     large systems.
915 tim 2694
916 tim 2819 \subsubsection{\textbf{Heating}}
917 tim 2720
918     Typically, Heating is performed by assigning random velocities
919 tim 2872 according to a Maxwell-Boltzman distribution for a desired
920     temperature. Beginning at a lower temperature and gradually
921     increasing the temperature by assigning larger random velocities, we
922     end up with setting the temperature of the system to a final
923     temperature at which the simulation will be conducted. In heating
924     phase, we should also keep the system from drifting or rotating as a
925     whole. To do this, the net linear momentum and angular momentum of
926     the system is shifted to zero after each resampling from the Maxwell
927     -Boltzman distribution.
928 tim 2720
929 tim 2819 \subsubsection{\textbf{Equilibration}}
930 tim 2720
931     The purpose of equilibration is to allow the system to evolve
932     spontaneously for a period of time and reach equilibrium. The
933     procedure is continued until various statistical properties, such as
934     temperature, pressure, energy, volume and other structural
935     properties \textit{etc}, become independent of time. Strictly
936     speaking, minimization and heating are not necessary, provided the
937     equilibration process is long enough. However, these steps can serve
938     as a means to arrive at an equilibrated structure in an effective
939     way.
940    
941     \subsection{\label{introSection:production}Production}
942    
943 tim 2872 The production run is the most important step of the simulation, in
944 tim 2725 which the equilibrated structure is used as a starting point and the
945     motions of the molecules are collected for later analysis. In order
946     to capture the macroscopic properties of the system, the molecular
947 tim 2872 dynamics simulation must be performed by sampling correctly and
948     efficiently from the relevant thermodynamic ensemble.
949 tim 2720
950 tim 2725 The most expensive part of a molecular dynamics simulation is the
951     calculation of non-bonded forces, such as van der Waals force and
952     Coulombic forces \textit{etc}. For a system of $N$ particles, the
953     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
954     which making large simulations prohibitive in the absence of any
955 tim 2872 algorithmic tricks.
956 tim 2720
957 tim 2872 A natural approach to avoid system size issues is to represent the
958 tim 2725 bulk behavior by a finite number of the particles. However, this
959 tim 2872 approach will suffer from the surface effect at the edges of the
960     simulation. To offset this, \textit{Periodic boundary conditions}
961     (see Fig.~\ref{introFig:pbc}) is developed to simulate bulk
962     properties with a relatively small number of particles. In this
963     method, the simulation box is replicated throughout space to form an
964     infinite lattice. During the simulation, when a particle moves in
965     the primary cell, its image in other cells move in exactly the same
966     direction with exactly the same orientation. Thus, as a particle
967     leaves the primary cell, one of its images will enter through the
968     opposite face.
969 tim 2789 \begin{figure}
970     \centering
971     \includegraphics[width=\linewidth]{pbc.eps}
972     \caption[An illustration of periodic boundary conditions]{A 2-D
973     illustration of periodic boundary conditions. As one particle leaves
974     the left of the simulation box, an image of it enters the right.}
975     \label{introFig:pbc}
976     \end{figure}
977 tim 2725
978     %cutoff and minimum image convention
979     Another important technique to improve the efficiency of force
980 tim 2872 evaluation is to apply spherical cutoff where particles farther than
981     a predetermined distance are not included in the calculation
982 tim 2725 \cite{Frenkel1996}. The use of a cutoff radius will cause a
983 tim 2730 discontinuity in the potential energy curve. Fortunately, one can
984 tim 2872 shift simple radial potential to ensure the potential curve go
985     smoothly to zero at the cutoff radius. The cutoff strategy works
986     well for Lennard-Jones interaction because of its short range
987     nature. However, simply truncating the electrostatic interaction
988     with the use of cutoffs has been shown to lead to severe artifacts
989     in simulations. The Ewald summation, in which the slowly decaying
990     Coulomb potential is transformed into direct and reciprocal sums
991     with rapid and absolute convergence, has proved to minimize the
992     periodicity artifacts in liquid simulations. Taking the advantages
993     of the fast Fourier transform (FFT) for calculating discrete Fourier
994     transforms, the particle mesh-based
995 tim 2789 methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
996 tim 2872 $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
997     \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
998     which treats Coulombic interactions exactly at short range, and
999     approximate the potential at long range through multipolar
1000     expansion. In spite of their wide acceptance at the molecular
1001     simulation community, these two methods are difficult to implement
1002     correctly and efficiently. Instead, we use a damped and
1003     charge-neutralized Coulomb potential method developed by Wolf and
1004     his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
1005     particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1006 tim 2725 \begin{equation}
1007     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1008     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1009     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1010     r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1011     \end{equation}
1012     where $\alpha$ is the convergence parameter. Due to the lack of
1013     inherent periodicity and rapid convergence,this method is extremely
1014     efficient and easy to implement.
