ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2950
Committed: Tue Jul 18 16:42:49 2006 UTC (17 years, 11 months ago) by tim
Content type: application/x-tex
File size: 75070 byte(s)
Log Message:
more format correction to avoid widow lines

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2907 Using equations of motion derived from Classical Mechanics,
7     Molecular Dynamics simulations are carried out by integrating the
8     equations of motion for a given system of particles. There are three
9     fundamental ideas behind classical mechanics. Firstly, one can
10     determine the state of a mechanical system at any time of interest;
11     Secondly, all the mechanical properties of the system at that time
12     can be determined by combining the knowledge of the properties of
13     the system with the specification of this state; Finally, the
14     specification of the state when further combined with the laws of
15     mechanics will also be sufficient to predict the future behavior of
16     the system.
17 tim 2685
18 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
19 tim 2694 The discovery of Newton's three laws of mechanics which govern the
20     motion of particles is the foundation of the classical mechanics.
21 tim 2819 Newton's first law defines a class of inertial frames. Inertial
22 tim 2694 frames are reference frames where a particle not interacting with
23     other bodies will move with constant speed in the same direction.
24 tim 2819 With respect to inertial frames, Newton's second law has the form
25 tim 2694 \begin{equation}
26 tim 2819 F = \frac {dp}{dt} = \frac {mdv}{dt}
27 tim 2694 \label{introEquation:newtonSecondLaw}
28     \end{equation}
29     A point mass interacting with other bodies moves with the
30     acceleration along the direction of the force acting on it. Let
31 tim 2702 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
32     $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
33 tim 2819 Newton's third law states that
34 tim 2694 \begin{equation}
35 tim 2898 F_{ij} = -F_{ji}.
36 tim 2694 \label{introEquation:newtonThirdLaw}
37     \end{equation}
38     Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49 tim 2819 \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 tim 2694 \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62 tim 2819 \dot L = r \times \dot p = \tau
63 tim 2694 \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66 tim 2899 that if all forces are conservative, energy is conserved,
67     \begin{equation}E = T + V. \label{introEquation:energyConservation}
68 tim 2696 \end{equation}
69 tim 2899 All of these conserved quantities are important factors to determine
70 tim 2941 the quality of numerical integration schemes for rigid
71     bodies.\cite{Dullweber1997}
72 tim 2694
73 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 tim 2692
75 tim 2907 Newtonian Mechanics suffers from an important limitation: motion can
76 tim 2904 only be described in cartesian coordinate systems which make it
77     impossible to predict analytically the properties of the system even
78     if we know all of the details of the interaction. In order to
79     overcome some of the practical difficulties which arise in attempts
80 tim 2907 to apply Newton's equation to complex systems, approximate numerical
81 tim 2904 procedures may be developed.
82 tim 2692
83 tim 2819 \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84     Principle}}
85 tim 2692
86     Hamilton introduced the dynamical principle upon which it is
87 tim 2819 possible to base all of mechanics and most of classical physics.
88 tim 2907 Hamilton's Principle may be stated as follows: the trajectory, along
89     which a dynamical system may move from one point to another within a
90     specified time, is derived by finding the path which minimizes the
91     time integral of the difference between the kinetic $K$, and
92     potential energies $U$,
93 tim 2692 \begin{equation}
94 tim 2899 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
95 tim 2693 \label{introEquation:halmitonianPrinciple1}
96 tim 2692 \end{equation}
97     For simple mechanical systems, where the forces acting on the
98 tim 2819 different parts are derivable from a potential, the Lagrangian
99     function $L$ can be defined as the difference between the kinetic
100     energy of the system and its potential energy,
101 tim 2692 \begin{equation}
102 tim 2904 L \equiv K - U = L(q_i ,\dot q_i ).
103 tim 2692 \label{introEquation:lagrangianDef}
104     \end{equation}
105 tim 2904 Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
106 tim 2692 \begin{equation}
107 tim 2904 \delta \int_{t_1 }^{t_2 } {L dt = 0} .
108 tim 2693 \label{introEquation:halmitonianPrinciple2}
109 tim 2692 \end{equation}
110    
111 tim 2819 \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
112     Equations of Motion in Lagrangian Mechanics}}
113 tim 2692
114 tim 2850 For a system of $f$ degrees of freedom, the equations of motion in
115     the Lagrangian form is
116 tim 2692 \begin{equation}
117     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
118     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
119 tim 2693 \label{introEquation:eqMotionLagrangian}
120 tim 2692 \end{equation}
121     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
122     generalized velocity.
123    
124 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
125 tim 2692
126     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
127     introduced by William Rowan Hamilton in 1833 as a re-formulation of
128     classical mechanics. If the potential energy of a system is
129 tim 2819 independent of velocities, the momenta can be defined as
130 tim 2692 \begin{equation}
131     p_i = \frac{\partial L}{\partial \dot q_i}
132     \label{introEquation:generalizedMomenta}
133     \end{equation}
134 tim 2693 The Lagrange equations of motion are then expressed by
135 tim 2692 \begin{equation}
136 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
137     \label{introEquation:generalizedMomentaDot}
138     \end{equation}
139     With the help of the generalized momenta, we may now define a new
140     quantity $H$ by the equation
141     \begin{equation}
142     H = \sum\limits_k {p_k \dot q_k } - L ,
143 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
144     \end{equation}
145     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
146 tim 2898 $L$ is the Lagrangian function for the system. Differentiating
147     Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
148 tim 2693 \begin{equation}
149     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
150     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
151     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
152 tim 2904 L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
153 tim 2693 \end{equation}
154 tim 2899 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
155     and fourth terms in the parentheses cancel. Therefore,
156 tim 2693 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
157     \begin{equation}
158     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
159 tim 2904 \right)} - \frac{{\partial L}}{{\partial t}}dt .
160 tim 2693 \label{introEquation:diffHamiltonian2}
161     \end{equation}
162     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
163     find
164     \begin{equation}
165 tim 2819 \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
166 tim 2693 \label{introEquation:motionHamiltonianCoordinate}
167     \end{equation}
168     \begin{equation}
169 tim 2819 \frac{{\partial H}}{{\partial q_k }} = - \dot {p_k}
170 tim 2693 \label{introEquation:motionHamiltonianMomentum}
171     \end{equation}
172     and
173     \begin{equation}
174     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
175     t}}
176     \label{introEquation:motionHamiltonianTime}
177     \end{equation}
178 tim 2899 where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
179 tim 2693 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
180     equation of motion. Due to their symmetrical formula, they are also
181 tim 2941 known as the canonical equations of motions.\cite{Goldstein2001}
182 tim 2693
183 tim 2692 An important difference between Lagrangian approach and the
184     Hamiltonian approach is that the Lagrangian is considered to be a
185 tim 2819 function of the generalized velocities $\dot q_i$ and coordinates
186     $q_i$, while the Hamiltonian is considered to be a function of the
187     generalized momenta $p_i$ and the conjugate coordinates $q_i$.
188     Hamiltonian Mechanics is more appropriate for application to
189     statistical mechanics and quantum mechanics, since it treats the
190     coordinate and its time derivative as independent variables and it
191 tim 2941 only works with 1st-order differential equations.\cite{Marion1990}
192 tim 2696 In Newtonian Mechanics, a system described by conservative forces
193 tim 2899 conserves the total energy
194     (Eq.~\ref{introEquation:energyConservation}). It follows that
195 tim 2904 Hamilton's equations of motion conserve the total Hamiltonian
196 tim 2696 \begin{equation}
197     \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
198     H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
199     }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
200     H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
201     \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
202 tim 2904 q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
203 tim 2696 \end{equation}
204    
205 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
206     Mechanics}
207 tim 2692
208 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
209 tim 2692 simulation are governed by the principle of Statistical Mechanics.
210     The following section will give a brief introduction to some of the
211 tim 2938 Statistical Mechanics concepts and theorems presented in this
212 tim 2700 dissertation.
213 tim 2692
214 tim 2700 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
215 tim 2692
216 tim 2700 Mathematically, phase space is the space which represents all
217 tim 2907 possible states of a system. Each possible state of the system
218     corresponds to one unique point in the phase space. For mechanical
219     systems, the phase space usually consists of all possible values of
220     position and momentum variables. Consider a dynamic system of $f$
221     particles in a cartesian space, where each of the $6f$ coordinates
222     and momenta is assigned to one of $6f$ mutually orthogonal axes, the
223     phase space of this system is a $6f$ dimensional space. A point, $x
224     =
225 tim 2904 (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226     \over q} _1 , \ldots
227     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228     \over q} _f
229     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230     \over p} _1 \ldots
231     ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
232     \over p} _f )$ , with a unique set of values of $6f$ coordinates and
233     momenta is a phase space vector.
