ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2947
Committed: Tue Jul 18 14:32:45 2006 UTC (17 years, 11 months ago) by tim
Content type: application/x-tex
File size: 75434 byte(s)
Log Message:
fix some strange behavior of CVS

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2907 Using equations of motion derived from Classical Mechanics,
7     Molecular Dynamics simulations are carried out by integrating the
8     equations of motion for a given system of particles. There are three
9     fundamental ideas behind classical mechanics. Firstly, one can
10     determine the state of a mechanical system at any time of interest;
11     Secondly, all the mechanical properties of the system at that time
12     can be determined by combining the knowledge of the properties of
13     the system with the specification of this state; Finally, the
14     specification of the state when further combined with the laws of
15     mechanics will also be sufficient to predict the future behavior of
16     the system.
17 tim 2685
18 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
19 tim 2694 The discovery of Newton's three laws of mechanics which govern the
20     motion of particles is the foundation of the classical mechanics.
21 tim 2819 Newton's first law defines a class of inertial frames. Inertial
22 tim 2694 frames are reference frames where a particle not interacting with
23     other bodies will move with constant speed in the same direction.
24 tim 2819 With respect to inertial frames, Newton's second law has the form
25 tim 2694 \begin{equation}
26 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
27 tim 2694 \label{introEquation:newtonSecondLaw}
28     \end{equation}
29     A point mass interacting with other bodies moves with the
30     acceleration along the direction of the force acting on it. Let
31 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
32     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
33 tim 2819 Newton's third law states that
34 tim 2694 \begin{equation}
35 tim 2898 F_{ij} = -F_{ji}.
36 tim 2694 \label{introEquation:newtonThirdLaw}
37     \end{equation}
38     Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 tim 2694 \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62 tim 2819 \dot L = r \times \dot p = \tau
63 tim 2694 \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2899 that if all forces are conservative, energy is conserved,
67     \begin{equation}E = T + V. \label{introEquation:energyConservation}
68 tim 2696 \end{equation}
69 tim 2899 All of these conserved quantities are important factors to determine
70 tim 2941 the quality of numerical integration schemes for rigid
71     bodies.\cite{Dullweber1997}
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75 tim 2907 Newtonian Mechanics suffers from an important limitation: motion can
76 tim 2904 only be described in cartesian coordinate systems which make it
77     impossible to predict analytically the properties of the system even
78     if we know all of the details of the interaction. In order to
79     overcome some of the practical difficulties which arise in attempts
80 tim 2907 to apply Newton's equation to complex systems, approximate numerical
81 tim 2904 procedures may be developed.
82 tim 2692
83 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84     Principle}}
85 tim 2692
86     Hamilton introduced the dynamical principle upon which it is
87 tim 2819 possible to base all of mechanics and most of classical physics.
88 tim 2907 Hamilton's Principle may be stated as follows: the trajectory, along
89     which a dynamical system may move from one point to another within a
90     specified time, is derived by finding the path which minimizes the
91     time integral of the difference between the kinetic $K$, and
92     potential energies $U$,
93 tim 2692 \begin{equation}
94 tim 2899 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
95 tim 2693 \label{introEquation:halmitonianPrinciple1}
96 tim 2692 \end{equation}
97     For simple mechanical systems, where the forces acting on the
98 tim 2819 different parts are derivable from a potential, the Lagrangian
99     function $L$ can be defined as the difference between the kinetic
100     energy of the system and its potential energy,
101 tim 2692 \begin{equation}
102 tim 2904 L \equiv K - U = L(q_i ,\dot q_i ).
103 tim 2692 \label{introEquation:lagrangianDef}
104     \end{equation}
105 tim 2904 Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
106 tim 2692 \begin{equation}
107 tim 2904 \delta \int_{t_1 }^{t_2 } {L dt = 0} .
108 tim 2693 \label{introEquation:halmitonianPrinciple2}
109 tim 2692 \end{equation}
110    
111 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
112     Equations of Motion in Lagrangian Mechanics}}
113 tim 2692
114 tim 2850 For a system of $f$ degrees of freedom, the equations of motion in
115     the Lagrangian form is
116 tim 2692 \begin{equation}
117     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
118     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
119 tim 2693 \label{introEquation:eqMotionLagrangian}
120 tim 2692 \end{equation}
121     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
122     generalized velocity.
123    
124 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
125 tim 2692
126     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
127     introduced by William Rowan Hamilton in 1833 as a re-formulation of
128     classical mechanics. If the potential energy of a system is
129 tim 2819 independent of velocities, the momenta can be defined as
130 tim 2692 \begin{equation}
131     p_i = \frac{\partial L}{\partial \dot q_i}
132     \label{introEquation:generalizedMomenta}
133     \end{equation}
134 tim 2693 The Lagrange equations of motion are then expressed by
135 tim 2692 \begin{equation}
136 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
137     \label{introEquation:generalizedMomentaDot}
138     \end{equation}
139     With the help of the generalized momenta, we may now define a new
140     quantity $H$ by the equation
141     \begin{equation}
142     H = \sum\limits_k {p_k \dot q_k } - L ,
143 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
144     \end{equation}
145     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
146 tim 2898 $L$ is the Lagrangian function for the system. Differentiating
147     Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
148 tim 2693 \begin{equation}
149     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
150     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
151     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
152 tim 2904 L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
153 tim 2693 \end{equation}
154 tim 2899 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
155     and fourth terms in the parentheses cancel. Therefore,
156 tim 2693 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
157     \begin{equation}
158     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
159 tim 2904 \right)} - \frac{{\partial L}}{{\partial t}}dt .
160 tim 2693 \label{introEquation:diffHamiltonian2}
161     \end{equation}
162     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
163     find
164     \begin{equation}
165 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
166 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
167     \end{equation}
168     \begin{equation}
169 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
170 tim 2693 \label{introEquation:motionHamiltonianMomentum}
171     \end{equation}
172     and
173     \begin{equation}
174     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
175     t}}
176     \label{introEquation:motionHamiltonianTime}
177     \end{equation}
178 tim 2899 where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
179 tim 2693 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
180     equation of motion. Due to their symmetrical formula, they are also
181 tim 2941 known as the canonical equations of motions.\cite{Goldstein2001}
182 tim 2693
183 tim 2692 An important difference between Lagrangian approach and the
184     Hamiltonian approach is that the Lagrangian is considered to be a
185 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
186     $q_i$, while the Hamiltonian is considered to be a function of the
187     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
188     Hamiltonian Mechanics is more appropriate for application to
189     statistical mechanics and quantum mechanics, since it treats the
190     coordinate and its time derivative as independent variables and it
191 tim 2941 only works with 1st-order differential equations.\cite{Marion1990}
192 tim 2696 In Newtonian Mechanics, a system described by conservative forces
193 tim 2899 conserves the total energy
194     (Eq.~\ref{introEquation:energyConservation}). It follows that
195 tim 2904 Hamilton's equations of motion conserve the total Hamiltonian
196 tim 2696 \begin{equation}
197     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
198     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
199     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
200     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
201     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
202 tim 2904 q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
203 tim 2696 \end{equation}
204    
205 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
206     Mechanics}
207 tim 2692
208 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
209 tim 2692 simulation are governed by the principle of Statistical Mechanics.
210     The following section will give a brief introduction to some of the
211 tim 2938 Statistical Mechanics concepts and theorems presented in this
212 tim 2700 dissertation.
213 tim 2692
214 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
215 tim 2692
216 tim 2700 Mathematically, phase space is the space which represents all
217 tim 2907 possible states of a system. Each possible state of the system
218     corresponds to one unique point in the phase space. For mechanical
219     systems, the phase space usually consists of all possible values of
220     position and momentum variables. Consider a dynamic system of $f$
221     particles in a cartesian space, where each of the $6f$ coordinates
222     and momenta is assigned to one of $6f$ mutually orthogonal axes, the
223     phase space of this system is a $6f$ dimensional space. A point, $x
224     =
225 tim 2904 (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226     \over q} _1 , \ldots
227     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228     \over q} _f
229     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230     \over p} _1 \ldots
231     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
232     \over p} _f )$ , with a unique set of values of $6f$ coordinates and
233     momenta is a phase space vector.