1015 tim 2789 \begin{figure}
1016     \centering
1017     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1018     \caption[An illustration of shifted Coulomb potential]{An
1019     illustration of shifted Coulomb potential.}
1020     \label{introFigure:shiftedCoulomb}
1021     \end{figure}
1022 tim 2725
1023     %multiple time step
1024    
1025 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
1026    
1027 tim 2872 Recently, advanced visualization technique have become applied to
1028 tim 2721 monitor the motions of molecules. Although the dynamics of the
1029     system can be described qualitatively from animation, quantitative
1030 tim 2872 trajectory analysis are more useful. According to the principles of
1031     Statistical Mechanics, Sec.~\ref{introSection:statisticalMechanics},
1032     one can compute thermodynamic properties, analyze fluctuations of
1033     structural parameters, and investigate time-dependent processes of
1034     the molecule from the trajectories.
1035 tim 2721
1036 tim 2872 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1037 tim 2721
1038 tim 2872 Thermodynamic properties, which can be expressed in terms of some
1039 tim 2725 function of the coordinates and momenta of all particles in the
1040     system, can be directly computed from molecular dynamics. The usual
1041     way to measure the pressure is based on virial theorem of Clausius
1042     which states that the virial is equal to $-3Nk_BT$. For a system
1043     with forces between particles, the total virial, $W$, contains the
1044     contribution from external pressure and interaction between the
1045     particles:
1046     \[
1047     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1048     f_{ij} } } \right\rangle
1049     \]
1050     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1051     distance $r_{ij}$. Thus, the expression for the pressure is given
1052     by:
1053     \begin{equation}
1054     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1055     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1056     \end{equation}
1057    
1058 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1059 tim 2721
1060     Structural Properties of a simple fluid can be described by a set of
1061 tim 2872 distribution functions. Among these functions,the \emph{pair
1062 tim 2721 distribution function}, also known as \emph{radial distribution
1063 tim 2872 function}, is of most fundamental importance to liquid theory.
1064     Experimentally, pair distribution function can be gathered by
1065     Fourier transforming raw data from a series of neutron diffraction
1066     experiments and integrating over the surface factor
1067     \cite{Powles1973}. The experimental results can serve as a criterion
1068     to justify the correctness of a liquid model. Moreover, various
1069     equilibrium thermodynamic and structural properties can also be
1070     expressed in terms of radial distribution function \cite{Allen1987}.
1071     The pair distribution functions $g(r)$ gives the probability that a
1072 tim 2721 particle $i$ will be located at a distance $r$ from a another
1073     particle $j$ in the system
1074     \[
1075     g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1076 tim 2874 \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1077 tim 2872 (r)}{\rho}.
1078 tim 2721 \]
1079     Note that the delta function can be replaced by a histogram in
1080 tim 2881 computer simulation. Peaks in $g(r)$ represent solvent shells, and
1081     the height of these peaks gradually decreases to 1 as the liquid of
1082     large distance approaches the bulk density.