234 tim 2888 %%%fix me
235 tim 2700
236 tim 2888 In statistical mechanics, the condition of an ensemble at any time
237 tim 2700 can be regarded as appropriately specified by the density $\rho$
238     with which representative points are distributed over the phase
239 tim 2819 space. The density distribution for an ensemble with $f$ degrees of
240     freedom is defined as,
241 tim 2700 \begin{equation}
242     \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
243     \label{introEquation:densityDistribution}
244     \end{equation}
245     Governed by the principles of mechanics, the phase points change
246 tim 2907 their locations which changes the density at any time at phase
247 tim 2819 space. Hence, the density distribution is also to be taken as a
248 tim 2905 function of the time. The number of systems $\delta N$ at time $t$
249     can be determined by,
250 tim 2700 \begin{equation}
251     \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
252     \label{introEquation:deltaN}
253     \end{equation}
254 tim 2907 Assuming enough copies of the systems, we can sufficiently
255 tim 2819 approximate $\delta N$ without introducing discontinuity when we go
256     from one region in the phase space to another. By integrating over
257     the whole phase space,
258 tim 2700 \begin{equation}
259     N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
260     \label{introEquation:totalNumberSystem}
261     \end{equation}
262 tim 2907 gives us an expression for the total number of copies. Hence, the
263     probability per unit volume in the phase space can be obtained by,
264 tim 2700 \begin{equation}
265     \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
266     {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
267     \label{introEquation:unitProbability}
268     \end{equation}
269 tim 2850 With the help of Eq.~\ref{introEquation:unitProbability} and the
270     knowledge of the system, it is possible to calculate the average
271 tim 2700 value of any desired quantity which depends on the coordinates and
272 tim 2907 momenta of the system. Even when the dynamics of the real system are
273 tim 2700 complex, or stochastic, or even discontinuous, the average
274 tim 2907 properties of the ensemble of possibilities as a whole remain well
275     defined. For a classical system in thermal equilibrium with its
276 tim 2819 environment, the ensemble average of a mechanical quantity, $\langle
277     A(q , p) \rangle_t$, takes the form of an integral over the phase
278     space of the system,
279 tim 2700 \begin{equation}
280     \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
281     (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
282 tim 2905 (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
283 tim 2700 \label{introEquation:ensembelAverage}
284     \end{equation}
285    
286     \subsection{\label{introSection:liouville}Liouville's theorem}
287    
288 tim 2819 Liouville's theorem is the foundation on which statistical mechanics
289     rests. It describes the time evolution of the phase space
290 tim 2700 distribution function. In order to calculate the rate of change of
291 tim 2850 $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
292     the two faces perpendicular to the $q_1$ axis, which are located at
293     $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
294     opposite face is given by the expression,
295 tim 2700 \begin{equation}
296     \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
297     \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
298     }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
299     \ldots \delta p_f .
300     \end{equation}
301     Summing all over the phase space, we obtain
302     \begin{equation}
303     \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
304     \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
305     \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
306     {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
307     \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
308     \ldots \delta q_f \delta p_1 \ldots \delta p_f .
309     \end{equation}
310     Differentiating the equations of motion in Hamiltonian formalism
311     (\ref{introEquation:motionHamiltonianCoordinate},
312     \ref{introEquation:motionHamiltonianMomentum}), we can show,
313     \begin{equation}
314     \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
315     + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
316     \end{equation}
317     which cancels the first terms of the right hand side. Furthermore,
318 tim 2819 dividing $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
319 tim 2700 p_f $ in both sides, we can write out Liouville's theorem in a
320     simple form,
321     \begin{equation}
322     \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
323     {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
324     \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
325     \label{introEquation:liouvilleTheorem}
326     \end{equation}
327     Liouville's theorem states that the distribution function is
328     constant along any trajectory in phase space. In classical
329 tim 2907 statistical mechanics, since the number of system copies in an
330     ensemble is huge and constant, we can assume the local density has
331     no reason (other than classical mechanics) to change,
332 tim 2700 \begin{equation}
333     \frac{{\partial \rho }}{{\partial t}} = 0.
334     \label{introEquation:stationary}
335     \end{equation}
336     In such stationary system, the density of distribution $\rho$ can be
337     connected to the Hamiltonian $H$ through Maxwell-Boltzmann
338     distribution,
339     \begin{equation}
340 tim 2950 \rho \propto e^{ - \beta H}.
341 tim 2700 \label{introEquation:densityAndHamiltonian}
342     \end{equation}
343    
344 tim 2819 \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
345 tim 2702 Lets consider a region in the phase space,
346     \begin{equation}
347     \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
348     \end{equation}
349     If this region is small enough, the density $\rho$ can be regarded
350 tim 2819 as uniform over the whole integral. Thus, the number of phase points
351     inside this region is given by,
352 tim 2950 \begin{eqnarray}
353     \delta N &=& \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f,\\
354     \frac{{d(\delta N)}}{{dt}} &=& \frac{{d\rho }}{{dt}}\delta v + \rho
355 tim 2702 \frac{d}{{dt}}(\delta v) = 0.
356 tim 2950 \end{eqnarray}
357 tim 2907 With the help of the stationary assumption
358     (Eq.~\ref{introEquation:stationary}), we obtain the principle of
359 tim 2819 \emph{conservation of volume in phase space},
360 tim 2702 \begin{equation}
361     \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
362     ...dq_f dp_1 } ..dp_f = 0.
363     \label{introEquation:volumePreserving}
364     \end{equation}
365    
366 tim 2819 \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
367 tim 2702
368 tim 2907 Liouville's theorem can be expressed in a variety of different forms
369 tim 2700 which are convenient within different contexts. For any two function
370     $F$ and $G$ of the coordinates and momenta of a system, the Poisson
371 tim 2938 bracket $\{F,G\}$ is defined as
372 tim 2700 \begin{equation}
373     \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
374     F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
375     \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
376     q_i }}} \right)}.
377     \label{introEquation:poissonBracket}
378     \end{equation}
379 tim 2905 Substituting equations of motion in Hamiltonian formalism
380     (Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
381     Eq.~\ref{introEquation:motionHamiltonianMomentum}) into
382 tim 2850 (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
383     Liouville's theorem using Poisson bracket notion,
384 tim 2700 \begin{equation}
385     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
386     {\rho ,H} \right\}.
387     \label{introEquation:liouvilleTheromInPoissin}
388     \end{equation}
389     Moreover, the Liouville operator is defined as
390     \begin{equation}
391     iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
392     p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
393     H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
394     \label{introEquation:liouvilleOperator}
395     \end{equation}
396     In terms of Liouville operator, Liouville's equation can also be
397     expressed as
398     \begin{equation}
399     \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
400     \label{introEquation:liouvilleTheoremInOperator}
401     \end{equation}
402 tim 2907 which can help define a propagator $\rho (t) = e^{-iLt} \rho (0)$.
403 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
404 tim 2692
405 tim 2695 Various thermodynamic properties can be calculated from Molecular
406     Dynamics simulation. By comparing experimental values with the
407     calculated properties, one can determine the accuracy of the
408 tim 2819 simulation and the quality of the underlying model. However, both
409     experiments and computer simulations are usually performed during a
410 tim 2695 certain time interval and the measurements are averaged over a
411 tim 2907 period of time which is different from the average behavior of
412 tim 2819 many-body system in Statistical Mechanics. Fortunately, the Ergodic
413     Hypothesis makes a connection between time average and the ensemble
414     average. It states that the time average and average over the
415 tim 2941 statistical ensemble are identical:\cite{Frenkel1996, Leach2001}
416 tim 2695 \begin{equation}
417 tim 2700 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
418     \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
419     {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
420 tim 2695 \end{equation}
421 tim 2700 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
422     physical quantity and $\rho (p(t), q(t))$ is the equilibrium
423     distribution function. If an observation is averaged over a
424 tim 2907 sufficiently long time (longer than the relaxation time), all
425     accessible microstates in phase space are assumed to be equally
426     probed, giving a properly weighted statistical average. This allows
427     the researcher freedom of choice when deciding how best to measure a
428     given observable. In case an ensemble averaged approach sounds most
429 tim 2905 reasonable, the Monte Carlo methods\cite{Metropolis1949} can be
430 tim 2700 utilized. Or if the system lends itself to a time averaging
431     approach, the Molecular Dynamics techniques in
432     Sec.~\ref{introSection:molecularDynamics} will be the best
433 tim 2941 choice.\cite{Frenkel1996}
434 tim 2694
435 tim 2697 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
436 tim 2819 A variety of numerical integrators have been proposed to simulate
437     the motions of atoms in MD simulation. They usually begin with
438 tim 2941 initial conditions and move the objects in the direction governed by
439     the differential equations. However, most of them ignore the hidden
440     physical laws contained within the equations. Since 1990, geometric
441     integrators, which preserve various phase-flow invariants such as
442     symplectic structure, volume and time reversal symmetry, were
443     developed to address this issue.\cite{Dullweber1997, McLachlan1998,
444     Leimkuhler1999} The velocity Verlet method, which happens to be a
445     simple example of symplectic integrator, continues to gain
446     popularity in the molecular dynamics community. This fact can be
447     partly explained by its geometric nature.
448 tim 2697
449 tim 2947 \subsection{\label{introSection:symplecticManifold}Manifolds and Bundles}
450 tim 2819 A \emph{manifold} is an abstract mathematical space. It looks
451     locally like Euclidean space, but when viewed globally, it may have
452     more complicated structure. A good example of manifold is the
453     surface of Earth. It seems to be flat locally, but it is round if
454     viewed as a whole. A \emph{differentiable manifold} (also known as
455     \emph{smooth manifold}) is a manifold on which it is possible to
456 tim 2941 apply calculus.\cite{Hirsch1997} A \emph{symplectic manifold} is
457 tim 2907 defined as a pair $(M, \omega)$ which consists of a
458 tim 2938 \emph{differentiable manifold} $M$ and a close, non-degenerate,
459 tim 2697 bilinear symplectic form, $\omega$. A symplectic form on a vector
460     space $V$ is a function $\omega(x, y)$ which satisfies
461     $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
462     \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
463 tim 2941 $\omega(x, x) = 0$.\cite{McDuff1998} The cross product operation in
464 tim 2947 vector field is an example of symplectic form.
