ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2692 by tim, Tue Apr 4 21:32:58 2006 UTC vs.
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
10 \subsection{\label{introSection:classicalMechanics}Classical Mechanics}
11
6   Closely related to Classical Mechanics, Molecular Dynamics
7   simulations are carried out by integrating the equations of motion
8   for a given system of particles. There are three fundamental ideas
# Line 20 | Line 14 | sufficient to predict the future behavior of the syste
14   when further combine with the laws of mechanics will also be
15   sufficient to predict the future behavior of the system.
16  
17 < \subsubsection{\label{introSection:newtonian}Newtonian Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_ij = -F_ji
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 < \subsubsection{\label{introSection:lagrangian}Lagrangian Mechanics}
38 > Conservation laws of Newtonian Mechanics play very important roles
39 > in solving mechanics problems. The linear momentum of a particle is
40 > conserved if it is free or it experiences no force. The second
41 > conservation theorem concerns the angular momentum of a particle.
42 > The angular momentum $L$ of a particle with respect to an origin
43 > from which $r$ is measured is defined to be
44 > \begin{equation}
45 > L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 > \end{equation}
47 > The torque $\tau$ with respect to the same origin is defined to be
48 > \begin{equation}
49 > N \equiv r \times F \label{introEquation:torqueDefinition}
50 > \end{equation}
51 > Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 > \[
53 > \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 > \dot p)
55 > \]
56 > since
57 > \[
58 > \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 > \]
60 > thus,
61 > \begin{equation}
62 > \dot L = r \times \dot p = N
63 > \end{equation}
64 > If there are no external torques acting on a body, the angular
65 > momentum of it is conserved. The last conservation theorem state
66 > that if all forces are conservative, Energy $E = T + V$ is
67 > conserved. All of these conserved quantities are important factors
68 > to determine the quality of numerical integration scheme for rigid
69 > body \cite{Dullweber1997}.
70  
71 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
72 +
73   Newtonian Mechanics suffers from two important limitations: it
74   describes their motion in special cartesian coordinate systems.
75   Another limitation of Newtonian mechanics becomes obvious when we
# Line 35 | Line 81 | system, alternative procedures may be developed.
81   which arise in attempts to apply Newton's equation to complex
82   system, alternative procedures may be developed.
83  
84 < \subsubsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
84 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
85   Principle}
86  
87   Hamilton introduced the dynamical principle upon which it is
# Line 45 | Line 91 | the kinetic, $K$, and potential energies, $U$.
91   The actual trajectory, along which a dynamical system may move from
92   one point to another within a specified time, is derived by finding
93   the path which minimizes the time integral of the difference between
94 < the kinetic, $K$, and potential energies, $U$.
94 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
95   \begin{equation}
96   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
97 < \lable{introEquation:halmitonianPrinciple1}
97 > \label{introEquation:halmitonianPrinciple1}
98   \end{equation}
99  
100   For simple mechanical systems, where the forces acting on the
# Line 62 | Line 108 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
108   \end{equation}
109   then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
110   \begin{equation}
111 < \delta \int_{t_1 }^{t_2 } {K dt = 0} ,
112 < \lable{introEquation:halmitonianPrinciple2}
111 > \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
112 > \label{introEquation:halmitonianPrinciple2}
113   \end{equation}
114  
115 < \subsubsubsection{\label{introSection:equationOfMotionLagrangian}The
115 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
116   Equations of Motion in Lagrangian Mechanics}
117  
118   for a holonomic system of $f$ degrees of freedom, the equations of
# Line 74 | Line 120 | motion in the Lagrangian form is
120   \begin{equation}
121   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
122   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
123 < \lable{introEquation:eqMotionLagrangian}
123 > \label{introEquation:eqMotionLagrangian}
124   \end{equation}
125   where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
126   generalized velocity.