1083 tim 2721
1084    
1085 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1086     Properties}}
1087 tim 2721
1088     Time-dependent properties are usually calculated using \emph{time
1089 tim 2872 correlation functions}, which correlate random variables $A$ and $B$
1090     at two different times,
1091 tim 2721 \begin{equation}
1092     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1093     \label{introEquation:timeCorrelationFunction}
1094     \end{equation}
1095     If $A$ and $B$ refer to same variable, this kind of correlation
1096 tim 2872 function is called an \emph{autocorrelation function}. One example
1097     of an auto correlation function is the velocity auto-correlation
1098     function which is directly related to transport properties of
1099     molecular liquids:
1100 tim 2725 \[
1101     D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1102     \right\rangle } dt
1103     \]
1104 tim 2872 where $D$ is diffusion constant. Unlike the velocity autocorrelation
1105     function, which is averaging over time origins and over all the
1106     atoms, the dipole autocorrelation functions are calculated for the
1107     entire system. The dipole autocorrelation function is given by:
1108 tim 2725 \[
1109     c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1110     \right\rangle
1111     \]
1112     Here $u_{tot}$ is the net dipole of the entire system and is given
1113     by
1114     \[
1115     u_{tot} (t) = \sum\limits_i {u_i (t)}
1116     \]
1117     In principle, many time correlation functions can be related with
1118     Fourier transforms of the infrared, Raman, and inelastic neutron
1119     scattering spectra of molecular liquids. In practice, one can
1120     extract the IR spectrum from the intensity of dipole fluctuation at
1121     each frequency using the following relationship:
1122     \[
1123     \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1124     i2\pi vt} dt}
1125     \]
1126 tim 2721
1127 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1128 tim 2692
1129 tim 2705 Rigid bodies are frequently involved in the modeling of different
1130     areas, from engineering, physics, to chemistry. For example,
1131     missiles and vehicle are usually modeled by rigid bodies. The
1132     movement of the objects in 3D gaming engine or other physics
1133 tim 2872 simulator is governed by rigid body dynamics. In molecular
1134     simulations, rigid bodies are used to simplify protein-protein
1135     docking studies\cite{Gray2003}.
1136 tim 2694
1137 tim 2705 It is very important to develop stable and efficient methods to
1138 tim 2872 integrate the equations of motion for orientational degrees of
1139     freedom. Euler angles are the natural choice to describe the
1140     rotational degrees of freedom. However, due to $\frac {1}{sin
1141     \theta}$ singularities, the numerical integration of corresponding
1142     equations of motion is very inefficient and inaccurate. Although an
1143     alternative integrator using multiple sets of Euler angles can
1144     overcome this difficulty\cite{Barojas1973}, the computational
1145     penalty and the loss of angular momentum conservation still remain.
1146     A singularity-free representation utilizing quaternions was
1147     developed by Evans in 1977\cite{Evans1977}. Unfortunately, this
1148     approach uses a nonseparable Hamiltonian resulting from the
1149     quaternion representation, which prevents the symplectic algorithm
1150     to be utilized. Another different approach is to apply holonomic
1151     constraints to the atoms belonging to the rigid body. Each atom
1152     moves independently under the normal forces deriving from potential
1153     energy and constraint forces which are used to guarantee the
1154     rigidness. However, due to their iterative nature, the SHAKE and
1155     Rattle algorithms also converge very slowly when the number of
1156     constraints increases\cite{Ryckaert1977, Andersen1983}.
1157 tim 2694
1158 tim 2872 A break-through in geometric literature suggests that, in order to
1159 tim 2705 develop a long-term integration scheme, one should preserve the
1160 tim 2872 symplectic structure of the flow. By introducing a conjugate
1161     momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1162     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1163     proposed to evolve the Hamiltonian system in a constraint manifold
1164     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1165     An alternative method using the quaternion representation was