465 tim 2950 Given vector spaces $V$ and $W$ over same field $F$, $f: V \to W$ is a linear transformation if
466 tim 2947 \begin{eqnarray*}
467     f(x+y) & = & f(x) + f(y) \\
468 tim 2950 f(ax) & = & af(x)
469 tim 2947 \end{eqnarray*}
470     are always satisfied for any two vectors $x$ and $y$ in $V$ and any scalar $a$ in $F$. One can define the dual vector space $V^*$ of $V$ if any two built-in linear transformations $\phi$ and $\psi$ in $V^*$ satisfy the following definition of addition and scalar multiplication:
471     \begin{eqnarray*}
472     (\phi+\psi)(x) & = & \phi(x)+\psi(x) \\
473     (a\phi)(x) & = & a \phi(x)
474     \end{eqnarray*}
475     for all $a$ in $F$ and $x$ in $V$. For a manifold $M$, one can define a tangent vector of a tangent space $TM_q$ at every point $q$
476     \begin{equation}
477 tim 2950 \dot q = \mathop {\lim }\limits_{t \to 0} \frac{{\phi (t) - \phi (0)}}{t}
478 tim 2947 \end{equation}
479     where $\phi(0)=q$ and $\phi(t) \in M$. One may also define a cotangent space $T^*M_q$ as the dual space of the tangent space $TM_q$. The tangent space and the cotangent space are isomorphic to each other, since they are both real vector spaces with same dimension.
480 tim 2950 The union of tangent spaces at every point of $M$ is called the tangent bundle of $M$ and is denoted by $TM$, while cotangent bundle $T^*M$ is defined as the union of the cotangent spaces to $M$.\cite{Jost2002} For a Hamiltonian system with configuration manifold $V$, the $(q,\dot q)$ phase space is the tangent bundle of the configuration manifold $V$, while the cotangent bundle is represented by $(q,p)$.
481 tim 2697
482 tim 2698 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
483 tim 2697
484 tim 2819 For an ordinary differential system defined as
485 tim 2698 \begin{equation}
486     \dot x = f(x)
487     \end{equation}
488 tim 2938 where $x = x(q,p)$, this system is a canonical Hamiltonian, if
489 tim 2907 $f(x) = J\nabla _x H(x)$. Here, $H = H (q, p)$ is Hamiltonian
490 tim 2905 function and $J$ is the skew-symmetric matrix
491 tim 2698 \begin{equation}
492     J = \left( {\begin{array}{*{20}c}
493     0 & I \\
494     { - I} & 0 \\
495     \end{array}} \right)
496     \label{introEquation:canonicalMatrix}
497     \end{equation}
498     where $I$ is an identity matrix. Using this notation, Hamiltonian
499     system can be rewritten as,
500     \begin{equation}
501 tim 2905 \frac{d}{{dt}}x = J\nabla _x H(x).
502 tim 2698 \label{introEquation:compactHamiltonian}
503     \end{equation}In this case, $f$ is
504 tim 2899 called a \emph{Hamiltonian vector field}. Another generalization of
505 tim 2941 Hamiltonian dynamics is Poisson Dynamics,\cite{Olver1986}
506 tim 2698 \begin{equation}
507     \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
508     \end{equation}
509 tim 2941 where the most obvious change being that matrix $J$ now depends on
510     $x$.
511 tim 2698
512 tim 2907 \subsection{\label{introSection:exactFlow}Exact Propagator}
513 tim 2702
514 tim 2905 Let $x(t)$ be the exact solution of the ODE
515 tim 2912 system,
516     \begin{equation}
517     \frac{{dx}}{{dt}} = f(x), \label{introEquation:ODE}
518     \end{equation} we can
519     define its exact propagator $\varphi_\tau$:
520 tim 2905 \[ x(t+\tau)
521     =\varphi_\tau(x(t))
522 tim 2698 \]
523     where $\tau$ is a fixed time step and $\varphi$ is a map from phase
524 tim 2907 space to itself. The propagator has the continuous group property,
525 tim 2698 \begin{equation}
526 tim 2702 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
527     + \tau _2 } .
528     \end{equation}
529     In particular,
530     \begin{equation}
531     \varphi _\tau \circ \varphi _{ - \tau } = I
532     \end{equation}
533 tim 2907 Therefore, the exact propagator is self-adjoint,
534 tim 2702 \begin{equation}
535     \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
536     \end{equation}
537 tim 2907 In most cases, it is not easy to find the exact propagator
538     $\varphi_\tau$. Instead, we use an approximate map, $\psi_\tau$,
539     which is usually called an integrator. The order of an integrator
540     $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
541     order $p$,
542 tim 2702 \begin{equation}
543 tim 2872 \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
544 tim 2698 \end{equation}
545    
546 tim 2702 \subsection{\label{introSection:geometricProperties}Geometric Properties}
547    
548 tim 2872 The hidden geometric properties\cite{Budd1999, Marsden1998} of an
549 tim 2907 ODE and its propagator play important roles in numerical studies.
550     Many of them can be found in systems which occur naturally in
551     applications. Let $\varphi$ be the propagator of Hamiltonian vector
552     field, $\varphi$ is a \emph{symplectic} propagator if it satisfies,
553 tim 2698 \begin{equation}
554 tim 2703 {\varphi '}^T J \varphi ' = J.
555 tim 2698 \end{equation}
556     According to Liouville's theorem, the symplectic volume is invariant
557 tim 2907 under a Hamiltonian propagator, which is the basis for classical
558     statistical mechanics. Furthermore, the propagator of a Hamiltonian
559     vector field on a symplectic manifold can be shown to be a
560 tim 2699 symplectomorphism. As to the Poisson system,
561 tim 2698 \begin{equation}
562 tim 2703 {\varphi '}^T J \varphi ' = J \circ \varphi
563 tim 2698 \end{equation}
564 tim 2898 is the property that must be preserved by the integrator. It is
565 tim 2907 possible to construct a \emph{volume-preserving} propagator for a
566     source free ODE ($ \nabla \cdot f = 0 $), if the propagator
567     satisfies $ \det d\varphi = 1$. One can show easily that a
568     symplectic propagator will be volume-preserving. Changing the
569     variables $y = h(x)$ in an ODE (Eq.~\ref{introEquation:ODE}) will
570     result in a new system,
571 tim 2698 \[
572     \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
573     \]
574     The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
575 tim 2907 In other words, the propagator of this vector field is reversible if
576     and only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $. A
577     conserved quantity of a general differential function is a function
578     $ G:R^{2d} \to R^d $ which is constant for all solutions of the ODE
579     $\frac{{dx}}{{dt}} = f(x)$ ,
580 tim 2705 \[
581     \frac{{dG(x(t))}}{{dt}} = 0.
582     \]
583 tim 2907 Using the chain rule, one may obtain,
584 tim 2705 \[
585 tim 2912 \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \cdot \nabla G,
586 tim 2705 \]
587 tim 2907 which is the condition for conserved quantities. For a canonical
588     Hamiltonian system, the time evolution of an arbitrary smooth
589     function $G$ is given by,
590 tim 2789 \begin{eqnarray}
591 tim 2905 \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \notag\\
592     & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)).
593 tim 2705 \label{introEquation:firstIntegral1}
594 tim 2789 \end{eqnarray}
595 tim 2905 Using poisson bracket notion, Eq.~\ref{introEquation:firstIntegral1}
596     can be rewritten as
597 tim 2705 \[
598     \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
599     \]
600 tim 2907 Therefore, the sufficient condition for $G$ to be a conserved
601     quantity of a Hamiltonian system is $\left\{ {G,H} \right\} = 0.$ As
602     is well known, the Hamiltonian (or energy) H of a Hamiltonian system
603     is a conserved quantity, which is due to the fact $\{ H,H\} = 0$.
604     When designing any numerical methods, one should always try to
605     preserve the structural properties of the original ODE and its
606     propagator.
607 tim 2702
608 tim 2699 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
609     A lot of well established and very effective numerical methods have
610 tim 2907 been successful precisely because of their symplectic nature even
611 tim 2699 though this fact was not recognized when they were first
612 tim 2872 constructed. The most famous example is the Verlet-leapfrog method
613 tim 2819 in molecular dynamics. In general, symplectic integrators can be
614 tim 2699 constructed using one of four different methods.
615     \begin{enumerate}
616     \item Generating functions
617     \item Variational methods
618     \item Runge-Kutta methods
619     \item Splitting methods
620     \end{enumerate}
621 tim 2907 Generating functions\cite{Channell1990} tend to lead to methods
622 tim 2789 which are cumbersome and difficult to use. In dissipative systems,
623     variational methods can capture the decay of energy
624 tim 2941 accurately.\cite{Kane2000} Since they are geometrically unstable
625 tim 2789 against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
626 tim 2942 methods are not suitable for Hamiltonian
627     system.\cite{Cartwright1992} Recently, various high-order explicit
628     Runge-Kutta methods \cite{Owren1992,Chen2003} have been developed to
629     overcome this instability. However, due to computational penalty
630     involved in implementing the Runge-Kutta methods, they have not
631     attracted much attention from the Molecular Dynamics community.