234 tim 2888 %%%fix me
235 tim 2700
236 tim 2888 In statistical mechanics, the condition of an ensemble at any time
237 tim 2700 can be regarded as appropriately specified by the density $\rho$
238     with which representative points are distributed over the phase
239 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
240     freedom is defined as,
241 tim 2700 \begin{equation}
242     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
243     \label{introEquation:densityDistribution}
244     \end{equation}
245     Governed by the principles of mechanics, the phase points change
246 tim 2907 their locations which changes the density at any time at phase
247 tim 2819 space. Hence, the density distribution is also to be taken as a
248 tim 2905 function of the time. The number of systems $\delta N$ at time $t$
249     can be determined by,
250 tim 2700 \begin{equation}
251     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
252     \label{introEquation:deltaN}
253     \end{equation}
254 tim 2907 Assuming enough copies of the systems, we can sufficiently
255 tim 2819 approximate $\delta N$ without introducing discontinuity when we go
256     from one region in the phase space to another. By integrating over
257     the whole phase space,
258 tim 2700 \begin{equation}
259     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
260     \label{introEquation:totalNumberSystem}
261     \end{equation}
262 tim 2907 gives us an expression for the total number of copies. Hence, the
263     probability per unit volume in the phase space can be obtained by,
264 tim 2700 \begin{equation}
265     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
266     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
267     \label{introEquation:unitProbability}
268     \end{equation}
269 tim 2850 With the help of Eq.~\ref{introEquation:unitProbability} and the
270     knowledge of the system, it is possible to calculate the average
271 tim 2700 value of any desired quantity which depends on the coordinates and
272 tim 2907 momenta of the system. Even when the dynamics of the real system are
273 tim 2700 complex, or stochastic, or even discontinuous, the average
274 tim 2907 properties of the ensemble of possibilities as a whole remain well
275     defined. For a classical system in thermal equilibrium with its
276 tim 2819 environment, the ensemble average of a mechanical quantity, $\langle
277     A(q , p) \rangle_t$, takes the form of an integral over the phase
278     space of the system,
279 tim 2700 \begin{equation}
280     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
281     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
282 tim 2905 (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
283 tim 2700 \label{introEquation:ensembelAverage}
284     \end{equation}
285    
286     \subsection{\label{introSection:liouville}Liouville's theorem}
287    
288 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
289     rests. It describes the time evolution of the phase space
290 tim 2700 distribution function. In order to calculate the rate of change of
291 tim 2850 $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
292     the two faces perpendicular to the $q_1$ axis, which are located at
293     $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
294     opposite face is given by the expression,
295 tim 2700 \begin{equation}
296     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
297     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
298     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
299     \ldots \delta p_f .
300     \end{equation}
301     Summing all over the phase space, we obtain
302     \begin{equation}
303     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
304     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
305     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
306     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
307     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
308     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
309     \end{equation}
310     Differentiating the equations of motion in Hamiltonian formalism
311     (\ref{introEquation:motionHamiltonianCoordinate},
312     \ref{introEquation:motionHamiltonianMomentum}), we can show,
313     \begin{equation}
314     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
315     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
316     \end{equation}
317     which cancels the first terms of the right hand side. Furthermore,
318 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
319 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
320     simple form,
321     \begin{equation}
322     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
323     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
324     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
325     \label{introEquation:liouvilleTheorem}
326     \end{equation}
327     Liouville's theorem states that the distribution function is
328     constant along any trajectory in phase space. In classical
329 tim 2907 statistical mechanics, since the number of system copies in an
330     ensemble is huge and constant, we can assume the local density has
331     no reason (other than classical mechanics) to change,
332 tim 2700 \begin{equation}
333     \frac{{\partial \rho }}{{\partial t}} = 0.
334     \label{introEquation:stationary}
335     \end{equation}
336     In such stationary system, the density of distribution $\rho$ can be
337     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
338     distribution,
339     \begin{equation}
340     \rho \propto e^{ - \beta H}
341     \label{introEquation:densityAndHamiltonian}
342     \end{equation}
343    
344 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
345 tim 2702 Lets consider a region in the phase space,
346     \begin{equation}
347     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
348     \end{equation}
349     If this region is small enough, the density $\rho$ can be regarded
350 tim 2819 as uniform over the whole integral. Thus, the number of phase points
351     inside this region is given by,
352 tim 2702 \begin{equation}
353     \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
354     dp_1 } ..dp_f.
355     \end{equation}
356    
357     \begin{equation}
358     \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
359     \frac{d}{{dt}}(\delta v) = 0.
360     \end{equation}
361 tim 2907 With the help of the stationary assumption
362     (Eq.~\ref{introEquation:stationary}), we obtain the principle of
363 tim 2819 \emph{conservation of volume in phase space},
364 tim 2702 \begin{equation}
365     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
366     ...dq_f dp_1 } ..dp_f = 0.
367     \label{introEquation:volumePreserving}
368     \end{equation}
369    
370 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
371 tim 2702
372 tim 2907 Liouville's theorem can be expressed in a variety of different forms
373 tim 2700 which are convenient within different contexts. For any two function
374     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
375 tim 2938 bracket $\{F,G\}$ is defined as
376 tim 2700 \begin{equation}
377     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
378     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
379     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
380     q_i }}} \right)}.
381     \label{introEquation:poissonBracket}
382     \end{equation}
383 tim 2905 Substituting equations of motion in Hamiltonian formalism
384     (Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
385     Eq.~\ref{introEquation:motionHamiltonianMomentum}) into
386 tim 2850 (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
387     Liouville's theorem using Poisson bracket notion,
388 tim 2700 \begin{equation}
389     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
390     {\rho ,H} \right\}.
391     \label{introEquation:liouvilleTheromInPoissin}
392     \end{equation}
393     Moreover, the Liouville operator is defined as
394     \begin{equation}
395     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
396     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
397     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
398     \label{introEquation:liouvilleOperator}
399     \end{equation}
400     In terms of Liouville operator, Liouville's equation can also be
401     expressed as
402     \begin{equation}
403     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
404     \label{introEquation:liouvilleTheoremInOperator}
405     \end{equation}
406 tim 2907 which can help define a propagator $\rho (t) = e^{-iLt} \rho (0)$.
407 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
408 tim 2692
409 tim 2695 Various thermodynamic properties can be calculated from Molecular
410     Dynamics simulation. By comparing experimental values with the
411     calculated properties, one can determine the accuracy of the
412 tim 2819 simulation and the quality of the underlying model. However, both
413     experiments and computer simulations are usually performed during a
414 tim 2695 certain time interval and the measurements are averaged over a
415 tim 2907 period of time which is different from the average behavior of
416 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
417     Hypothesis makes a connection between time average and the ensemble
418     average. It states that the time average and average over the
419 tim 2941 statistical ensemble are identical:\cite{Frenkel1996, Leach2001}
420 tim 2695 \begin{equation}
421 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
422     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
423     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
424 tim 2695 \end{equation}
425 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
426     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
427     distribution function. If an observation is averaged over a
428 tim 2907 sufficiently long time (longer than the relaxation time), all
429     accessible microstates in phase space are assumed to be equally
430     probed, giving a properly weighted statistical average. This allows
431     the researcher freedom of choice when deciding how best to measure a
432     given observable. In case an ensemble averaged approach sounds most
433 tim 2905 reasonable, the Monte Carlo methods\cite{Metropolis1949} can be
434 tim 2700 utilized. Or if the system lends itself to a time averaging
435     approach, the Molecular Dynamics techniques in
436     Sec.~\ref{introSection:molecularDynamics} will be the best
437 tim 2941 choice.\cite{Frenkel1996}
438 tim 2694
439 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
440 tim 2819 A variety of numerical integrators have been proposed to simulate
441     the motions of atoms in MD simulation. They usually begin with
442 tim 2941 initial conditions and move the objects in the direction governed by
443     the differential equations. However, most of them ignore the hidden
444     physical laws contained within the equations. Since 1990, geometric
445     integrators, which preserve various phase-flow invariants such as
446     symplectic structure, volume and time reversal symmetry, were
447     developed to address this issue.\cite{Dullweber1997, McLachlan1998,
448     Leimkuhler1999} The velocity Verlet method, which happens to be a
449     simple example of symplectic integrator, continues to gain
450     popularity in the molecular dynamics community. This fact can be
451     partly explained by its geometric nature.
452 tim 2697
453 tim 2947 \subsection{\label{introSection:symplecticManifold}Manifolds and Bundles}
454 tim 2819 A \emph{manifold} is an abstract mathematical space. It looks
455     locally like Euclidean space, but when viewed globally, it may have
456     more complicated structure. A good example of manifold is the
457     surface of Earth. It seems to be flat locally, but it is round if
458     viewed as a whole. A \emph{differentiable manifold} (also known as
459     \emph{smooth manifold}) is a manifold on which it is possible to
460 tim 2941 apply calculus.\cite{Hirsch1997} A \emph{symplectic manifold} is
461 tim 2907 defined as a pair $(M, \omega)$ which consists of a
462 tim 2938 \emph{differentiable manifold} $M$ and a close, non-degenerate,
463 tim 2697 bilinear symplectic form, $\omega$. A symplectic form on a vector
464     space $V$ is a function $\omega(x, y)$ which satisfies
465     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
466     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
467 tim 2941 $\omega(x, x) = 0$.\cite{McDuff1998} The cross product operation in
468 tim 2947 vector field is an example of symplectic form.