1166     developed by Omelyan\cite{Omelyan1998}. However, both of these
1167     methods are iterative and inefficient. In this section, we descibe a
1168 tim 2789 symplectic Lie-Poisson integrator for rigid body developed by
1169     Dullweber and his coworkers\cite{Dullweber1997} in depth.
1170 tim 2705
1171 tim 2872 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1172     The motion of a rigid body is Hamiltonian with the Hamiltonian
1173 tim 2713 function
1174 tim 2706 \begin{equation}
1175     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1176     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1177     \label{introEquation:RBHamiltonian}
1178     \end{equation}
1179     Here, $q$ and $Q$ are the position and rotation matrix for the
1180     rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
1181     $J$, a diagonal matrix, is defined by
1182     \[
1183     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1184     \]
1185     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1186 tim 2872 constrained Hamiltonian equation is subjected to a holonomic
1187     constraint,
1188 tim 2706 \begin{equation}
1189 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1190 tim 2706 \end{equation}
1191 tim 2872 which is used to ensure rotation matrix's unitarity. Differentiating
1192     \ref{introEquation:orthogonalConstraint} and using Equation
1193     \ref{introEquation:RBMotionMomentum}, one may obtain,
1194 tim 2706 \begin{equation}
1195 tim 2707 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1196 tim 2706 \label{introEquation:RBFirstOrderConstraint}
1197     \end{equation}
1198     Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1199     \ref{introEquation:motionHamiltonianMomentum}), one can write down
1200     the equations of motion,
1201 tim 2796 \begin{eqnarray}
1202     \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1203     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1204     \frac{{dQ}}{{dt}} & = & PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
1205     \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1206     \end{eqnarray}
1207 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1208 tim 2872 We can use a constraint force provided by a Lagrange multiplier on
1209     the normal manifold to keep the motion on constraint space. Or we
1210     can simply evolve the system on the constraint manifold. These two
1211     methods have been proved to be equivalent. The holonomic constraint
1212     and equations of motions define a constraint manifold for rigid
1213     bodies
1214 tim 2707 \[
1215     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1216     \right\}.
1217     \]
1218     Unfortunately, this constraint manifold is not the cotangent bundle
1219 tim 2888 $T^* SO(3)$ which can be consider as a symplectic manifold on Lie
1220     rotation group $SO(3)$. However, it turns out that under symplectic
1221 tim 2707 transformation, the cotangent space and the phase space are
1222 tim 2872 diffeomorphic. By introducing
1223 tim 2706 \[
1224 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1225 tim 2706 \]
1226 tim 2707 the mechanical system subject to a holonomic constraint manifold $M$
1227     can be re-formulated as a Hamiltonian system on the cotangent space
1228     \[
1229     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1230     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1231     \]
1232     For a body fixed vector $X_i$ with respect to the center of mass of
1233     the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1234     given as
1235     \begin{equation}
1236     X_i^{lab} = Q X_i + q.
1237     \end{equation}
1238     Therefore, potential energy $V(q,Q)$ is defined by
1239     \[
1240     V(q,Q) = V(Q X_0 + q).
1241     \]
1242 tim 2713 Hence, the force and torque are given by
1243 tim 2707 \[
1244 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1245 tim 2707 \]
1246 tim 2713 and
1247 tim 2707 \[
1248     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1249     \]
1250 tim 2899 respectively. As a common choice to describe the rotation dynamics
1251     of the rigid body, the angular momentum on the body fixed frame $\Pi
1252     = Q^t P$ is introduced to rewrite the equations of motion,
1253 tim 2707 \begin{equation}
1254     \begin{array}{l}
1255 tim 2899 \dot \Pi = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda, \\
1256     \dot Q = Q\Pi {\rm{ }}J^{ - 1}, \\
1257 tim 2707 \end{array}
1258     \label{introEqaution:RBMotionPI}
1259     \end{equation}
1260 tim 2899 as well as holonomic constraints,
1261 tim 2707 \[
1262     \begin{array}{l}
1263 tim 2899 \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0, \\
1264     Q^T Q = 1 .\\
1265 tim 2707 \end{array}
1266     \]
1267     For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1268     so(3)^ \star$, the hat-map isomorphism,
1269     \begin{equation}
1270     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1271     {\begin{array}{*{20}c}
1272     0 & { - v_3 } & {v_2 } \\
1273     {v_3 } & 0 & { - v_1 } \\
1274     { - v_2 } & {v_1 } & 0 \\
1275     \end{array}} \right),
1276     \label{introEquation:hatmapIsomorphism}
1277     \end{equation}
1278     will let us associate the matrix products with traditional vector
1279     operations
1280     \[
1281 tim 2899 \hat vu = v \times u.
