--- trunk/tengDissertation/Introduction.tex 2006/04/04 21:32:58 2692 +++ trunk/tengDissertation/Introduction.tex 2006/04/05 03:44:32 2693 @@ -7,7 +7,8 @@ dynamical information. biological systems, providing structural, thermodynamic and dynamical information. -\subsection{\label{introSection:classicalMechanics}Classical Mechanics} +\section{\label{introSection:classicalMechanics}Classical +Mechanics} Closely related to Classical Mechanics, Molecular Dynamics simulations are carried out by integrating the equations of motion @@ -20,9 +21,9 @@ sufficient to predict the future behavior of the syste when further combine with the laws of mechanics will also be sufficient to predict the future behavior of the system. -\subsubsection{\label{introSection:newtonian}Newtonian Mechanics} +\subsection{\label{introSection:newtonian}Newtonian Mechanics} -\subsubsection{\label{introSection:lagrangian}Lagrangian Mechanics} +\subsection{\label{introSection:lagrangian}Lagrangian Mechanics} Newtonian Mechanics suffers from two important limitations: it describes their motion in special cartesian coordinate systems. @@ -35,7 +36,7 @@ system, alternative procedures may be developed. which arise in attempts to apply Newton's equation to complex system, alternative procedures may be developed. -\subsubsubsection{\label{introSection:halmiltonPrinciple}Hamilton's +\subsection{\label{introSection:halmiltonPrinciple}Hamilton's Principle} Hamilton introduced the dynamical principle upon which it is @@ -48,7 +49,7 @@ the kinetic, $K$, and potential energies, $U$. the kinetic, $K$, and potential energies, $U$. \begin{equation} \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} , -\lable{introEquation:halmitonianPrinciple1} +\label{introEquation:halmitonianPrinciple1} \end{equation} For simple mechanical systems, where the forces acting on the @@ -62,11 +63,11 @@ then Eq.~\ref{introEquation:halmitonianPrinciple1} bec \end{equation} then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes \begin{equation} -\delta \int_{t_1 }^{t_2 } {K dt = 0} , -\lable{introEquation:halmitonianPrinciple2} +\delta \int_{t_1 }^{t_2 } {L dt = 0} , +\label{introEquation:halmitonianPrinciple2} \end{equation} -\subsubsubsection{\label{introSection:equationOfMotionLagrangian}The +\subsection{\label{introSection:equationOfMotionLagrangian}The Equations of Motion in Lagrangian Mechanics} for a holonomic system of $f$ degrees of freedom, the equations of @@ -74,12 +75,12 @@ motion in the Lagrangian form is \begin{equation} \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} - \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f -\lable{introEquation:eqMotionLagrangian} +\label{introEquation:eqMotionLagrangian} \end{equation} where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is generalized velocity. -\subsubsection{\label{introSection:hamiltonian}Hamiltonian Mechanics} +\subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics} Arising from Lagrangian Mechanics, Hamiltonian Mechanics was introduced by William Rowan Hamilton in 1833 as a re-formulation of @@ -90,15 +91,59 @@ With the help of these momenta, we may now define a ne p_i = \frac{\partial L}{\partial \dot q_i} \label{introEquation:generalizedMomenta} \end{equation} -With the help of these momenta, we may now define a new quantity $H$ -by the equation +The Lagrange equations of motion are then expressed by \begin{equation} -H = p_1 \dot q_1 + \ldots + p_f \dot q_f - L, +p_i = \frac{{\partial L}}{{\partial q_i }} +\label{introEquation:generalizedMomentaDot} +\end{equation} + +With the help of the generalized momenta, we may now define a new +quantity $H$ by the equation +\begin{equation} +H = \sum\limits_k {p_k \dot q_k } - L , \label{introEquation:hamiltonianDefByLagrangian} \end{equation} where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and $L$ is the Lagrangian function for the system. +Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, +one can obtain +\begin{equation} +dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k - +\frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial +L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial +L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1} +\end{equation} +Making use of Eq.~\ref{introEquation:generalizedMomenta}, the +second and fourth terms in the parentheses cancel. Therefore, +Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as +\begin{equation} +dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k } +\right)} - \frac{{\partial L}}{{\partial t}}dt +\label{introEquation:diffHamiltonian2} +\end{equation} +By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can +find +\begin{equation} +\frac{{\partial H}}{{\partial p_k }} = q_k +\label{introEquation:motionHamiltonianCoordinate} +\end{equation} +\begin{equation} +\frac{{\partial H}}{{\partial q_k }} = - p_k +\label{introEquation:motionHamiltonianMomentum} +\end{equation} +and +\begin{equation} +\frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial +t}} +\label{introEquation:motionHamiltonianTime} +\end{equation} + +Eq.~\ref{introEquation:motionHamiltonianCoordinate} and +Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's +equation of motion. Due to their symmetrical formula, they are also +known as the canonical equations of motions. + An important difference between Lagrangian approach and the Hamiltonian approach is that the Lagrangian is considered to be a function of the generalized velocities $\dot q_i$ and the @@ -110,23 +155,26 @@ equations. independent variables and it only works with 1st-order differential equations. +\subsection{\label{introSection:poissonBrackets}Poisson Brackets} -\subsubsection{\label{introSection:canonicalTransformation}Canonical Transformation} +\subsection{\label{introSection:canonicalTransformation}Canonical +Transformation} -\subsection{\label{introSection:statisticalMechanics}Statistical Mechanics} +\section{\label{introSection:statisticalMechanics}Statistical +Mechanics} The thermodynamic behaviors and properties of Molecular Dynamics simulation are governed by the principle of Statistical Mechanics. The following section will give a brief introduction to some of the Statistical Mechanics concepts presented in this dissertation. -\subsubsection{\label{introSection::ensemble}Ensemble} +\subsection{\label{introSection::ensemble}Ensemble} -\subsubsection{\label{introSection:ergodic}The Ergodic Hypothesis} +\subsection{\label{introSection:ergodic}The Ergodic Hypothesis} -\subsection{\label{introSection:rigidBody}Dynamics of Rigid Bodies} +\section{\label{introSection:rigidBody}Dynamics of Rigid Bodies} -\subsection{\label{introSection:correlationFunctions}Correlation Functions} +\section{\label{introSection:correlationFunctions}Correlation Functions} \section{\label{introSection:langevinDynamics}Langevin Dynamics}