469     Given vector spaces $V$ and $W$ over same field $F$, $f: V \to W$ is a linear transformation if
470     \begin{eqnarray*}
471     f(x+y) & = & f(x) + f(y) \\
472     f(ax) & = & af(x)
473     \end{eqnarray*}
474     are always satisfied for any two vectors $x$ and $y$ in $V$ and any scalar $a$ in $F$. One can define the dual vector space $V^*$ of $V$ if any two built-in linear transformations $\phi$ and $\psi$ in $V^*$ satisfy the following definition of addition and scalar multiplication:
475     \begin{eqnarray*}
476     (\phi+\psi)(x) & = & \phi(x)+\psi(x) \\
477     (a\phi)(x) & = & a \phi(x)
478     \end{eqnarray*}
479     for all $a$ in $F$ and $x$ in $V$. For a manifold $M$, one can define a tangent vector of a tangent space $TM_q$ at every point $q$
480     \begin{equation}
481     \dot q = \mathop {\lim }\limits_{t \to 0} \frac{{\phi (t) - \phi (0)}}{t}
482     \end{equation}
483     where $\phi(0)=q$ and $\phi(t) \in M$. One may also define a cotangent space $T^*M_q$ as the dual space of the tangent space $TM_q$. The tangent space and the cotangent space are isomorphic to each other, since they are both real vector spaces with same dimension.
484     The union of tangent spaces at every point of $M$ is called the tangent bundle of $M$ and is denoted by $TM$, while cotangent bundle $T^*M$ is defined as the union of the cotangent spaces to $M$.\cite{Jost2002} For a Hamiltonian system with configuration manifold $V$, the $(q,\dot q)$ phase space is the tangent bundle of the configuration manifold $V$, while the cotangent bundle is represented by $(q,p)$.
485 tim 2697
486 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
487 tim 2697
488 tim 2819 For an ordinary differential system defined as
489 tim 2698 \begin{equation}
490     \dot x = f(x)
491     \end{equation}
492 tim 2938 where $x = x(q,p)$, this system is a canonical Hamiltonian, if
493 tim 2907 $f(x) = J\nabla _x H(x)$. Here, $H = H (q, p)$ is Hamiltonian
494 tim 2905 function and $J$ is the skew-symmetric matrix
495 tim 2698 \begin{equation}
496     J = \left( {\begin{array}{*{20}c}
497     0 & I \\
498     { - I} & 0 \\
499     \end{array}} \right)
500     \label{introEquation:canonicalMatrix}
501     \end{equation}
502     where $I$ is an identity matrix. Using this notation, Hamiltonian
503     system can be rewritten as,
504     \begin{equation}
505 tim 2905 \frac{d}{{dt}}x = J\nabla _x H(x).
506 tim 2698 \label{introEquation:compactHamiltonian}
507     \end{equation}In this case, $f$ is
508 tim 2899 called a \emph{Hamiltonian vector field}. Another generalization of
509 tim 2941 Hamiltonian dynamics is Poisson Dynamics,\cite{Olver1986}
510 tim 2698 \begin{equation}
511     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
512     \end{equation}
513 tim 2941 where the most obvious change being that matrix $J$ now depends on
514     $x$.
515 tim 2698
516 tim 2907 \subsection{\label{introSection:exactFlow}Exact Propagator}
517 tim 2702
518 tim 2905 Let $x(t)$ be the exact solution of the ODE
519 tim 2912 system,
520     \begin{equation}
521     \frac{{dx}}{{dt}} = f(x), \label{introEquation:ODE}
522     \end{equation} we can
523     define its exact propagator $\varphi_\tau$:
524 tim 2905 \[ x(t+\tau)
525     =\varphi_\tau(x(t))
526 tim 2698 \]
527     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
528 tim 2907 space to itself. The propagator has the continuous group property,
529 tim 2698 \begin{equation}
530 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
531     + \tau _2 } .
532     \end{equation}
533     In particular,
534     \begin{equation}
535     \varphi _\tau \circ \varphi _{ - \tau } = I
536     \end{equation}
537 tim 2907 Therefore, the exact propagator is self-adjoint,
538 tim 2702 \begin{equation}
539     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
540     \end{equation}
541 tim 2907 In most cases, it is not easy to find the exact propagator
542     $\varphi_\tau$. Instead, we use an approximate map, $\psi_\tau$,
543     which is usually called an integrator. The order of an integrator
544     $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
545     order $p$,
546 tim 2702 \begin{equation}
547 tim 2872 \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
548 tim 2698 \end{equation}
549    
550 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
551    
552 tim 2872 The hidden geometric properties\cite{Budd1999, Marsden1998} of an
553 tim 2907 ODE and its propagator play important roles in numerical studies.
554     Many of them can be found in systems which occur naturally in
555     applications. Let $\varphi$ be the propagator of Hamiltonian vector
556     field, $\varphi$ is a \emph{symplectic} propagator if it satisfies,
557 tim 2698 \begin{equation}
558 tim 2703 {\varphi '}^T J \varphi ' = J.
559 tim 2698 \end{equation}
560     According to Liouville's theorem, the symplectic volume is invariant
561 tim 2907 under a Hamiltonian propagator, which is the basis for classical
562     statistical mechanics. Furthermore, the propagator of a Hamiltonian
563     vector field on a symplectic manifold can be shown to be a
564 tim 2699 symplectomorphism. As to the Poisson system,
565 tim 2698 \begin{equation}
566 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
567 tim 2698 \end{equation}
568 tim 2898 is the property that must be preserved by the integrator. It is
569 tim 2907 possible to construct a \emph{volume-preserving} propagator for a
570     source free ODE ($ \nabla \cdot f = 0 $), if the propagator
571     satisfies $ \det d\varphi = 1$. One can show easily that a
572     symplectic propagator will be volume-preserving. Changing the
573     variables $y = h(x)$ in an ODE (Eq.~\ref{introEquation:ODE}) will
574     result in a new system,
575 tim 2698 \[
576     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
577     \]
578     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
579 tim 2907 In other words, the propagator of this vector field is reversible if
580     and only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $. A
581     conserved quantity of a general differential function is a function
582     $ G:R^{2d} \to R^d $ which is constant for all solutions of the ODE
583     $\frac{{dx}}{{dt}} = f(x)$ ,
584 tim 2705 \[
585     \frac{{dG(x(t))}}{{dt}} = 0.
586     \]
587 tim 2907 Using the chain rule, one may obtain,
588 tim 2705 \[
589 tim 2912 \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \cdot \nabla G,
590 tim 2705 \]
591 tim 2907 which is the condition for conserved quantities. For a canonical
592     Hamiltonian system, the time evolution of an arbitrary smooth
593     function $G$ is given by,
594 tim 2789 \begin{eqnarray}
595 tim 2905 \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \notag\\
596     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)).
597 tim 2705 \label{introEquation:firstIntegral1}
598 tim 2789 \end{eqnarray}
599 tim 2905 Using poisson bracket notion, Eq.~\ref{introEquation:firstIntegral1}
600     can be rewritten as
601 tim 2705 \[
602     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
603     \]
604 tim 2907 Therefore, the sufficient condition for $G$ to be a conserved
605     quantity of a Hamiltonian system is $\left\{ {G,H} \right\} = 0.$ As
606     is well known, the Hamiltonian (or energy) H of a Hamiltonian system
607     is a conserved quantity, which is due to the fact $\{ H,H\} = 0$.
608     When designing any numerical methods, one should always try to
609     preserve the structural properties of the original ODE and its
610     propagator.
611 tim 2702
612 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
613     A lot of well established and very effective numerical methods have
614 tim 2907 been successful precisely because of their symplectic nature even
615 tim 2699 though this fact was not recognized when they were first
616 tim 2872 constructed. The most famous example is the Verlet-leapfrog method
617 tim 2819 in molecular dynamics. In general, symplectic integrators can be
618 tim 2699 constructed using one of four different methods.
619     \begin{enumerate}
620     \item Generating functions
621     \item Variational methods
622     \item Runge-Kutta methods
623     \item Splitting methods
624     \end{enumerate}
625 tim 2907 Generating functions\cite{Channell1990} tend to lead to methods
626 tim 2789 which are cumbersome and difficult to use. In dissipative systems,
627     variational methods can capture the decay of energy
628 tim 2941 accurately.\cite{Kane2000} Since they are geometrically unstable
629 tim 2789 against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
630 tim 2942 methods are not suitable for Hamiltonian
631     system.\cite{Cartwright1992} Recently, various high-order explicit
632     Runge-Kutta methods \cite{Owren1992,Chen2003} have been developed to
633     overcome this instability. However, due to computational penalty
634     involved in implementing the Runge-Kutta methods, they have not
635     attracted much attention from the Molecular Dynamics community.