1282 tim 2707 \]
1283 tim 2899 Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1284 tim 2707 matrix,
1285 tim 2899 \begin{eqnarray}
1286     (\dot \Pi - \dot \Pi ^T ){\rm{ }} &= &{\rm{ }}(\Pi - \Pi ^T ){\rm{
1287     }}(J^{ - 1} \Pi + \Pi J^{ - 1} ) \notag \\
1288     + \sum\limits_i {[Q^T F_i
1289 tim 2888 (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} - (\Lambda - \Lambda ^T ).
1290     \label{introEquation:skewMatrixPI}
1291 tim 2899 \end{eqnarray}
1292     Since $\Lambda$ is symmetric, the last term of
1293     Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1294     Lagrange multiplier $\Lambda$ is absent from the equations of
1295     motion. This unique property eliminates the requirement of
1296     iterations which can not be avoided in other methods\cite{Kol1997,
1297     Omelyan1998}. Applying the hat-map isomorphism, we obtain the
1298     equation of motion for angular momentum on body frame
1299 tim 2713 \begin{equation}
1300     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1301     F_i (r,Q)} \right) \times X_i }.
1302     \label{introEquation:bodyAngularMotion}
1303     \end{equation}
1304 tim 2707 In the same manner, the equation of motion for rotation matrix is
1305     given by
1306     \[
1307 tim 2899 \dot Q = Qskew(I^{ - 1} \pi ).
1308 tim 2707 \]
1309    
1310 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1311     Lie-Poisson Integrator for Free Rigid Body}
1312 tim 2707
1313 tim 2872 If there are no external forces exerted on the rigid body, the only
1314     contribution to the rotational motion is from the kinetic energy
1315     (the first term of \ref{introEquation:bodyAngularMotion}). The free
1316     rigid body is an example of a Lie-Poisson system with Hamiltonian
1317     function
1318 tim 2713 \begin{equation}
1319     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1320     \label{introEquation:rotationalKineticRB}
1321     \end{equation}
1322     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1323     Lie-Poisson structure matrix,
1324     \begin{equation}
1325     J(\pi ) = \left( {\begin{array}{*{20}c}
1326     0 & {\pi _3 } & { - \pi _2 } \\
1327     { - \pi _3 } & 0 & {\pi _1 } \\
1328     {\pi _2 } & { - \pi _1 } & 0 \\
1329 tim 2899 \end{array}} \right).
1330 tim 2713 \end{equation}
1331     Thus, the dynamics of free rigid body is governed by
1332     \begin{equation}
1333 tim 2899 \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi ).
1334 tim 2713 \end{equation}
1335     One may notice that each $T_i^r$ in Equation
1336     \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1337     instance, the equations of motion due to $T_1^r$ are given by
1338     \begin{equation}
1339     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1340     \label{introEqaution:RBMotionSingleTerm}
1341     \end{equation}
1342     where
1343     \[ R_1 = \left( {\begin{array}{*{20}c}
1344     0 & 0 & 0 \\
1345     0 & 0 & {\pi _1 } \\
1346     0 & { - \pi _1 } & 0 \\
1347     \end{array}} \right).
1348     \]
1349     The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1350 tim 2707 \[
1351 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1352     Q(0)e^{\Delta tR_1 }
1353 tim 2707 \]
1354 tim 2713 with
1355 tim 2707 \[
1356 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1357     0 & 0 & 0 \\
1358     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1359     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1360     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1361 tim 2707 \]
1362 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1363 tim 2872 tR_1 }$, we can use Cayley transformation to obtain a single-aixs
1364     propagator,
1365 tim 2713 \[
1366     e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1367 tim 2899 ).