632     Instead, splitting methods have been widely accepted since they
633     exploit natural decompositions of the system.\cite{McLachlan1998,
634     Tuckerman1992}
635 tim 2702
636 tim 2819 \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
637 tim 2702
638     The main idea behind splitting methods is to decompose the discrete
639 tim 2907 $\varphi_h$ as a composition of simpler propagators,
640 tim 2699 \begin{equation}
641     \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
642     \varphi _{h_n }
643     \label{introEquation:FlowDecomposition}
644     \end{equation}
645 tim 2907 where each of the sub-propagator is chosen such that each represent
646     a simpler integration of the system. Suppose that a Hamiltonian
647     system takes the form,
648 tim 2702 \[
649     H = H_1 + H_2.
650     \]
651     Here, $H_1$ and $H_2$ may represent different physical processes of
652     the system. For instance, they may relate to kinetic and potential
653     energy respectively, which is a natural decomposition of the
654 tim 2907 problem. If $H_1$ and $H_2$ can be integrated using exact
655     propagators $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a
656     simple first order expression is then given by the Lie-Trotter
657 tim 2942 formula\cite{Trotter1959}
658 tim 2699 \begin{equation}
659 tim 2702 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
660     \label{introEquation:firstOrderSplitting}
661     \end{equation}
662     where $\varphi _h$ is the result of applying the corresponding
663     continuous $\varphi _i$ over a time $h$. By definition, as
664     $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
665     must follow that each operator $\varphi_i(t)$ is a symplectic map.
666 tim 2907 It is easy to show that any composition of symplectic propagators
667     yields a symplectic map,
668 tim 2702 \begin{equation}
669 tim 2699 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
670 tim 2702 '\phi ' = \phi '^T J\phi ' = J,
671 tim 2699 \label{introEquation:SymplecticFlowComposition}
672     \end{equation}
673 tim 2702 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
674     splitting in this context automatically generates a symplectic map.
675 tim 2905 The Lie-Trotter
676     splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
677 tim 2907 local errors proportional to $h^2$, while the Strang splitting gives
678 tim 2941 a second-order decomposition,\cite{Strang1968}
679 tim 2702 \begin{equation}
680     \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
681 tim 2706 _{1,h/2} , \label{introEquation:secondOrderSplitting}
682 tim 2702 \end{equation}
683 tim 2907 which has a local error proportional to $h^3$. The Strang
684 tim 2819 splitting's popularity in molecular simulation community attribute
685     to its symmetric property,
686 tim 2702 \begin{equation}
687     \varphi _h^{ - 1} = \varphi _{ - h}.
688 tim 2703 \label{introEquation:timeReversible}
689 tim 2882 \end{equation}
690 tim 2702
691 tim 2872 \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
692 tim 2702 The classical equation for a system consisting of interacting
693     particles can be written in Hamiltonian form,
694     \[
695     H = T + V
696     \]
697     where $T$ is the kinetic energy and $V$ is the potential energy.
698 tim 2872 Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
699 tim 2702 obtains the following:
700     \begin{align}
701     q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
702     \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
703     \label{introEquation:Lp10a} \\%
704     %
705     \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
706     \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
707     \label{introEquation:Lp10b}
708     \end{align}
709     where $F(t)$ is the force at time $t$. This integration scheme is
710     known as \emph{velocity verlet} which is
711 tim 2912 symplectic(Eq.~\ref{introEquation:SymplecticFlowComposition}),
712     time-reversible(Eq.~\ref{introEquation:timeReversible}) and
713     volume-preserving (Eq.~\ref{introEquation:volumePreserving}). These
714 tim 2702 geometric properties attribute to its long-time stability and its
715     popularity in the community. However, the most commonly used
716     velocity verlet integration scheme is written as below,
717     \begin{align}
718     \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
719     \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
720     %
721     q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
722     \label{introEquation:Lp9b}\\%
723     %
724     \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
725 tim 2872 \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
726 tim 2702 \end{align}
727     From the preceding splitting, one can see that the integration of
728     the equations of motion would follow:
729     \begin{enumerate}
730     \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
731    
732     \item Use the half step velocities to move positions one whole step, $\Delta t$.
733    
734 tim 2938 \item Evaluate the forces at the new positions, $q(\Delta t)$, and use the new forces to complete the velocity move.
735 tim 2702
736     \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
737     \end{enumerate}
738 tim 2872 By simply switching the order of the propagators in the splitting
739     and composing a new integrator, the \emph{position verlet}
740     integrator, can be generated,
741 tim 2702 \begin{align}
742     \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
743     \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
744     \label{introEquation:positionVerlet1} \\%
745     %
746 tim 2703 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
747 tim 2702 q(\Delta t)} \right]. %
748 tim 2719 \label{introEquation:positionVerlet2}
749 tim 2702 \end{align}
750    
751 tim 2819 \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
752 tim 2702
753 tim 2941 The Baker-Campbell-Hausdorff formula\cite{Gilmore1974} can be used
754     to determine the local error of a splitting method in terms of the
755 tim 2947 commutator of the
756 tim 2948 operators associated
757 tim 2947 with the sub-propagator. For operators $hX$ and $hY$ which are
758     associated with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we
759     have
760 tim 2702 \begin{equation}
761     \exp (hX + hY) = \exp (hZ)
762     \end{equation}
763     where
764     \begin{equation}
765     hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
766     {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
767     \end{equation}
768 tim 2907 Here, $[X,Y]$ is the commutator of operator $X$ and $Y$ given by
769 tim 2702 \[
770     [X,Y] = XY - YX .
771     \]
772 tim 2872 Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
773 tim 2907 to the Strang splitting, we can obtain
774 tim 2779 \begin{eqnarray*}
775 tim 2778 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
776     & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
777 tim 2905 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots
778     ).
779 tim 2779 \end{eqnarray*}
780 tim 2905 Since $ [X,Y] + [Y,X] = 0$ and $ [X,X] = 0$, the dominant local
781 tim 2907 error of Strang splitting is proportional to $h^3$. The same
782 tim 2905 procedure can be applied to a general splitting of the form
783 tim 2702 \begin{equation}
784     \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
785     1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
786     \end{equation}
787 tim 2872 A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
788     order methods. Yoshida proposed an elegant way to compose higher
789 tim 2941 order methods based on symmetric splitting.\cite{Yoshida1990} Given
790 tim 2789 a symmetric second order base method $ \varphi _h^{(2)} $, a
791     fourth-order symmetric method can be constructed by composing,
792 tim 2702 \[
793     \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
794     h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
795     \]
796     where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
797     = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
798     integrator $ \varphi _h^{(2n + 2)}$ can be composed by
799     \begin{equation}
800     \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
801 tim 2872 _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)},
802 tim 2702 \end{equation}
803 tim 2872 if the weights are chosen as
804 tim 2702 \[
805     \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
806     \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
807     \]
808    
809 tim 2694 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
810    
811 tim 2720 As one of the principal tools of molecular modeling, Molecular
812     dynamics has proven to be a powerful tool for studying the functions
813     of biological systems, providing structural, thermodynamic and
814     dynamical information. The basic idea of molecular dynamics is that
815     macroscopic properties are related to microscopic behavior and
816     microscopic behavior can be calculated from the trajectories in
817 tim 2907 simulations. For instance, instantaneous temperature of a
818     Hamiltonian system of $N$ particles can be measured by
819 tim 2720 \[
820 tim 2725 T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
821 tim 2720 \]
822     where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
823     respectively, $f$ is the number of degrees of freedom, and $k_B$ is
824 tim 2907 the Boltzman constant.
825 tim 2694
826 tim 2720 A typical molecular dynamics run consists of three essential steps:
827     \begin{enumerate}
828     \item Initialization
829     \begin{enumerate}
830     \item Preliminary preparation
831     \item Minimization
832     \item Heating
833     \item Equilibration
834     \end{enumerate}
835     \item Production
836     \item Analysis
837     \end{enumerate}
838     These three individual steps will be covered in the following
839     sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
840 tim 2801 initialization of a simulation. Sec.~\ref{introSection:production}
841 tim 2912 discusses issues of production runs.
842 tim 2801 Sec.~\ref{introSection:Analysis} provides the theoretical tools for
843 tim 2907 analysis of trajectories.
844 tim 2719
845 tim 2720 \subsection{\label{introSec:initialSystemSettings}Initialization}
846 tim 2719
847 tim 2819 \subsubsection{\textbf{Preliminary preparation}}
848 tim 2719
849 tim 2720 When selecting the starting structure of a molecule for molecular
850     simulation, one may retrieve its Cartesian coordinates from public
851     databases, such as RCSB Protein Data Bank \textit{etc}. Although
852     thousands of crystal structures of molecules are discovered every
853     year, many more remain unknown due to the difficulties of
854 tim 2872 purification and crystallization. Even for molecules with known
855 tim 2907 structures, some important information is missing. For example, a
856 tim 2720 missing hydrogen atom which acts as donor in hydrogen bonding must
857 tim 2907 be added. Moreover, in order to include electrostatic interactions,
858 tim 2720 one may need to specify the partial charges for individual atoms.
859     Under some circumstances, we may even need to prepare the system in
860 tim 2872 a special configuration. For instance, when studying transport
861     phenomenon in membrane systems, we may prepare the lipids in a
862     bilayer structure instead of placing lipids randomly in solvent,
863     since we are not interested in the slow self-aggregation process.