636     Instead, splitting methods have been widely accepted since they
637     exploit natural decompositions of the system.\cite{McLachlan1998,
638     Tuckerman1992}
639 tim 2702
640 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
641 tim 2702
642     The main idea behind splitting methods is to decompose the discrete
643 tim 2907 $\varphi_h$ as a composition of simpler propagators,
644 tim 2699 \begin{equation}
645     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
646     \varphi _{h_n }
647     \label{introEquation:FlowDecomposition}
648     \end{equation}
649 tim 2907 where each of the sub-propagator is chosen such that each represent
650     a simpler integration of the system. Suppose that a Hamiltonian
651     system takes the form,
652 tim 2702 \[
653     H = H_1 + H_2.
654     \]
655     Here, $H_1$ and $H_2$ may represent different physical processes of
656     the system. For instance, they may relate to kinetic and potential
657     energy respectively, which is a natural decomposition of the
658 tim 2907 problem. If $H_1$ and $H_2$ can be integrated using exact
659     propagators $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a
660     simple first order expression is then given by the Lie-Trotter
661 tim 2942 formula\cite{Trotter1959}
662 tim 2699 \begin{equation}
663 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
664     \label{introEquation:firstOrderSplitting}
665     \end{equation}
666     where $\varphi _h$ is the result of applying the corresponding
667     continuous $\varphi _i$ over a time $h$. By definition, as
668     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
669     must follow that each operator $\varphi_i(t)$ is a symplectic map.
670 tim 2907 It is easy to show that any composition of symplectic propagators
671     yields a symplectic map,
672 tim 2702 \begin{equation}
673 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
674 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
675 tim 2699 \label{introEquation:SymplecticFlowComposition}
676     \end{equation}
677 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
678     splitting in this context automatically generates a symplectic map.
679 tim 2905 The Lie-Trotter
680     splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
681 tim 2907 local errors proportional to $h^2$, while the Strang splitting gives
682 tim 2941 a second-order decomposition,\cite{Strang1968}
683 tim 2702 \begin{equation}
684     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
685 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
686 tim 2702 \end{equation}
687 tim 2907 which has a local error proportional to $h^3$. The Strang
688 tim 2819 splitting's popularity in molecular simulation community attribute
689     to its symmetric property,
690 tim 2702 \begin{equation}
691     \varphi _h^{ - 1} = \varphi _{ - h}.
692 tim 2703 \label{introEquation:timeReversible}
693 tim 2882 \end{equation}
694 tim 2702
695 tim 2872 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
696 tim 2702 The classical equation for a system consisting of interacting
697     particles can be written in Hamiltonian form,
698     \[
699     H = T + V
700     \]
701     where $T$ is the kinetic energy and $V$ is the potential energy.
702 tim 2872 Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
703 tim 2702 obtains the following:
704     \begin{align}
705     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
706     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
707     \label{introEquation:Lp10a} \\%
708     %
709     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
710     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
711     \label{introEquation:Lp10b}
712     \end{align}
713     where $F(t)$ is the force at time $t$. This integration scheme is
714     known as \emph{velocity verlet} which is
715 tim 2912 symplectic(Eq.~\ref{introEquation:SymplecticFlowComposition}),
716     time-reversible(Eq.~\ref{introEquation:timeReversible}) and
717     volume-preserving (Eq.~\ref{introEquation:volumePreserving}). These
718 tim 2702 geometric properties attribute to its long-time stability and its
719     popularity in the community. However, the most commonly used
720     velocity verlet integration scheme is written as below,
721     \begin{align}
722     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
723     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
724     %
725     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
726     \label{introEquation:Lp9b}\\%
727     %
728     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
729 tim 2872 \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
730 tim 2702 \end{align}
731     From the preceding splitting, one can see that the integration of
732     the equations of motion would follow:
733     \begin{enumerate}
734     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
735    
736     \item Use the half step velocities to move positions one whole step, $\Delta t$.
737    
738 tim 2938 \item Evaluate the forces at the new positions, $q(\Delta t)$, and use the new forces to complete the velocity move.
739 tim 2702
740     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
741     \end{enumerate}
742 tim 2872 By simply switching the order of the propagators in the splitting
743     and composing a new integrator, the \emph{position verlet}
744     integrator, can be generated,
745 tim 2702 \begin{align}
746     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
747     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
748     \label{introEquation:positionVerlet1} \\%
749     %
750 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
751 tim 2702 q(\Delta t)} \right]. %
752 tim 2719 \label{introEquation:positionVerlet2}
753 tim 2702 \end{align}
754    
755 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
756 tim 2702
757 tim 2941 The Baker-Campbell-Hausdorff formula\cite{Gilmore1974} can be used
758     to determine the local error of a splitting method in terms of the
759 tim 2947 commutator of the
760     operators(Eq.~\ref{introEquation:exponentialOperator}) associated
761     with the sub-propagator. For operators $hX$ and $hY$ which are
762     associated with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we
763     have
764 tim 2702 \begin{equation}
765     \exp (hX + hY) = \exp (hZ)
766     \end{equation}
767     where
768     \begin{equation}
769     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
770     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
771     \end{equation}
772 tim 2907 Here, $[X,Y]$ is the commutator of operator $X$ and $Y$ given by
773 tim 2702 \[
774     [X,Y] = XY - YX .
775     \]
776 tim 2872 Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
777 tim 2907 to the Strang splitting, we can obtain
778 tim 2779 \begin{eqnarray*}
779 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
780     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
781 tim 2905 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots
782     ).
783 tim 2779 \end{eqnarray*}
784 tim 2905 Since $ [X,Y] + [Y,X] = 0$ and $ [X,X] = 0$, the dominant local
785 tim 2907 error of Strang splitting is proportional to $h^3$. The same
786 tim 2905 procedure can be applied to a general splitting of the form
787 tim 2702 \begin{equation}
788     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
789     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
790     \end{equation}
791 tim 2872 A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
792     order methods. Yoshida proposed an elegant way to compose higher
793 tim 2941 order methods based on symmetric splitting.\cite{Yoshida1990} Given
794 tim 2789 a symmetric second order base method $ \varphi _h^{(2)} $, a
795     fourth-order symmetric method can be constructed by composing,
796 tim 2702 \[
797     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
798     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
799     \]
800     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
801     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
802     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
803     \begin{equation}
804     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
805 tim 2872 _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)},
806 tim 2702 \end{equation}
807 tim 2872 if the weights are chosen as
808 tim 2702 \[
809     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
810     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
811     \]
812    
813 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
814    
815 tim 2720 As one of the principal tools of molecular modeling, Molecular
816     dynamics has proven to be a powerful tool for studying the functions
817     of biological systems, providing structural, thermodynamic and
818     dynamical information. The basic idea of molecular dynamics is that
819     macroscopic properties are related to microscopic behavior and
820     microscopic behavior can be calculated from the trajectories in
821 tim 2907 simulations. For instance, instantaneous temperature of a
822     Hamiltonian system of $N$ particles can be measured by
823 tim 2720 \[
824 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
825 tim 2720 \]
826     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
827     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
828 tim 2907 the Boltzman constant.
829 tim 2694
830 tim 2720 A typical molecular dynamics run consists of three essential steps:
831     \begin{enumerate}
832     \item Initialization
833     \begin{enumerate}
834     \item Preliminary preparation
835     \item Minimization
836     \item Heating
837     \item Equilibration
838     \end{enumerate}
839     \item Production
840     \item Analysis
841     \end{enumerate}
842     These three individual steps will be covered in the following
843     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
844 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
845 tim 2912 discusses issues of production runs.
846 tim 2801 Sec.~\ref{introSection:Analysis} provides the theoretical tools for
847 tim 2907 analysis of trajectories.
848 tim 2719
849 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
850 tim 2719
851 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
852 tim 2719
853 tim 2720 When selecting the starting structure of a molecule for molecular
854     simulation, one may retrieve its Cartesian coordinates from public
855     databases, such as RCSB Protein Data Bank \textit{etc}. Although
856     thousands of crystal structures of molecules are discovered every
857     year, many more remain unknown due to the difficulties of
858 tim 2872 purification and crystallization. Even for molecules with known
859 tim 2907 structures, some important information is missing. For example, a
860 tim 2720 missing hydrogen atom which acts as donor in hydrogen bonding must
861 tim 2907 be added. Moreover, in order to include electrostatic interactions,
862 tim 2720 one may need to specify the partial charges for individual atoms.
863     Under some circumstances, we may even need to prepare the system in
864 tim 2872 a special configuration. For instance, when studying transport
865     phenomenon in membrane systems, we may prepare the lipids in a
866     bilayer structure instead of placing lipids randomly in solvent,
867     since we are not interested in the slow self-aggregation process.