1368 tim 2713 \]
1369 tim 2720 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1370 tim 2872 manner. In order to construct a second-order symplectic method, we
1371     split the angular kinetic Hamiltonian function can into five terms
1372 tim 2707 \[
1373 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1374     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1375 tim 2872 (\pi _1 ).
1376     \]
1377     By concatenating the propagators corresponding to these five terms,
1378     we can obtain an symplectic integrator,
1379 tim 2713 \[
1380     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1381 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1382     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1383 tim 2713 _1 }.
1384 tim 2707 \]
1385 tim 2713 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1386     $F(\pi )$ and $G(\pi )$ is defined by
1387 tim 2707 \[
1388 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1389 tim 2899 ).
1390 tim 2713 \]
1391     If the Poisson bracket of a function $F$ with an arbitrary smooth
1392     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1393     conserved quantity in Poisson system. We can easily verify that the
1394     norm of the angular momentum, $\parallel \pi
1395     \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1396     \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1397     then by the chain rule
1398     \[
1399     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1400 tim 2899 }}{2})\pi.
1401 tim 2713 \]
1402 tim 2899 Thus, $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel
1403     \pi
1404 tim 2713 \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1405 tim 2872 Lie-Poisson integrator is found to be both extremely efficient and
1406     stable. These properties can be explained by the fact the small
1407     angle approximation is used and the norm of the angular momentum is
1408     conserved.
1409 tim 2713
1410     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1411     Splitting for Rigid Body}
1412    
1413     The Hamiltonian of rigid body can be separated in terms of kinetic
1414     energy and potential energy,
1415     \[
1416 tim 2899 H = T(p,\pi ) + V(q,Q).
1417 tim 2713 \]
1418     The equations of motion corresponding to potential energy and
1419     kinetic energy are listed in the below table,
1420 tim 2776 \begin{table}
1421 tim 2889 \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1422 tim 2713 \begin{center}
1423     \begin{tabular}{|l|l|}
1424     \hline
1425     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1426     Potential & Kinetic \\
1427     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1428     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1429     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1430     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1431     \hline
1432     \end{tabular}
1433     \end{center}
1434 tim 2776 \end{table}
1435 tim 2872 A second-order symplectic method is now obtained by the composition
1436     of the position and velocity propagators,
1437 tim 2713 \[
1438     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1439     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1440     \]
1441 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1442 tim 2872 sub-propagators which corresponding to force and torque
1443     respectively,
1444 tim 2713 \[
1445 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1446 tim 2713 _{\Delta t/2,\tau }.
1447 tim 2707 \]
1448 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1449 tim 2872 $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1450     inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1451     kinetic energy can be separated to translational kinetic term, $T^t
1452     (p)$, and rotational kinetic term, $T^r (\pi )$,
1453 tim 2713 \begin{equation}
1454     T(p,\pi ) =T^t (p) + T^r (\pi ).
1455     \end{equation}
1456     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1457     defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1458 tim 2872 corresponding propagators are given by
1459 tim 2713 \[
1460     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1461     _{\Delta t,T^r }.
1462     \]
1463 tim 2872 Finally, we obtain the overall symplectic propagators for freely
1464     moving rigid bodies
1465 tim 2899 \begin{eqnarray*}
1466     \varphi _{\Delta t} &=& \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1467     & & \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1468     & & \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1469 tim 2713 \label{introEquation:overallRBFlowMaps}
1470 tim 2899 \end{eqnarray*}
1471 tim 2707
1472 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1473 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1474     mimics a simple heat bath with stochastic and dissipative forces,
1475     has been applied in a variety of studies. This section will review
1476 tim 2872 the theory of Langevin dynamics. A brief derivation of generalized
1477     Langevin equation will be given first. Following that, we will
1478     discuss the physical meaning of the terms appearing in the equation
1479     as well as the calculation of friction tensor from hydrodynamics
1480     theory.