864 tim 2694
865 tim 2819 \subsubsection{\textbf{Minimization}}
866 tim 2705
867 tim 2720 It is quite possible that some of molecules in the system from
868 tim 2872 preliminary preparation may be overlapping with each other. This
869     close proximity leads to high initial potential energy which
870     consequently jeopardizes any molecular dynamics simulations. To
871     remove these steric overlaps, one typically performs energy
872     minimization to find a more reasonable conformation. Several energy
873     minimization methods have been developed to exploit the energy
874     surface and to locate the local minimum. While converging slowly
875 tim 2938 near the minimum, the steepest descent method is extremely robust when
876 tim 2872 systems are strongly anharmonic. Thus, it is often used to refine
877 tim 2907 structures from crystallographic data. Relying on the Hessian,
878     advanced methods like Newton-Raphson converge rapidly to a local
879     minimum, but become unstable if the energy surface is far from
880 tim 2872 quadratic. Another factor that must be taken into account, when
881 tim 2720 choosing energy minimization method, is the size of the system.
882     Steepest descent and conjugate gradient can deal with models of any
883 tim 2872 size. Because of the limits on computer memory to store the hessian
884 tim 2907 matrix and the computing power needed to diagonalize these matrices,
885     most Newton-Raphson methods can not be used with very large systems.
886 tim 2694
887 tim 2819 \subsubsection{\textbf{Heating}}
888 tim 2720
889 tim 2907 Typically, heating is performed by assigning random velocities
890 tim 2872 according to a Maxwell-Boltzman distribution for a desired
891     temperature. Beginning at a lower temperature and gradually
892     increasing the temperature by assigning larger random velocities, we
893 tim 2907 end up setting the temperature of the system to a final temperature
894 tim 2938 at which the simulation will be conducted. In the heating phase, we
895 tim 2907 should also keep the system from drifting or rotating as a whole. To
896     do this, the net linear momentum and angular momentum of the system
897     is shifted to zero after each resampling from the Maxwell -Boltzman
898     distribution.
899 tim 2720
900 tim 2819 \subsubsection{\textbf{Equilibration}}
901 tim 2720
902     The purpose of equilibration is to allow the system to evolve
903     spontaneously for a period of time and reach equilibrium. The
904     procedure is continued until various statistical properties, such as
905     temperature, pressure, energy, volume and other structural
906     properties \textit{etc}, become independent of time. Strictly
907     speaking, minimization and heating are not necessary, provided the
908     equilibration process is long enough. However, these steps can serve
909 tim 2912 as a mean to arrive at an equilibrated structure in an effective
910 tim 2720 way.
911    
912     \subsection{\label{introSection:production}Production}
913    
914 tim 2872 The production run is the most important step of the simulation, in
915 tim 2725 which the equilibrated structure is used as a starting point and the
916     motions of the molecules are collected for later analysis. In order
917     to capture the macroscopic properties of the system, the molecular
918 tim 2872 dynamics simulation must be performed by sampling correctly and
919     efficiently from the relevant thermodynamic ensemble.
920 tim 2720
921 tim 2725 The most expensive part of a molecular dynamics simulation is the
922     calculation of non-bonded forces, such as van der Waals force and
923     Coulombic forces \textit{etc}. For a system of $N$ particles, the
924     complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
925 tim 2907 which makes large simulations prohibitive in the absence of any
926 tim 2905 algorithmic tricks. A natural approach to avoid system size issues
927     is to represent the bulk behavior by a finite number of the
928 tim 2907 particles. However, this approach will suffer from surface effects
929     at the edges of the simulation. To offset this, \textit{Periodic
930     boundary conditions} (see Fig.~\ref{introFig:pbc}) were developed to
931     simulate bulk properties with a relatively small number of
932     particles. In this method, the simulation box is replicated
933     throughout space to form an infinite lattice. During the simulation,
934     when a particle moves in the primary cell, its image in other cells
935     move in exactly the same direction with exactly the same
936 tim 2905 orientation. Thus, as a particle leaves the primary cell, one of its
937     images will enter through the opposite face.
938 tim 2789 \begin{figure}
939     \centering
940     \includegraphics[width=\linewidth]{pbc.eps}
941     \caption[An illustration of periodic boundary conditions]{A 2-D
942     illustration of periodic boundary conditions. As one particle leaves
943     the left of the simulation box, an image of it enters the right.}
944     \label{introFig:pbc}
945     \end{figure}
946 tim 2725
947     %cutoff and minimum image convention
948     Another important technique to improve the efficiency of force
949 tim 2907 evaluation is to apply spherical cutoffs where particles farther
950 tim 2941 than a predetermined distance are not included in the
951     calculation.\cite{Frenkel1996} The use of a cutoff radius will cause
952     a discontinuity in the potential energy curve. Fortunately, one can
953 tim 2907 shift a simple radial potential to ensure the potential curve go
954 tim 2872 smoothly to zero at the cutoff radius. The cutoff strategy works
955     well for Lennard-Jones interaction because of its short range
956     nature. However, simply truncating the electrostatic interaction
957     with the use of cutoffs has been shown to lead to severe artifacts
958     in simulations. The Ewald summation, in which the slowly decaying
959     Coulomb potential is transformed into direct and reciprocal sums
960     with rapid and absolute convergence, has proved to minimize the
961 tim 2941 periodicity artifacts in liquid simulations. Taking advantage of
962     fast Fourier transform (FFT) techniques for calculating discrete
963     Fourier transforms, the particle mesh-based
964 tim 2789 methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
965 tim 2872 $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
966     \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
967     which treats Coulombic interactions exactly at short range, and
968     approximate the potential at long range through multipolar
969     expansion. In spite of their wide acceptance at the molecular
970     simulation community, these two methods are difficult to implement
971     correctly and efficiently. Instead, we use a damped and
972     charge-neutralized Coulomb potential method developed by Wolf and
973 tim 2941 his coworkers.\cite{Wolf1999} The shifted Coulomb potential for
974 tim 2872 particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
975 tim 2725 \begin{equation}
976     V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
977     r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
978     R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
979 tim 2912 r_{ij})}{r_{ij}}\right\}, \label{introEquation:shiftedCoulomb}
980 tim 2725 \end{equation}
981     where $\alpha$ is the convergence parameter. Due to the lack of
982     inherent periodicity and rapid convergence,this method is extremely
983     efficient and easy to implement.
984 tim 2789 \begin{figure}
985     \centering
986     \includegraphics[width=\linewidth]{shifted_coulomb.eps}
987     \caption[An illustration of shifted Coulomb potential]{An
988     illustration of shifted Coulomb potential.}
989     \label{introFigure:shiftedCoulomb}
990     \end{figure}
991 tim 2725
992 tim 2720 \subsection{\label{introSection:Analysis} Analysis}
993    
994 tim 2950 According to the principles of
995 tim 2905 Statistical Mechanics in
996     Sec.~\ref{introSection:statisticalMechanics}, one can compute
997     thermodynamic properties, analyze fluctuations of structural
998     parameters, and investigate time-dependent processes of the molecule
999     from the trajectories.
1000 tim 2721
1001 tim 2872 \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1002 tim 2721
1003 tim 2872 Thermodynamic properties, which can be expressed in terms of some
1004 tim 2725 function of the coordinates and momenta of all particles in the
1005     system, can be directly computed from molecular dynamics. The usual
1006     way to measure the pressure is based on virial theorem of Clausius
1007     which states that the virial is equal to $-3Nk_BT$. For a system
1008     with forces between particles, the total virial, $W$, contains the
1009     contribution from external pressure and interaction between the
1010     particles:
1011     \[
1012     W = - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1013     f_{ij} } } \right\rangle
1014     \]
1015     where $f_{ij}$ is the force between particle $i$ and $j$ at a
1016     distance $r_{ij}$. Thus, the expression for the pressure is given
1017     by:
1018     \begin{equation}
1019     P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1020     < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1021     \end{equation}
1022    
1023 tim 2819 \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1024 tim 2721
1025     Structural Properties of a simple fluid can be described by a set of
1026 tim 2872 distribution functions. Among these functions,the \emph{pair
1027 tim 2721 distribution function}, also known as \emph{radial distribution
1028 tim 2872 function}, is of most fundamental importance to liquid theory.
1029 tim 2907 Experimentally, pair distribution functions can be gathered by
1030 tim 2872 Fourier transforming raw data from a series of neutron diffraction
1031 tim 2941 experiments and integrating over the surface
1032     factor.\cite{Powles1973} The experimental results can serve as a
1033     criterion to justify the correctness of a liquid model. Moreover,
1034     various equilibrium thermodynamic and structural properties can also
1035     be expressed in terms of the radial distribution
1036     function.\cite{Allen1987} The pair distribution functions $g(r)$
1037     gives the probability that a particle $i$ will be located at a
1038     distance $r$ from a another particle $j$ in the system
1039 tim 2905 \begin{equation}
1040 tim 2721 g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1041 tim 2874 \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1042 tim 2872 (r)}{\rho}.
1043 tim 2905 \end{equation}
1044 tim 2721 Note that the delta function can be replaced by a histogram in
1045 tim 2881 computer simulation. Peaks in $g(r)$ represent solvent shells, and
1046     the height of these peaks gradually decreases to 1 as the liquid of
1047     large distance approaches the bulk density.