868 tim 2694
869 tim 2819 \subsubsection{\textbf{Minimization}}
870 tim 2705
871 tim 2720 It is quite possible that some of molecules in the system from
872 tim 2872 preliminary preparation may be overlapping with each other. This
873     close proximity leads to high initial potential energy which
874     consequently jeopardizes any molecular dynamics simulations. To
875     remove these steric overlaps, one typically performs energy
876     minimization to find a more reasonable conformation. Several energy
877     minimization methods have been developed to exploit the energy
878     surface and to locate the local minimum. While converging slowly
879 tim 2938 near the minimum, the steepest descent method is extremely robust when
880 tim 2872 systems are strongly anharmonic. Thus, it is often used to refine
881 tim 2907 structures from crystallographic data. Relying on the Hessian,
882     advanced methods like Newton-Raphson converge rapidly to a local
883     minimum, but become unstable if the energy surface is far from
884 tim 2872 quadratic. Another factor that must be taken into account, when
885 tim 2720 choosing energy minimization method, is the size of the system.
886     Steepest descent and conjugate gradient can deal with models of any
887 tim 2872 size. Because of the limits on computer memory to store the hessian
888 tim 2907 matrix and the computing power needed to diagonalize these matrices,
889     most Newton-Raphson methods can not be used with very large systems.
890 tim 2694
891 tim 2819 \subsubsection{\textbf{Heating}}
892 tim 2720
893 tim 2907 Typically, heating is performed by assigning random velocities
894 tim 2872 according to a Maxwell-Boltzman distribution for a desired
895     temperature. Beginning at a lower temperature and gradually
896     increasing the temperature by assigning larger random velocities, we
897 tim 2907 end up setting the temperature of the system to a final temperature
898 tim 2938 at which the simulation will be conducted. In the heating phase, we
899 tim 2907 should also keep the system from drifting or rotating as a whole. To
900     do this, the net linear momentum and angular momentum of the system
901     is shifted to zero after each resampling from the Maxwell -Boltzman
902     distribution.
903 tim 2720
904 tim 2819 \subsubsection{\textbf{Equilibration}}
905 tim 2720
906     The purpose of equilibration is to allow the system to evolve
907     spontaneously for a period of time and reach equilibrium. The
908     procedure is continued until various statistical properties, such as
909     temperature, pressure, energy, volume and other structural
910     properties \textit{etc}, become independent of time. Strictly
911     speaking, minimization and heating are not necessary, provided the
912     equilibration process is long enough. However, these steps can serve
913 tim 2912 as a mean to arrive at an equilibrated structure in an effective
914 tim 2720 way.
915    
916     \subsection{\label{introSection:production}Production}
917    
918 tim 2872 The production run is the most important step of the simulation, in
919 tim 2725 which the equilibrated structure is used as a starting point and the
920     motions of the molecules are collected for later analysis. In order
921     to capture the macroscopic properties of the system, the molecular
922 tim 2872 dynamics simulation must be performed by sampling correctly and
923     efficiently from the relevant thermodynamic ensemble.
924 tim 2720
925 tim 2725 The most expensive part of a molecular dynamics simulation is the
926     calculation of non-bonded forces, such as van der Waals force and
927     Coulombic forces \textit{etc}. For a system of $N$ particles, the
928     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
929 tim 2907 which makes large simulations prohibitive in the absence of any
930 tim 2905 algorithmic tricks. A natural approach to avoid system size issues
931     is to represent the bulk behavior by a finite number of the
932 tim 2907 particles. However, this approach will suffer from surface effects
933     at the edges of the simulation. To offset this, \textit{Periodic
934     boundary conditions} (see Fig.~\ref{introFig:pbc}) were developed to
935     simulate bulk properties with a relatively small number of
936     particles. In this method, the simulation box is replicated
937     throughout space to form an infinite lattice. During the simulation,
938     when a particle moves in the primary cell, its image in other cells
939     move in exactly the same direction with exactly the same
940 tim 2905 orientation. Thus, as a particle leaves the primary cell, one of its
941     images will enter through the opposite face.
942 tim 2789 \begin{figure}
943     \centering
944     \includegraphics[width=\linewidth]{pbc.eps}
945     \caption[An illustration of periodic boundary conditions]{A 2-D
946     illustration of periodic boundary conditions. As one particle leaves
947     the left of the simulation box, an image of it enters the right.}
948     \label{introFig:pbc}
949     \end{figure}
950 tim 2725
951     %cutoff and minimum image convention
952     Another important technique to improve the efficiency of force
953 tim 2907 evaluation is to apply spherical cutoffs where particles farther
954 tim 2941 than a predetermined distance are not included in the
955     calculation.\cite{Frenkel1996} The use of a cutoff radius will cause
956     a discontinuity in the potential energy curve. Fortunately, one can
957 tim 2907 shift a simple radial potential to ensure the potential curve go
958 tim 2872 smoothly to zero at the cutoff radius. The cutoff strategy works
959     well for Lennard-Jones interaction because of its short range
960     nature. However, simply truncating the electrostatic interaction
961     with the use of cutoffs has been shown to lead to severe artifacts
962     in simulations. The Ewald summation, in which the slowly decaying
963     Coulomb potential is transformed into direct and reciprocal sums
964     with rapid and absolute convergence, has proved to minimize the
965 tim 2941 periodicity artifacts in liquid simulations. Taking advantage of
966     fast Fourier transform (FFT) techniques for calculating discrete
967     Fourier transforms, the particle mesh-based
968 tim 2789 methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
969 tim 2872 $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
970     \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
971     which treats Coulombic interactions exactly at short range, and
972     approximate the potential at long range through multipolar
973     expansion. In spite of their wide acceptance at the molecular
974     simulation community, these two methods are difficult to implement
975     correctly and efficiently. Instead, we use a damped and
976     charge-neutralized Coulomb potential method developed by Wolf and
977 tim 2941 his coworkers.\cite{Wolf1999} The shifted Coulomb potential for
978 tim 2872 particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
979 tim 2725 \begin{equation}
980     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
981     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
982     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
983 tim 2912 r_{ij})}{r_{ij}}\right\}, \label{introEquation:shiftedCoulomb}
984 tim 2725 \end{equation}
985     where $\alpha$ is the convergence parameter. Due to the lack of
986     inherent periodicity and rapid convergence,this method is extremely
987     efficient and easy to implement.
988 tim 2789 \begin{figure}
989     \centering
990     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
991     \caption[An illustration of shifted Coulomb potential]{An
992     illustration of shifted Coulomb potential.}
993     \label{introFigure:shiftedCoulomb}
994     \end{figure}
995 tim 2725
996     %multiple time step
997    
998 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
999    
1000 tim 2912 Recently, advanced visualization techniques have been applied to
1001 tim 2721 monitor the motions of molecules. Although the dynamics of the
1002     system can be described qualitatively from animation, quantitative
1003 tim 2907 trajectory analysis is more useful. According to the principles of
1004 tim 2905 Statistical Mechanics in
1005     Sec.~\ref{introSection:statisticalMechanics}, one can compute
1006     thermodynamic properties, analyze fluctuations of structural
1007     parameters, and investigate time-dependent processes of the molecule
1008     from the trajectories.
1009 tim 2721
1010 tim 2872 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1011 tim 2721
1012 tim 2872 Thermodynamic properties, which can be expressed in terms of some
1013 tim 2725 function of the coordinates and momenta of all particles in the
1014     system, can be directly computed from molecular dynamics. The usual
1015     way to measure the pressure is based on virial theorem of Clausius
1016     which states that the virial is equal to $-3Nk_BT$. For a system
1017     with forces between particles, the total virial, $W$, contains the
1018     contribution from external pressure and interaction between the
1019     particles:
1020     \[
1021     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1022     f_{ij} } } \right\rangle
1023     \]
1024     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1025     distance $r_{ij}$. Thus, the expression for the pressure is given
1026     by:
1027     \begin{equation}
1028     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1029     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1030     \end{equation}
1031    
1032 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1033 tim 2721
1034     Structural Properties of a simple fluid can be described by a set of
1035 tim 2872 distribution functions. Among these functions,the \emph{pair
1036 tim 2721 distribution function}, also known as \emph{radial distribution
1037 tim 2872 function}, is of most fundamental importance to liquid theory.
1038 tim 2907 Experimentally, pair distribution functions can be gathered by
1039 tim 2872 Fourier transforming raw data from a series of neutron diffraction
1040 tim 2941 experiments and integrating over the surface
1041     factor.\cite{Powles1973} The experimental results can serve as a
1042     criterion to justify the correctness of a liquid model. Moreover,
1043     various equilibrium thermodynamic and structural properties can also
1044     be expressed in terms of the radial distribution
1045     function.\cite{Allen1987} The pair distribution functions $g(r)$
1046     gives the probability that a particle $i$ will be located at a
1047     distance $r$ from a another particle $j$ in the system
1048 tim 2905 \begin{equation}
1049 tim 2721 g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1050 tim 2874 \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1051 tim 2872 (r)}{\rho}.