1481 tim 2685
1482 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1483 tim 2685
1484 tim 2872 A harmonic bath model, in which an effective set of harmonic
1485 tim 2719 oscillators are used to mimic the effect of a linearly responding
1486     environment, has been widely used in quantum chemistry and
1487     statistical mechanics. One of the successful applications of
1488 tim 2872 Harmonic bath model is the derivation of the Generalized Langevin
1489     Dynamics (GLE). Lets consider a system, in which the degree of
1490 tim 2719 freedom $x$ is assumed to couple to the bath linearly, giving a
1491     Hamiltonian of the form
1492 tim 2696 \begin{equation}
1493     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1494 tim 2719 \label{introEquation:bathGLE}.
1495 tim 2696 \end{equation}
1496 tim 2872 Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1497     with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1498 tim 2696 \[
1499 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1500     }}{{2m_\alpha }} + \frac{1}{2}m_\alpha \omega _\alpha ^2 }
1501     \right\}}
1502 tim 2696 \]
1503 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1504     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1505 tim 2872 the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1506 tim 2719 coupling,
1507 tim 2696 \[
1508     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1509     \]
1510 tim 2872 where $g_\alpha$ are the coupling constants between the bath
1511 tim 2874 coordinates ($x_ \alpha$) and the system coordinate ($x$).
1512 tim 2872 Introducing
1513 tim 2696 \[
1514 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1515     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1516 tim 2899 \]
1517     and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1518 tim 2696 \[
1519     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1520     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1521     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1522 tim 2899 w_\alpha ^2 }}x} \right)^2 } \right\}}.
1523 tim 2696 \]
1524     Since the first two terms of the new Hamiltonian depend only on the
1525     system coordinates, we can get the equations of motion for
1526 tim 2872 Generalized Langevin Dynamics by Hamilton's equations,
1527 tim 2719 \begin{equation}
1528     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1529     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1530     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1531     \label{introEquation:coorMotionGLE}
1532     \end{equation}
1533     and
1534     \begin{equation}
1535     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1536     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1537     \label{introEquation:bathMotionGLE}
1538     \end{equation}
1539     In order to derive an equation for $x$, the dynamics of the bath
1540     variables $x_\alpha$ must be solved exactly first. As an integral
1541     transform which is particularly useful in solving linear ordinary
1542 tim 2872 differential equations,the Laplace transform is the appropriate tool
1543     to solve this problem. The basic idea is to transform the difficult
1544 tim 2719 differential equations into simple algebra problems which can be
1545 tim 2872 solved easily. Then, by applying the inverse Laplace transform, also
1546     known as the Bromwich integral, we can retrieve the solutions of the
1547 tim 2899 original problems. Let $f(t)$ be a function defined on $ [0,\infty )
1548     $. The Laplace transform of f(t) is a new function defined as
1549 tim 2696 \[
1550 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1551 tim 2696 \]
1552 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1553     Operator. Below are some important properties of Laplace transform
1554 tim 2789 \begin{eqnarray*}
1555     L(x + y) & = & L(x) + L(y) \\
1556     L(ax) & = & aL(x) \\
1557     L(\dot x) & = & pL(x) - px(0) \\
1558     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1559     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1560     \end{eqnarray*}
1561 tim 2872 Applying the Laplace transform to the bath coordinates, we obtain
1562 tim 2789 \begin{eqnarray*}
1563     p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x) \\
1564     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }} \\
1565     \end{eqnarray*}
1566 tim 2719 By the same way, the system coordinates become
1567 tim 2789 \begin{eqnarray*}
1568 tim 2899 mL(\ddot x) & = &
1569     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1570     & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}
1571 tim 2789 \end{eqnarray*}
1572 tim 2719 With the help of some relatively important inverse Laplace
1573     transformations:
1574 tim 2696 \[
1575 tim 2719 \begin{array}{c}
1576     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1577     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1578     L(1) = \frac{1}{p} \\
1579     \end{array}
1580 tim 2696 \]
1581 tim 2899 we obtain
1582 tim 2794 \begin{eqnarray*}
1583     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1584 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1585     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1586 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1587     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1588     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1589     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1590     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1591     \end{eqnarray*}
1592     \begin{eqnarray*}
1593     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1594 tim 2696 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1595     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1596 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1597     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1598     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1599     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1600     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1601     \end{eqnarray*}
1602 tim 2719 Introducing a \emph{dynamic friction kernel}
1603 tim 2696 \begin{equation}
1604 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1605     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1606     \label{introEquation:dynamicFrictionKernelDefinition}
1607     \end{equation}
1608     and \emph{a random force}
1609     \begin{equation}
1610     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1611     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1612     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1613     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1614     \label{introEquation:randomForceDefinition}
1615     \end{equation}
1616     the equation of motion can be rewritten as
1617     \begin{equation}
1618 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1619     (t)\dot x(t - \tau )d\tau } + R(t)
1620     \label{introEuqation:GeneralizedLangevinDynamics}
1621     \end{equation}
1622 tim 2719 which is known as the \emph{generalized Langevin equation}.