1048 tim 2721
1049    
1050 tim 2819 \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1051     Properties}}
1052 tim 2721
1053     Time-dependent properties are usually calculated using \emph{time
1054 tim 2872 correlation functions}, which correlate random variables $A$ and $B$
1055     at two different times,
1056 tim 2721 \begin{equation}
1057     C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1058     \label{introEquation:timeCorrelationFunction}
1059     \end{equation}
1060     If $A$ and $B$ refer to same variable, this kind of correlation
1061 tim 2938 functions are called \emph{autocorrelation functions}. One typical example is the velocity autocorrelation
1062 tim 2872 function which is directly related to transport properties of
1063     molecular liquids:
1064 tim 2938 \begin{equation}
1065 tim 2725 D = \frac{1}{3}\int\limits_0^\infty {\left\langle {v(t) \cdot v(0)}
1066     \right\rangle } dt
1067 tim 2938 \end{equation}
1068 tim 2872 where $D$ is diffusion constant. Unlike the velocity autocorrelation
1069 tim 2907 function, which is averaged over time origins and over all the
1070     atoms, the dipole autocorrelation functions is calculated for the
1071 tim 2872 entire system. The dipole autocorrelation function is given by:
1072 tim 2938 \begin{equation}
1073 tim 2725 c_{dipole} = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1074     \right\rangle
1075 tim 2938 \end{equation}
1076 tim 2725 Here $u_{tot}$ is the net dipole of the entire system and is given
1077     by
1078 tim 2938 \begin{equation}
1079 tim 2905 u_{tot} (t) = \sum\limits_i {u_i (t)}.
1080 tim 2938 \end{equation}
1081 tim 2907 In principle, many time correlation functions can be related to
1082 tim 2725 Fourier transforms of the infrared, Raman, and inelastic neutron
1083     scattering spectra of molecular liquids. In practice, one can
1084 tim 2907 extract the IR spectrum from the intensity of the molecular dipole
1085     fluctuation at each frequency using the following relationship:
1086 tim 2938 \begin{equation}
1087 tim 2725 \hat c_{dipole} (v) = \int_{ - \infty }^\infty {c_{dipole} (t)e^{ -
1088 tim 2905 i2\pi vt} dt}.
1089 tim 2938 \end{equation}
1090 tim 2721
1091 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1092 tim 2692
1093 tim 2705 Rigid bodies are frequently involved in the modeling of different
1094 tim 2938 areas, including engineering, physics and chemistry. For example,
1095 tim 2907 missiles and vehicles are usually modeled by rigid bodies. The
1096     movement of the objects in 3D gaming engines or other physics
1097     simulators is governed by rigid body dynamics. In molecular
1098 tim 2872 simulations, rigid bodies are used to simplify protein-protein
1099 tim 2941 docking studies.\cite{Gray2003}
1100 tim 2694
1101 tim 2705 It is very important to develop stable and efficient methods to
1102 tim 2872 integrate the equations of motion for orientational degrees of
1103     freedom. Euler angles are the natural choice to describe the
1104     rotational degrees of freedom. However, due to $\frac {1}{sin
1105     \theta}$ singularities, the numerical integration of corresponding
1106 tim 2907 equations of these motion is very inefficient and inaccurate.
1107     Although an alternative integrator using multiple sets of Euler
1108     angles can overcome this difficulty\cite{Barojas1973}, the
1109     computational penalty and the loss of angular momentum conservation
1110     still remain. A singularity-free representation utilizing
1111 tim 2941 quaternions was developed by Evans in 1977.\cite{Evans1977}
1112 tim 2912 Unfortunately, this approach used a nonseparable Hamiltonian
1113     resulting from the quaternion representation, which prevented the
1114 tim 2907 symplectic algorithm from being utilized. Another different approach
1115     is to apply holonomic constraints to the atoms belonging to the
1116     rigid body. Each atom moves independently under the normal forces
1117     deriving from potential energy and constraint forces which are used
1118     to guarantee the rigidness. However, due to their iterative nature,
1119     the SHAKE and Rattle algorithms also converge very slowly when the
1120 tim 2941 number of constraints increases.\cite{Ryckaert1977, Andersen1983}
1121 tim 2694
1122 tim 2872 A break-through in geometric literature suggests that, in order to
1123 tim 2705 develop a long-term integration scheme, one should preserve the
1124 tim 2907 symplectic structure of the propagator. By introducing a conjugate
1125 tim 2872 momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1126     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1127     proposed to evolve the Hamiltonian system in a constraint manifold
1128     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1129     An alternative method using the quaternion representation was
1130 tim 2941 developed by Omelyan.\cite{Omelyan1998} However, both of these
1131 tim 2872 methods are iterative and inefficient. In this section, we descibe a
1132 tim 2907 symplectic Lie-Poisson integrator for rigid bodies developed by
1133 tim 2789 Dullweber and his coworkers\cite{Dullweber1997} in depth.
1134 tim 2705
1135 tim 2872 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1136 tim 2941 The Hamiltonian of a rigid body is given by
1137 tim 2706 \begin{equation}
1138     H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1139     V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
1140     \label{introEquation:RBHamiltonian}
1141     \end{equation}
1142 tim 2909 Here, $q$ and $Q$ are the position vector and rotation matrix for
1143     the rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ ,
1144     and $J$, a diagonal matrix, is defined by
1145 tim 2706 \[
1146     I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1147     \]
1148     where $I_{ii}$ is the diagonal element of the inertia tensor. This
1149 tim 2872 constrained Hamiltonian equation is subjected to a holonomic
1150     constraint,
1151 tim 2706 \begin{equation}
1152 tim 2726 Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1153 tim 2706 \end{equation}
1154 tim 2909 which is used to ensure the rotation matrix's unitarity. Using
1155 tim 2912 Eq.~\ref{introEquation:motionHamiltonianCoordinate} and Eq.~
1156     \ref{introEquation:motionHamiltonianMomentum}, one can write down
1157 tim 2706 the equations of motion,
1158 tim 2796 \begin{eqnarray}
1159 tim 2905 \frac{{dq}}{{dt}} & = & \frac{p}{m}, \label{introEquation:RBMotionPosition}\\
1160     \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q), \label{introEquation:RBMotionMomentum}\\
1161     \frac{{dQ}}{{dt}} & = & PJ^{ - 1}, \label{introEquation:RBMotionRotation}\\
1162 tim 2796 \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1163     \end{eqnarray}
1164 tim 2909 Differentiating Eq.~\ref{introEquation:orthogonalConstraint} and
1165     using Eq.~\ref{introEquation:RBMotionMomentum}, one may obtain,
1166     \begin{equation}
1167     Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
1168     \label{introEquation:RBFirstOrderConstraint}
1169     \end{equation}
1170 tim 2707 In general, there are two ways to satisfy the holonomic constraints.
1171 tim 2872 We can use a constraint force provided by a Lagrange multiplier on
1172 tim 2909 the normal manifold to keep the motion on the constraint space. Or
1173     we can simply evolve the system on the constraint manifold. These
1174     two methods have been proved to be equivalent. The holonomic
1175     constraint and equations of motions define a constraint manifold for
1176     rigid bodies
1177 tim 2707 \[
1178     M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
1179     \right\}.
1180     \]
1181 tim 2909 Unfortunately, this constraint manifold is not $T^* SO(3)$ which is
1182     a symplectic manifold on Lie rotation group $SO(3)$. However, it
1183     turns out that under symplectic transformation, the cotangent space
1184     and the phase space are diffeomorphic. By introducing
1185 tim 2706 \[
1186 tim 2707 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1187 tim 2706 \]
1188 tim 2912 the mechanical system subjected to a holonomic constraint manifold $M$
1189 tim 2707 can be re-formulated as a Hamiltonian system on the cotangent space
1190     \[
1191     T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1192     1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1193     \]
1194     For a body fixed vector $X_i$ with respect to the center of mass of
1195 tim 2947 the rigid body, its corresponding lab fixed vector $X_i^{lab}$ is
1196 tim 2707 given as
1197     \begin{equation}
1198     X_i^{lab} = Q X_i + q.
1199     \end{equation}
1200     Therefore, potential energy $V(q,Q)$ is defined by
1201     \[
1202     V(q,Q) = V(Q X_0 + q).
1203     \]
1204 tim 2713 Hence, the force and torque are given by
1205 tim 2707 \[
1206 tim 2713 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1207 tim 2707 \]
1208 tim 2713 and
1209 tim 2707 \[
1210     \nabla _Q V(q,Q) = F(q,Q)X_i^t
1211     \]
1212 tim 2899 respectively. As a common choice to describe the rotation dynamics
1213     of the rigid body, the angular momentum on the body fixed frame $\Pi
1214     = Q^t P$ is introduced to rewrite the equations of motion,
1215 tim 2707 \begin{equation}
1216     \begin{array}{l}
1217 tim 2899 \dot \Pi = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda, \\
1218     \dot Q = Q\Pi {\rm{ }}J^{ - 1}, \\
1219 tim 2707 \end{array}
1220     \label{introEqaution:RBMotionPI}
1221     \end{equation}
1222 tim 2905 as well as holonomic constraints $\Pi J^{ - 1} + J^{ - 1} \Pi ^t =
1223     0$ and $Q^T Q = 1$. For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a
1224     matrix $\hat v \in so(3)^ \star$, the hat-map isomorphism,
1225 tim 2707 \begin{equation}
1226     v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1227     {\begin{array}{*{20}c}
1228     0 & { - v_3 } & {v_2 } \\
1229     {v_3 } & 0 & { - v_1 } \\
1230     { - v_2 } & {v_1 } & 0 \\
1231     \end{array}} \right),
1232     \label{introEquation:hatmapIsomorphism}
1233     \end{equation}
1234     will let us associate the matrix products with traditional vector
1235     operations
1236     \[
1237 tim 2899 \hat vu = v \times u.