1052 tim 2905 \end{equation}
1053 tim 2721 Note that the delta function can be replaced by a histogram in
1054 tim 2881 computer simulation. Peaks in $g(r)$ represent solvent shells, and
1055     the height of these peaks gradually decreases to 1 as the liquid of
1056     large distance approaches the bulk density.
1057 tim 2721
1058    
1059 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1060     Properties}}
1061 tim 2721
1062     Time-dependent properties are usually calculated using \emph{time
1063 tim 2872 correlation functions}, which correlate random variables $A$ and $B$
1064     at two different times,
1065 tim 2721 \begin{equation}
1066     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1067     \label{introEquation:timeCorrelationFunction}
1068     \end{equation}
1069     If $A$ and $B$ refer to same variable, this kind of correlation
1070 tim 2938 functions are called \emph{autocorrelation functions}. One typical example is the velocity autocorrelation
1071 tim 2872 function which is directly related to transport properties of
1072     molecular liquids:
1073 tim 2938 \begin{equation}
1074 tim 2725 D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1075     \right\rangle } dt
1076 tim 2938 \end{equation}
1077 tim 2872 where $D$ is diffusion constant. Unlike the velocity autocorrelation
1078 tim 2907 function, which is averaged over time origins and over all the
1079     atoms, the dipole autocorrelation functions is calculated for the
1080 tim 2872 entire system. The dipole autocorrelation function is given by:
1081 tim 2938 \begin{equation}
1082 tim 2725 c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1083     \right\rangle
1084 tim 2938 \end{equation}
1085 tim 2725 Here $u_{tot}$ is the net dipole of the entire system and is given
1086     by
1087 tim 2938 \begin{equation}
1088 tim 2905 u_{tot} (t) = \sum\limits_i {u_i (t)}.
1089 tim 2938 \end{equation}
1090 tim 2907 In principle, many time correlation functions can be related to
1091 tim 2725 Fourier transforms of the infrared, Raman, and inelastic neutron
1092     scattering spectra of molecular liquids. In practice, one can
1093 tim 2907 extract the IR spectrum from the intensity of the molecular dipole
1094     fluctuation at each frequency using the following relationship:
1095 tim 2938 \begin{equation}
1096 tim 2725 \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1097 tim 2905 i2\pi vt} dt}.
1098 tim 2938 \end{equation}
1099 tim 2721
1100 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1101 tim 2692
1102 tim 2705 Rigid bodies are frequently involved in the modeling of different
1103 tim 2938 areas, including engineering, physics and chemistry. For example,
1104 tim 2907 missiles and vehicles are usually modeled by rigid bodies. The
1105     movement of the objects in 3D gaming engines or other physics
1106     simulators is governed by rigid body dynamics. In molecular
1107 tim 2872 simulations, rigid bodies are used to simplify protein-protein
1108 tim 2941 docking studies.\cite{Gray2003}
1109 tim 2694
1110 tim 2705 It is very important to develop stable and efficient methods to
1111 tim 2872 integrate the equations of motion for orientational degrees of
1112     freedom. Euler angles are the natural choice to describe the
1113     rotational degrees of freedom. However, due to $\frac {1}{sin
1114     \theta}$ singularities, the numerical integration of corresponding
1115 tim 2907 equations of these motion is very inefficient and inaccurate.
1116     Although an alternative integrator using multiple sets of Euler
1117     angles can overcome this difficulty\cite{Barojas1973}, the
1118     computational penalty and the loss of angular momentum conservation
1119     still remain. A singularity-free representation utilizing
1120 tim 2941 quaternions was developed by Evans in 1977.\cite{Evans1977}
1121 tim 2912 Unfortunately, this approach used a nonseparable Hamiltonian
1122     resulting from the quaternion representation, which prevented the
1123 tim 2907 symplectic algorithm from being utilized. Another different approach
1124     is to apply holonomic constraints to the atoms belonging to the
1125     rigid body. Each atom moves independently under the normal forces
1126     deriving from potential energy and constraint forces which are used
1127     to guarantee the rigidness. However, due to their iterative nature,
1128     the SHAKE and Rattle algorithms also converge very slowly when the
1129 tim 2941 number of constraints increases.\cite{Ryckaert1977, Andersen1983}
1130 tim 2694
1131 tim 2872 A break-through in geometric literature suggests that, in order to
1132 tim 2705 develop a long-term integration scheme, one should preserve the
1133 tim 2907 symplectic structure of the propagator. By introducing a conjugate
1134 tim 2872 momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1135     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1136     proposed to evolve the Hamiltonian system in a constraint manifold
1137     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1138     An alternative method using the quaternion representation was
1139 tim 2941 developed by Omelyan.\cite{Omelyan1998} However, both of these
1140 tim 2872 methods are iterative and inefficient. In this section, we descibe a
1141 tim 2907 symplectic Lie-Poisson integrator for rigid bodies developed by
1142 tim 2789 Dullweber and his coworkers\cite{Dullweber1997} in depth.
1143 tim 2705
1144 tim 2872 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1145 tim 2941 The Hamiltonian of a rigid body is given by
1146 tim 2706 \begin{equation}
1147     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1148     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1149     \label{introEquation:RBHamiltonian}
1150     \end{equation}
1151 tim 2909 Here, $q$ and $Q$ are the position vector and rotation matrix for
1152     the rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ ,
1153     and $J$, a diagonal matrix, is defined by
1154 tim 2706 \[
1155     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1156     \]
1157     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1158 tim 2872 constrained Hamiltonian equation is subjected to a holonomic
1159     constraint,
1160 tim 2706 \begin{equation}
1161 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1162 tim 2706 \end{equation}
1163 tim 2909 which is used to ensure the rotation matrix's unitarity. Using
1164 tim 2912 Eq.~\ref{introEquation:motionHamiltonianCoordinate} and Eq.~
1165     \ref{introEquation:motionHamiltonianMomentum}, one can write down
1166 tim 2706 the equations of motion,
1167 tim 2796 \begin{eqnarray}
1168 tim 2905 \frac{{dq}}{{dt}} & = & \frac{p}{m}, \label{introEquation:RBMotionPosition}\\
1169     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q), \label{introEquation:RBMotionMomentum}\\
1170     \frac{{dQ}}{{dt}} & = & PJ^{ - 1}, \label{introEquation:RBMotionRotation}\\
1171 tim 2796 \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1172     \end{eqnarray}
1173 tim 2909 Differentiating Eq.~\ref{introEquation:orthogonalConstraint} and
1174     using Eq.~\ref{introEquation:RBMotionMomentum}, one may obtain,
1175     \begin{equation}
1176     Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1177     \label{introEquation:RBFirstOrderConstraint}
1178     \end{equation}
1179 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1180 tim 2872 We can use a constraint force provided by a Lagrange multiplier on
1181 tim 2909 the normal manifold to keep the motion on the constraint space. Or
1182     we can simply evolve the system on the constraint manifold. These
1183     two methods have been proved to be equivalent. The holonomic
1184     constraint and equations of motions define a constraint manifold for
1185     rigid bodies
1186 tim 2707 \[
1187     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1188     \right\}.
1189     \]
1190 tim 2909 Unfortunately, this constraint manifold is not $T^* SO(3)$ which is
1191     a symplectic manifold on Lie rotation group $SO(3)$. However, it
1192     turns out that under symplectic transformation, the cotangent space
1193     and the phase space are diffeomorphic. By introducing
1194 tim 2706 \[
1195 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1196 tim 2706 \]
1197 tim 2912 the mechanical system subjected to a holonomic constraint manifold $M$
1198 tim 2707 can be re-formulated as a Hamiltonian system on the cotangent space
1199     \[
1200     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1201     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1202     \]
1203     For a body fixed vector $X_i$ with respect to the center of mass of
1204 tim 2947 the rigid body, its corresponding lab fixed vector $X_i^{lab}$ is
1205 tim 2707 given as
1206     \begin{equation}
1207     X_i^{lab} = Q X_i + q.
1208     \end{equation}
1209     Therefore, potential energy $V(q,Q)$ is defined by
1210     \[
1211     V(q,Q) = V(Q X_0 + q).
1212     \]
1213 tim 2713 Hence, the force and torque are given by
1214 tim 2707 \[
1215 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1216 tim 2707 \]
1217 tim 2713 and
1218 tim 2707 \[
1219     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1220     \]
1221 tim 2899 respectively. As a common choice to describe the rotation dynamics
1222     of the rigid body, the angular momentum on the body fixed frame $\Pi
1223     = Q^t P$ is introduced to rewrite the equations of motion,
1224 tim 2707 \begin{equation}
1225     \begin{array}{l}
1226 tim 2899 \dot \Pi = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda, \\
1227     \dot Q = Q\Pi {\rm{ }}J^{ - 1}, \\
1228 tim 2707 \end{array}
1229     \label{introEqaution:RBMotionPI}
1230     \end{equation}
1231 tim 2905 as well as holonomic constraints $\Pi J^{ - 1} + J^{ - 1} \Pi ^t =
1232     0$ and $Q^T Q = 1$. For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a
1233     matrix $\hat v \in so(3)^ \star$, the hat-map isomorphism,
1234 tim 2707 \begin{equation}
1235     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1236     {\begin{array}{*{20}c}
1237     0 & { - v_3 } & {v_2 } \\
1238     {v_3 } & 0 & { - v_1 } \\
1239     { - v_2 } & {v_1 } & 0 \\
1240     \end{array}} \right),
1241     \label{introEquation:hatmapIsomorphism}
1242     \end{equation}
1243     will let us associate the matrix products with traditional vector
1244     operations
1245     \[
1246 tim 2899 \hat vu = v \times u.