1623    
1624 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1625 tim 2719
1626     One may notice that $R(t)$ depends only on initial conditions, which
1627     implies it is completely deterministic within the context of a
1628     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1629     uncorrelated to $x$ and $\dot x$,
1630 tim 2696 \[
1631 tim 2719 \begin{array}{l}
1632     \left\langle {x(t)R(t)} \right\rangle = 0, \\
1633     \left\langle {\dot x(t)R(t)} \right\rangle = 0. \\
1634     \end{array}
1635 tim 2696 \]
1636 tim 2719 This property is what we expect from a truly random process. As long
1637 tim 2872 as the model chosen for $R(t)$ was a gaussian distribution in
1638     general, the stochastic nature of the GLE still remains.
1639 tim 2696
1640 tim 2719 %dynamic friction kernel
1641     The convolution integral
1642 tim 2696 \[
1643 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1644 tim 2696 \]
1645 tim 2719 depends on the entire history of the evolution of $x$, which implies
1646     that the bath retains memory of previous motions. In other words,
1647     the bath requires a finite time to respond to change in the motion
1648     of the system. For a sluggish bath which responds slowly to changes
1649     in the system coordinate, we may regard $\xi(t)$ as a constant
1650     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1651     \[
1652     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1653     \]
1654 tim 2899 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1655 tim 2719 \[
1656     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1657     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1658     \]
1659 tim 2872 which can be used to describe the effect of dynamic caging in
1660     viscous solvents. The other extreme is the bath that responds
1661     infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1662     taken as a $delta$ function in time:
1663 tim 2719 \[
1664     \xi (t) = 2\xi _0 \delta (t)
1665     \]
1666     Hence, the convolution integral becomes
1667     \[
1668     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1669     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1670     \]
1671 tim 2899 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1672 tim 2719 \begin{equation}
1673     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1674     x(t) + R(t) \label{introEquation:LangevinEquation}
1675     \end{equation}
1676     which is known as the Langevin equation. The static friction
1677     coefficient $\xi _0$ can either be calculated from spectral density
1678 tim 2850 or be determined by Stokes' law for regular shaped particles. A
1679 tim 2719 briefly review on calculating friction tensor for arbitrary shaped
1680 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1681 tim 2696
1682 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1683 tim 2719
1684     Defining a new set of coordinates,
1685 tim 2696 \[
1686     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1687     ^2 }}x(0)
1688 tim 2719 \],
1689     we can rewrite $R(T)$ as
1690 tim 2696 \[
1691 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1692 tim 2696 \]
1693     And since the $q$ coordinates are harmonic oscillators,
1694 tim 2789 \begin{eqnarray*}
1695     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1696     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1697     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1698     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1699     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1700     & = &kT\xi (t) \\
1701     \end{eqnarray*}
1702 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1703 tim 2696 \begin{equation}
1704     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1705 tim 2719 \label{introEquation:secondFluctuationDissipation}.
1706 tim 2696 \end{equation}
1707 tim 2719 In effect, it acts as a constraint on the possible ways in which one
1708     can model the random force and friction kernel.