1238 tim 2707 \]
1239 tim 2899 Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1240 tim 2707 matrix,
1241 tim 2899 \begin{eqnarray}
1242 tim 2905 (\dot \Pi - \dot \Pi ^T )&= &(\Pi - \Pi ^T )(J^{ - 1} \Pi + \Pi J^{ - 1} ) \notag \\
1243     & & + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1244     (\Lambda - \Lambda ^T ). \label{introEquation:skewMatrixPI}
1245 tim 2899 \end{eqnarray}
1246     Since $\Lambda$ is symmetric, the last term of
1247     Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1248     Lagrange multiplier $\Lambda$ is absent from the equations of
1249     motion. This unique property eliminates the requirement of
1250 tim 2941 iterations which can not be avoided in other methods.\cite{Kol1997,
1251     Omelyan1998} Applying the hat-map isomorphism, we obtain the
1252 tim 2950 equation of motion for angular momentum
1253 tim 2713 \begin{equation}
1254     \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1255     F_i (r,Q)} \right) \times X_i }.
1256     \label{introEquation:bodyAngularMotion}
1257     \end{equation}
1258 tim 2707 In the same manner, the equation of motion for rotation matrix is
1259     given by
1260     \[
1261 tim 2899 \dot Q = Qskew(I^{ - 1} \pi ).
1262 tim 2707 \]
1263    
1264 tim 2713 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1265 tim 2909 Lie-Poisson Integrator for Free Rigid Bodies}
1266 tim 2707
1267 tim 2872 If there are no external forces exerted on the rigid body, the only
1268     contribution to the rotational motion is from the kinetic energy
1269     (the first term of \ref{introEquation:bodyAngularMotion}). The free
1270     rigid body is an example of a Lie-Poisson system with Hamiltonian
1271     function
1272 tim 2713 \begin{equation}
1273     T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1274     \label{introEquation:rotationalKineticRB}
1275     \end{equation}
1276     where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1277     Lie-Poisson structure matrix,
1278     \begin{equation}
1279     J(\pi ) = \left( {\begin{array}{*{20}c}
1280     0 & {\pi _3 } & { - \pi _2 } \\
1281     { - \pi _3 } & 0 & {\pi _1 } \\
1282     {\pi _2 } & { - \pi _1 } & 0 \\
1283 tim 2899 \end{array}} \right).
1284 tim 2713 \end{equation}
1285     Thus, the dynamics of free rigid body is governed by
1286     \begin{equation}
1287 tim 2899 \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi ).
1288 tim 2713 \end{equation}
1289 tim 2905 One may notice that each $T_i^r$ in
1290     Eq.~\ref{introEquation:rotationalKineticRB} can be solved exactly.
1291     For instance, the equations of motion due to $T_1^r$ are given by
1292 tim 2713 \begin{equation}
1293     \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1294     \label{introEqaution:RBMotionSingleTerm}
1295     \end{equation}
1296 tim 2905 with
1297 tim 2713 \[ R_1 = \left( {\begin{array}{*{20}c}
1298     0 & 0 & 0 \\
1299     0 & 0 & {\pi _1 } \\
1300     0 & { - \pi _1 } & 0 \\
1301     \end{array}} \right).
1302     \]
1303 tim 2905 The solutions of Eq.~\ref{introEqaution:RBMotionSingleTerm} is
1304 tim 2707 \[
1305 tim 2713 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1306     Q(0)e^{\Delta tR_1 }
1307 tim 2707 \]
1308 tim 2713 with
1309 tim 2707 \[
1310 tim 2713 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1311     0 & 0 & 0 \\
1312     0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1313     0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1314     \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1315 tim 2707 \]
1316 tim 2719 To reduce the cost of computing expensive functions in $e^{\Delta
1317 tim 2909 tR_1 }$, we can use the Cayley transformation to obtain a
1318     single-aixs propagator,
1319     \begin{eqnarray*}
1320     e^{\Delta tR_1 } & \approx & (1 - \Delta tR_1 )^{ - 1} (1 + \Delta
1321     tR_1 ) \\
1322     %
1323     & \approx & \left( \begin{array}{ccc}
1324     1 & 0 & 0 \\
1325     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
1326     \theta^2 / 4} \\
1327     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
1328     \theta^2 / 4}
1329     \end{array}
1330     \right).
1331     \end{eqnarray*}
1332     The propagators for $T_2^r$ and $T_3^r$ can be found in the same
1333 tim 2872 manner. In order to construct a second-order symplectic method, we
1334 tim 2905 split the angular kinetic Hamiltonian function into five terms
1335 tim 2707 \[
1336 tim 2713 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1337     ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1338 tim 2872 (\pi _1 ).
1339     \]
1340     By concatenating the propagators corresponding to these five terms,
1341     we can obtain an symplectic integrator,
1342 tim 2713 \[
1343     \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1344 tim 2707 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1345     \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1346 tim 2713 _1 }.
1347 tim 2707 \]
1348 tim 2938 The non-canonical Lie-Poisson bracket $\{F, G\}$ of two functions $F(\pi )$ and $G(\pi )$ is defined by
1349 tim 2707 \[
1350 tim 2713 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1351 tim 2899 ).
1352 tim 2713 \]
1353     If the Poisson bracket of a function $F$ with an arbitrary smooth
1354     function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1355     conserved quantity in Poisson system. We can easily verify that the
1356     norm of the angular momentum, $\parallel \pi
1357 tim 2941 \parallel$, is a \emph{Casimir}.\cite{McLachlan1993} Let $F(\pi ) = S(\frac{{\parallel
1358 tim 2713 \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1359     then by the chain rule
1360     \[
1361     \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1362 tim 2899 }}{2})\pi.
1363 tim 2713 \]
1364 tim 2899 Thus, $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel
1365     \pi
1366 tim 2713 \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1367 tim 2872 Lie-Poisson integrator is found to be both extremely efficient and
1368     stable. These properties can be explained by the fact the small
1369     angle approximation is used and the norm of the angular momentum is
1370     conserved.
1371 tim 2713
1372     \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1373     Splitting for Rigid Body}
1374    
1375     The Hamiltonian of rigid body can be separated in terms of kinetic
1376 tim 2912 energy and potential energy, $H = T(p,\pi ) + V(q,Q)$. The equations
1377 tim 2905 of motion corresponding to potential energy and kinetic energy are
1378 tim 2941 listed in Table~\ref{introTable:rbEquations}.
1379 tim 2776 \begin{table}
1380 tim 2889 \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1381 tim 2912 \label{introTable:rbEquations}
1382 tim 2713 \begin{center}
1383     \begin{tabular}{|l|l|}
1384     \hline
1385     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1386     Potential & Kinetic \\
1387     $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1388     $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1389     $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1390     $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1391     \hline
1392     \end{tabular}
1393     \end{center}
1394 tim 2776 \end{table}
1395 tim 2872 A second-order symplectic method is now obtained by the composition
1396     of the position and velocity propagators,
1397 tim 2713 \[
1398     \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1399     _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1400     \]
1401 tim 2719 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1402 tim 2872 sub-propagators which corresponding to force and torque
1403     respectively,
1404 tim 2713 \[
1405 tim 2707 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1406 tim 2713 _{\Delta t/2,\tau }.
1407 tim 2707 \]
1408 tim 2713 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1409 tim 2872 $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1410     inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1411     kinetic energy can be separated to translational kinetic term, $T^t
1412     (p)$, and rotational kinetic term, $T^r (\pi )$,
1413 tim 2713 \begin{equation}
1414     T(p,\pi ) =T^t (p) + T^r (\pi ).
1415     \end{equation}
1416     where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1417 tim 2905 defined by Eq.~\ref{introEquation:rotationalKineticRB}. Therefore,
1418     the corresponding propagators are given by
1419 tim 2713 \[
1420     \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1421     _{\Delta t,T^r }.
1422     \]
1423 tim 2872 Finally, we obtain the overall symplectic propagators for freely
1424     moving rigid bodies
1425 tim 2905 \begin{eqnarray}
1426     \varphi _{\Delta t} &=& \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \notag\\
1427     & & \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \notag\\
1428 tim 2908 & & \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .
1429 tim 2713 \label{introEquation:overallRBFlowMaps}
1430 tim 2905 \end{eqnarray}
1431 tim 2707
1432 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1433 tim 2716 As an alternative to newtonian dynamics, Langevin dynamics, which
1434     mimics a simple heat bath with stochastic and dissipative forces,
1435     has been applied in a variety of studies. This section will review
1436 tim 2938 the theory of Langevin dynamics. A brief derivation of the generalized
1437 tim 2872 Langevin equation will be given first. Following that, we will
1438 tim 2913 discuss the physical meaning of the terms appearing in the equation.
1439 tim 2685
1440 tim 2719 \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1441 tim 2685
1442 tim 2872 A harmonic bath model, in which an effective set of harmonic
1443 tim 2719 oscillators are used to mimic the effect of a linearly responding
1444     environment, has been widely used in quantum chemistry and
1445     statistical mechanics. One of the successful applications of
1446 tim 2872 Harmonic bath model is the derivation of the Generalized Langevin
1447 tim 2938 Dynamics (GLE). Consider a system, in which the degree of
1448 tim 2719 freedom $x$ is assumed to couple to the bath linearly, giving a
1449     Hamiltonian of the form
1450 tim 2696 \begin{equation}
1451     H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1452 tim 2719 \label{introEquation:bathGLE}.
1453 tim 2696 \end{equation}
1454 tim 2872 Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1455     with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1456 tim 2696 \[
1457 tim 2719 H_B = \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1458 tim 2938 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha x_\alpha ^2 }
1459 tim 2719 \right\}}
1460 tim 2696 \]
1461 tim 2719 where the index $\alpha$ runs over all the bath degrees of freedom,
1462     $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1463 tim 2872 the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1464 tim 2719 coupling,
1465 tim 2696 \[
1466     \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1467     \]
1468 tim 2872 where $g_\alpha$ are the coupling constants between the bath
1469 tim 2874 coordinates ($x_ \alpha$) and the system coordinate ($x$).