1247 tim 2707 \]
1248 tim 2899 Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1249 tim 2707 matrix,
1250 tim 2899 \begin{eqnarray}
1251 tim 2905 (\dot \Pi - \dot \Pi ^T )&= &(\Pi - \Pi ^T )(J^{ - 1} \Pi + \Pi J^{ - 1} ) \notag \\
1252     & & + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1253     (\Lambda - \Lambda ^T ). \label{introEquation:skewMatrixPI}
1254 tim 2899 \end{eqnarray}
1255     Since $\Lambda$ is symmetric, the last term of
1256     Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1257     Lagrange multiplier $\Lambda$ is absent from the equations of
1258     motion. This unique property eliminates the requirement of
1259 tim 2941 iterations which can not be avoided in other methods.\cite{Kol1997,
1260     Omelyan1998} Applying the hat-map isomorphism, we obtain the
1261 tim 2909 equation of motion for angular momentum in the body frame
1262 tim 2713 \begin{equation}
1263     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1264     F_i (r,Q)} \right) \times X_i }.
1265     \label{introEquation:bodyAngularMotion}
1266     \end{equation}
1267 tim 2707 In the same manner, the equation of motion for rotation matrix is
1268     given by
1269     \[
1270 tim 2899 \dot Q = Qskew(I^{ - 1} \pi ).
1271 tim 2707 \]
1272    
1273 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1274 tim 2909 Lie-Poisson Integrator for Free Rigid Bodies}
1275 tim 2707
1276 tim 2872 If there are no external forces exerted on the rigid body, the only
1277     contribution to the rotational motion is from the kinetic energy
1278     (the first term of \ref{introEquation:bodyAngularMotion}). The free
1279     rigid body is an example of a Lie-Poisson system with Hamiltonian
1280     function
1281 tim 2713 \begin{equation}
1282     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1283     \label{introEquation:rotationalKineticRB}
1284     \end{equation}
1285     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1286     Lie-Poisson structure matrix,
1287     \begin{equation}
1288     J(\pi ) = \left( {\begin{array}{*{20}c}
1289     0 & {\pi _3 } & { - \pi _2 } \\
1290     { - \pi _3 } & 0 & {\pi _1 } \\
1291     {\pi _2 } & { - \pi _1 } & 0 \\
1292 tim 2899 \end{array}} \right).
1293 tim 2713 \end{equation}
1294     Thus, the dynamics of free rigid body is governed by
1295     \begin{equation}
1296 tim 2899 \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi ).
1297 tim 2713 \end{equation}
1298 tim 2905 One may notice that each $T_i^r$ in
1299     Eq.~\ref{introEquation:rotationalKineticRB} can be solved exactly.
1300     For instance, the equations of motion due to $T_1^r$ are given by
1301 tim 2713 \begin{equation}
1302     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1303     \label{introEqaution:RBMotionSingleTerm}
1304     \end{equation}
1305 tim 2905 with
1306 tim 2713 \[ R_1 = \left( {\begin{array}{*{20}c}
1307     0 & 0 & 0 \\
1308     0 & 0 & {\pi _1 } \\
1309     0 & { - \pi _1 } & 0 \\
1310     \end{array}} \right).
1311     \]
1312 tim 2905 The solutions of Eq.~\ref{introEqaution:RBMotionSingleTerm} is
1313 tim 2707 \[
1314 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1315     Q(0)e^{\Delta tR_1 }
1316 tim 2707 \]
1317 tim 2713 with
1318 tim 2707 \[
1319 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1320     0 & 0 & 0 \\
1321     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1322     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1323     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1324 tim 2707 \]
1325 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1326 tim 2909 tR_1 }$, we can use the Cayley transformation to obtain a
1327     single-aixs propagator,
1328     \begin{eqnarray*}
1329     e^{\Delta tR_1 } & \approx & (1 - \Delta tR_1 )^{ - 1} (1 + \Delta
1330     tR_1 ) \\
1331     %
1332     & \approx & \left( \begin{array}{ccc}
1333     1 & 0 & 0 \\
1334     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
1335     \theta^2 / 4} \\
1336     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
1337     \theta^2 / 4}
1338     \end{array}
1339     \right).
1340     \end{eqnarray*}
1341     The propagators for $T_2^r$ and $T_3^r$ can be found in the same
1342 tim 2872 manner. In order to construct a second-order symplectic method, we
1343 tim 2905 split the angular kinetic Hamiltonian function into five terms
1344 tim 2707 \[
1345 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1346     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1347 tim 2872 (\pi _1 ).
1348     \]
1349     By concatenating the propagators corresponding to these five terms,
1350     we can obtain an symplectic integrator,
1351 tim 2713 \[
1352     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1353 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1354     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1355 tim 2713 _1 }.
1356 tim 2707 \]
1357 tim 2938 The non-canonical Lie-Poisson bracket $\{F, G\}$ of two functions $F(\pi )$ and $G(\pi )$ is defined by
1358 tim 2707 \[
1359 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1360 tim 2899 ).
1361 tim 2713 \]
1362     If the Poisson bracket of a function $F$ with an arbitrary smooth
1363     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1364     conserved quantity in Poisson system. We can easily verify that the
1365     norm of the angular momentum, $\parallel \pi
1366 tim 2941 \parallel$, is a \emph{Casimir}.\cite{McLachlan1993} Let $F(\pi ) = S(\frac{{\parallel
1367 tim 2713 \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1368     then by the chain rule
1369     \[
1370     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1371 tim 2899 }}{2})\pi.
1372 tim 2713 \]
1373 tim 2899 Thus, $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel
1374     \pi
1375 tim 2713 \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1376 tim 2872 Lie-Poisson integrator is found to be both extremely efficient and
1377     stable. These properties can be explained by the fact the small
1378     angle approximation is used and the norm of the angular momentum is
1379     conserved.
1380 tim 2713
1381     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1382     Splitting for Rigid Body}
1383    
1384     The Hamiltonian of rigid body can be separated in terms of kinetic
1385 tim 2912 energy and potential energy, $H = T(p,\pi ) + V(q,Q)$. The equations
1386 tim 2905 of motion corresponding to potential energy and kinetic energy are
1387 tim 2941 listed in Table~\ref{introTable:rbEquations}.
1388 tim 2776 \begin{table}
1389 tim 2889 \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1390 tim 2912 \label{introTable:rbEquations}
1391 tim 2713 \begin{center}
1392     \begin{tabular}{|l|l|}
1393     \hline
1394     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1395     Potential & Kinetic \\
1396     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1397     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1398     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1399     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1400     \hline
1401     \end{tabular}
1402     \end{center}
1403 tim 2776 \end{table}
1404 tim 2872 A second-order symplectic method is now obtained by the composition
1405     of the position and velocity propagators,
1406 tim 2713 \[
1407     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1408     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1409     \]
1410 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1411 tim 2872 sub-propagators which corresponding to force and torque
1412     respectively,
1413 tim 2713 \[
1414 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1415 tim 2713 _{\Delta t/2,\tau }.
1416 tim 2707 \]
1417 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1418 tim 2872 $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1419     inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1420     kinetic energy can be separated to translational kinetic term, $T^t
1421     (p)$, and rotational kinetic term, $T^r (\pi )$,
1422 tim 2713 \begin{equation}
1423     T(p,\pi ) =T^t (p) + T^r (\pi ).
1424     \end{equation}
1425     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1426 tim 2905 defined by Eq.~\ref{introEquation:rotationalKineticRB}. Therefore,
1427     the corresponding propagators are given by
1428 tim 2713 \[
1429     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1430     _{\Delta t,T^r }.
1431     \]
1432 tim 2872 Finally, we obtain the overall symplectic propagators for freely
1433     moving rigid bodies
1434 tim 2905 \begin{eqnarray}
1435     \varphi _{\Delta t} &=& \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \notag\\
1436     & & \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \notag\\
1437 tim 2908 & & \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .
1438 tim 2713 \label{introEquation:overallRBFlowMaps}
1439 tim 2905 \end{eqnarray}
1440 tim 2707
1441 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1442 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1443     mimics a simple heat bath with stochastic and dissipative forces,
1444     has been applied in a variety of studies. This section will review
1445 tim 2938 the theory of Langevin dynamics. A brief derivation of the generalized
1446 tim 2872 Langevin equation will be given first. Following that, we will
1447 tim 2913 discuss the physical meaning of the terms appearing in the equation.
1448 tim 2685
1449 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1450 tim 2685
1451 tim 2872 A harmonic bath model, in which an effective set of harmonic
1452 tim 2719 oscillators are used to mimic the effect of a linearly responding
1453     environment, has been widely used in quantum chemistry and
1454     statistical mechanics. One of the successful applications of
1455 tim 2872 Harmonic bath model is the derivation of the Generalized Langevin
1456 tim 2938 Dynamics (GLE). Consider a system, in which the degree of
1457 tim 2719 freedom $x$ is assumed to couple to the bath linearly, giving a
1458     Hamiltonian of the form
1459 tim 2696 \begin{equation}
1460     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1461 tim 2719 \label{introEquation:bathGLE}.
1462 tim 2696 \end{equation}
1463 tim 2872 Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1464     with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1465 tim 2696 \[
1466 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1467 tim 2938 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha x_\alpha ^2 }
1468 tim 2719 \right\}}
1469 tim 2696 \]
1470 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1471     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1472 tim 2872 the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1473 tim 2719 coupling,
1474 tim 2696 \[
1475     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1476     \]
1477 tim 2872 where $g_\alpha$ are the coupling constants between the bath
1478 tim 2874 coordinates ($x_ \alpha$) and the system coordinate ($x$).
1479 tim 2872 Introducing
1480 tim 2696 \[
1481 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1482     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1483 tim 2899 \]
1484     and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1485 tim 2696 \[
1486     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1487     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1488     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1489 tim 2899 w_\alpha ^2 }}x} \right)^2 } \right\}}.
1490 tim 2696 \]
1491     Since the first two terms of the new Hamiltonian depend only on the
1492     system coordinates, we can get the equations of motion for
1493 tim 2872 Generalized Langevin Dynamics by Hamilton's equations,
1494 tim 2719 \begin{equation}
1495     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1496     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1497     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1498     \label{introEquation:coorMotionGLE}
1499     \end{equation}
1500     and
1501     \begin{equation}
1502     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1503     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1504     \label{introEquation:bathMotionGLE}
1505     \end{equation}
1506     In order to derive an equation for $x$, the dynamics of the bath
1507     variables $x_\alpha$ must be solved exactly first. As an integral
1508     transform which is particularly useful in solving linear ordinary
1509 tim 2872 differential equations,the Laplace transform is the appropriate tool
1510     to solve this problem. The basic idea is to transform the difficult
1511 tim 2719 differential equations into simple algebra problems which can be
1512 tim 2909 solved easily. Then, by applying the inverse Laplace transform, we
1513     can retrieve the solutions of the original problems. Let $f(t)$ be a
1514     function defined on $ [0,\infty ) $, the Laplace transform of $f(t)$
1515     is a new function defined as
1516 tim 2696 \[
1517 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1518 tim 2696 \]
1519 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1520 tim 2938 Operator. Below are some important properties of the Laplace transform
1521 tim 2789 \begin{eqnarray*}
1522     L(x + y) & = & L(x) + L(y) \\
1523     L(ax) & = & aL(x) \\
1524     L(\dot x) & = & pL(x) - px(0) \\
1525     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1526     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1527     \end{eqnarray*}
1528 tim 2872 Applying the Laplace transform to the bath coordinates, we obtain
1529 tim 2789 \begin{eqnarray*}
1530 tim 2905 p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x), \\
1531     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}. \\
1532 tim 2789 \end{eqnarray*}
1533 tim 2909 In the same way, the system coordinates become
1534 tim 2789 \begin{eqnarray*}
1535 tim 2899 mL(\ddot x) & = &
1536     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1537 tim 2905 & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}.
1538 tim 2789 \end{eqnarray*}
1539 tim 2719 With the help of some relatively important inverse Laplace
1540     transformations:
1541 tim 2696 \[
1542 tim 2719 \begin{array}{c}
1543     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1544     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1545     L(1) = \frac{1}{p} \\
1546     \end{array}
1547 tim 2696 \]
1548 tim 2899 we obtain
1549 tim 2794 \begin{eqnarray*}
1550     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1551 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1552     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1553 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1554     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1555     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1556     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1557 tim 2909 (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}\\
1558     %
1559     & = & -
1560     \frac{{\partial W(x)}}{{\partial x}} - \int_0^t {\sum\limits_{\alpha
1561     = 1}^N {\left( { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha
1562     ^2 }}} \right)\cos (\omega _\alpha
1563 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1564     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1565     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1566     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1567     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1568     \end{eqnarray*}
1569 tim 2719 Introducing a \emph{dynamic friction kernel}
1570 tim 2696 \begin{equation}
1571 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1572     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1573     \label{introEquation:dynamicFrictionKernelDefinition}
1574     \end{equation}
1575     and \emph{a random force}
1576     \begin{equation}
1577     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1578     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1579     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1580     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1581     \label{introEquation:randomForceDefinition}
1582     \end{equation}
1583     the equation of motion can be rewritten as
1584     \begin{equation}
1585 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1586     (t)\dot x(t - \tau )d\tau } + R(t)
1587     \label{introEuqation:GeneralizedLangevinDynamics}
1588     \end{equation}
1589 tim 2938 which is known as the \emph{generalized Langevin equation} (GLE).
1590 tim 2719
1591 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1592 tim 2719
1593     One may notice that $R(t)$ depends only on initial conditions, which
1594     implies it is completely deterministic within the context of a
1595     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1596 tim 2913 uncorrelated to $x$ and $\dot x$, $\left\langle {x(t)R(t)}
1597 tim 2905 \right\rangle = 0, \left\langle {\dot x(t)R(t)} \right\rangle =
1598     0.$ This property is what we expect from a truly random process. As
1599     long as the model chosen for $R(t)$ was a gaussian distribution in
1600 tim 2872 general, the stochastic nature of the GLE still remains.
1601 tim 2719 %dynamic friction kernel
1602     The convolution integral
1603 tim 2696 \[
1604 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1605 tim 2696 \]
1606 tim 2719 depends on the entire history of the evolution of $x$, which implies
1607     that the bath retains memory of previous motions. In other words,
1608     the bath requires a finite time to respond to change in the motion
1609     of the system. For a sluggish bath which responds slowly to changes
1610     in the system coordinate, we may regard $\xi(t)$ as a constant
1611     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1612     \[
1613     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1614     \]
1615 tim 2899 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1616 tim 2719 \[
1617     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1618     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1619     \]
1620 tim 2872 which can be used to describe the effect of dynamic caging in
1621     viscous solvents. The other extreme is the bath that responds
1622     infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1623     taken as a $delta$ function in time:
1624 tim 2719 \[
1625 tim 2913 \xi (t) = 2\xi _0 \delta (t).
1626 tim 2719 \]
1627     Hence, the convolution integral becomes
1628     \[
1629     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1630     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1631     \]
1632 tim 2899 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1633 tim 2719 \begin{equation}
1634     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1635     x(t) + R(t) \label{introEquation:LangevinEquation}
1636     \end{equation}
1637     which is known as the Langevin equation. The static friction
1638     coefficient $\xi _0$ can either be calculated from spectral density
1639 tim 2850 or be determined by Stokes' law for regular shaped particles. A
1640 tim 2909 brief review on calculating friction tensors for arbitrary shaped
1641 tim 2720 particles is given in Sec.~\ref{introSection:frictionTensor}.
1642 tim 2696
1643 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1644 tim 2719
1645 tim 2905 Defining a new set of coordinates
1646 tim 2696 \[
1647     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1648 tim 2905 ^2 }}x(0),
1649     \]
1650 tim 2938 we can rewrite $R(t)$ as
1651 tim 2696 \[
1652 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1653 tim 2696 \]
1654     And since the $q$ coordinates are harmonic oscillators,
1655 tim 2789 \begin{eqnarray*}
1656     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1657     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1658     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1659     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1660     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1661 tim 2908 & = &kT\xi (t)
1662 tim 2789 \end{eqnarray*}
1663 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1664 tim 2696 \begin{equation}
1665     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1666 tim 2905 \label{introEquation:secondFluctuationDissipation},
1667 tim 2696 \end{equation}
1668 tim 2905 which acts as a constraint on the possible ways in which one can
1669     model the random force and friction kernel.