1470 tim 2872 Introducing
1471 tim 2696 \[
1472 tim 2719 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1473     }}{{2m_\alpha w_\alpha ^2 }}} x^2
1474 tim 2899 \]
1475     and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1476 tim 2696 \[
1477     H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1478     {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1479     w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1480 tim 2899 w_\alpha ^2 }}x} \right)^2 } \right\}}.
1481 tim 2696 \]
1482     Since the first two terms of the new Hamiltonian depend only on the
1483     system coordinates, we can get the equations of motion for
1484 tim 2872 Generalized Langevin Dynamics by Hamilton's equations,
1485 tim 2719 \begin{equation}
1486     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} -
1487     \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha -
1488     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)},
1489     \label{introEquation:coorMotionGLE}
1490     \end{equation}
1491     and
1492     \begin{equation}
1493     m\ddot x_\alpha = - m_\alpha w_\alpha ^2 \left( {x_\alpha -
1494     \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right).
1495     \label{introEquation:bathMotionGLE}
1496     \end{equation}
1497     In order to derive an equation for $x$, the dynamics of the bath
1498     variables $x_\alpha$ must be solved exactly first. As an integral
1499     transform which is particularly useful in solving linear ordinary
1500 tim 2872 differential equations,the Laplace transform is the appropriate tool
1501     to solve this problem. The basic idea is to transform the difficult
1502 tim 2719 differential equations into simple algebra problems which can be
1503 tim 2909 solved easily. Then, by applying the inverse Laplace transform, we
1504     can retrieve the solutions of the original problems. Let $f(t)$ be a
1505     function defined on $ [0,\infty ) $, the Laplace transform of $f(t)$
1506     is a new function defined as
1507 tim 2696 \[
1508 tim 2719 L(f(t)) \equiv F(p) = \int_0^\infty {f(t)e^{ - pt} dt}
1509 tim 2696 \]
1510 tim 2719 where $p$ is real and $L$ is called the Laplace Transform
1511 tim 2938 Operator. Below are some important properties of the Laplace transform
1512 tim 2789 \begin{eqnarray*}
1513     L(x + y) & = & L(x) + L(y) \\
1514     L(ax) & = & aL(x) \\
1515     L(\dot x) & = & pL(x) - px(0) \\
1516     L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1517     L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1518     \end{eqnarray*}
1519 tim 2872 Applying the Laplace transform to the bath coordinates, we obtain
1520 tim 2789 \begin{eqnarray*}
1521 tim 2905 p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) & = & - \omega _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha }}L(x), \\
1522     L(x_\alpha ) & = & \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}. \\
1523 tim 2789 \end{eqnarray*}
1524 tim 2909 In the same way, the system coordinates become
1525 tim 2789 \begin{eqnarray*}
1526 tim 2899 mL(\ddot x) & = &
1527     - \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0) - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}} \\
1528 tim 2905 & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}.
1529 tim 2789 \end{eqnarray*}
1530 tim 2719 With the help of some relatively important inverse Laplace
1531     transformations:
1532 tim 2696 \[
1533 tim 2719 \begin{array}{c}
1534     L(\cos at) = \frac{p}{{p^2 + a^2 }} \\
1535     L(\sin at) = \frac{a}{{p^2 + a^2 }} \\
1536     L(1) = \frac{1}{p} \\
1537     \end{array}
1538 tim 2696 \]
1539 tim 2899 we obtain
1540 tim 2794 \begin{eqnarray*}
1541     m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1542 tim 2696 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1543     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1544 tim 2794 _\alpha t)\dot x(t - \tau )d\tau } } \right\}} \\
1545     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1546     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1547     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1548 tim 2909 (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}\\
1549     %
1550     & = & -
1551     \frac{{\partial W(x)}}{{\partial x}} - \int_0^t {\sum\limits_{\alpha
1552     = 1}^N {\left( { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha
1553     ^2 }}} \right)\cos (\omega _\alpha
1554 tim 2794 t)\dot x(t - \tau )d} \tau } \\
1555     & & + \sum\limits_{\alpha = 1}^N {\left\{ {\left[ {g_\alpha
1556     x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}}
1557     \right]\cos (\omega _\alpha t) + \frac{{g_\alpha \dot x_\alpha
1558     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)} \right\}}
1559     \end{eqnarray*}
1560 tim 2719 Introducing a \emph{dynamic friction kernel}
1561 tim 2696 \begin{equation}
1562 tim 2719 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1563     }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1564     \label{introEquation:dynamicFrictionKernelDefinition}
1565     \end{equation}
1566     and \emph{a random force}
1567     \begin{equation}
1568     R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1569     - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1570     \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1571     (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t),
1572     \label{introEquation:randomForceDefinition}
1573     \end{equation}
1574     the equation of motion can be rewritten as
1575     \begin{equation}
1576 tim 2696 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1577     (t)\dot x(t - \tau )d\tau } + R(t)
1578     \label{introEuqation:GeneralizedLangevinDynamics}
1579     \end{equation}
1580 tim 2938 which is known as the \emph{generalized Langevin equation} (GLE).
1581 tim 2719
1582 tim 2819 \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1583 tim 2719
1584     One may notice that $R(t)$ depends only on initial conditions, which
1585     implies it is completely deterministic within the context of a
1586     harmonic bath. However, it is easy to verify that $R(t)$ is totally
1587 tim 2913 uncorrelated to $x$ and $\dot x$, $\left\langle {x(t)R(t)}
1588 tim 2905 \right\rangle = 0, \left\langle {\dot x(t)R(t)} \right\rangle =
1589     0.$ This property is what we expect from a truly random process. As
1590     long as the model chosen for $R(t)$ was a gaussian distribution in
1591 tim 2872 general, the stochastic nature of the GLE still remains.
1592 tim 2719 %dynamic friction kernel
1593     The convolution integral
1594 tim 2696 \[
1595 tim 2719 \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1596 tim 2696 \]
1597 tim 2719 depends on the entire history of the evolution of $x$, which implies
1598     that the bath retains memory of previous motions. In other words,
1599     the bath requires a finite time to respond to change in the motion
1600     of the system. For a sluggish bath which responds slowly to changes
1601     in the system coordinate, we may regard $\xi(t)$ as a constant
1602     $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1603     \[
1604     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = \xi _0 (x(t) - x(0))
1605     \]
1606 tim 2899 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1607 tim 2719 \[
1608     m\ddot x = - \frac{\partial }{{\partial x}}\left( {W(x) +
1609     \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1610     \]
1611 tim 2872 which can be used to describe the effect of dynamic caging in
1612     viscous solvents. The other extreme is the bath that responds
1613     infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1614     taken as a $delta$ function in time:
1615 tim 2719 \[
1616 tim 2913 \xi (t) = 2\xi _0 \delta (t).
1617 tim 2719 \]
1618     Hence, the convolution integral becomes
1619     \[
1620     \int_0^t {\xi (t)\dot x(t - \tau )d\tau } = 2\xi _0 \int_0^t
1621     {\delta (t)\dot x(t - \tau )d\tau } = \xi _0 \dot x(t),
1622     \]
1623 tim 2950 and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes the
1624     Langevin equation
1625 tim 2719 \begin{equation}
1626     m\ddot x = - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1627 tim 2950 x(t) + R(t) \label{introEquation:LangevinEquation}.
1628 tim 2719 \end{equation}
1629 tim 2950 The static friction coefficient $\xi _0$ can either be calculated
1630     from spectral density or be determined by Stokes' law for regular
1631     shaped particles. A brief review on calculating friction tensors for
1632     arbitrary shaped particles is given in
1633     Sec.~\ref{introSection:frictionTensor}.
1634 tim 2696
1635 tim 2819 \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1636 tim 2719
1637 tim 2905 Defining a new set of coordinates
1638 tim 2696 \[
1639     q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1640 tim 2905 ^2 }}x(0),
1641     \]
1642 tim 2938 we can rewrite $R(t)$ as
1643 tim 2696 \[
1644 tim 2719 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}.
1645 tim 2696 \]
1646     And since the $q$ coordinates are harmonic oscillators,
1647 tim 2789 \begin{eqnarray*}
1648     \left\langle {q_\alpha ^2 } \right\rangle & = & \frac{{kT}}{{m_\alpha \omega _\alpha ^2 }} \\
1649     \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1650     \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1651     \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle } } \\
1652     & = &\sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t)} \\
1653 tim 2908 & = &kT\xi (t)
1654 tim 2789 \end{eqnarray*}
1655 tim 2719 Thus, we recover the \emph{second fluctuation dissipation theorem}
1656 tim 2696 \begin{equation}
1657     \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1658 tim 2905 \label{introEquation:secondFluctuationDissipation},
1659 tim 2696 \end{equation}
1660 tim 2905 which acts as a constraint on the possible ways in which one can
1661     model the random force and friction kernel.