127  
128 < \subsubsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
128 > \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
129  
130   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
131   introduced by William Rowan Hamilton in 1833 as a re-formulation of
# Line 90 | Line 136 | With the help of these momenta, we may now define a ne
136   p_i = \frac{\partial L}{\partial \dot q_i}
137   \label{introEquation:generalizedMomenta}
138   \end{equation}
139 < With the help of these momenta, we may now define a new quantity $H$
94 < by the equation
139 > The Lagrange equations of motion are then expressed by
140   \begin{equation}
141 < H = p_1 \dot q_1  +  \ldots  + p_f \dot q_f  - L,
141 > p_i  = \frac{{\partial L}}{{\partial q_i }}
142 > \label{introEquation:generalizedMomentaDot}
143 > \end{equation}
144 >
145 > With the help of the generalized momenta, we may now define a new
146 > quantity $H$ by the equation
147 > \begin{equation}
148 > H = \sum\limits_k {p_k \dot q_k }  - L ,
149   \label{introEquation:hamiltonianDefByLagrangian}
150   \end{equation}
151   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
152   $L$ is the Lagrangian function for the system.
153  
154 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
155 + one can obtain
156 + \begin{equation}
157 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
158 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
159 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
160 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
161 + \end{equation}
162 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
163 + second and fourth terms in the parentheses cancel. Therefore,
164 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
165 + \begin{equation}
166 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
167 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
168 + \label{introEquation:diffHamiltonian2}
169 + \end{equation}
170 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
171 + find
172 + \begin{equation}
173 + \frac{{\partial H}}{{\partial p_k }} = q_k
174 + \label{introEquation:motionHamiltonianCoordinate}
175 + \end{equation}
176 + \begin{equation}
177 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
178 + \label{introEquation:motionHamiltonianMomentum}
179 + \end{equation}
180 + and
181 + \begin{equation}
182 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
183 + t}}
184 + \label{introEquation:motionHamiltonianTime}
185 + \end{equation}
186 +
187 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
188 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
189 + equation of motion. Due to their symmetrical formula, they are also
190 + known as the canonical equations of motions \cite{Goldstein01}.
191 +
192   An important difference between Lagrangian approach and the
193   Hamiltonian approach is that the Lagrangian is considered to be a
194   function of the generalized velocities $\dot q_i$ and the
# Line 108 | Line 198 | equations.
198   appropriate for application to statistical mechanics and quantum
199   mechanics, since it treats the coordinate and its time derivative as
200   independent variables and it only works with 1st-order differential
201 < equations.
201 > equations\cite{Marion90}.
202  
203 + When studying Hamiltonian system, it is more convenient to use
204 + notation
205 + \begin{equation}
206 + r = r(q,p)^T
207 + \end{equation}
208 + and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 + \begin{equation}
210 + J = \left( {\begin{array}{*{20}c}
211 +   0 & I  \\
212 +   { - I} & 0  \\
213 + \end{array}} \right)
214 + \label{introEquation:canonicalMatrix}
215 + \end{equation}
216 + where $I$ is a $n \times n$ identity matrix and $J$ is a
217 + skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
218 + can be rewritten as,
219 + \begin{equation}
220 + \frac{d}{{dt}}r = J\nabla _r H(r)
221 + \label{introEquation:compactHamiltonian}
222 + \end{equation}
223  
224 < \subsubsection{\label{introSection:canonicalTransformation}Canonical Transformation}
224 > %\subsection{\label{introSection:canonicalTransformation}Canonical
225 > %Transformation}
226  
227 < \subsection{\label{introSection:statisticalMechanics}Statistical Mechanics}
227 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228  
229 < The thermodynamic behaviors and properties  of Molecular Dynamics
229 > \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230 >
231 > \subsection{\label{Construction of Symplectic Methods}}
232 >
233 > \section{\label{introSection:statisticalMechanics}Statistical
234 > Mechanics}
235 >
236 > The thermodynamic behaviors and properties of Molecular Dynamics
237   simulation are governed by the principle of Statistical Mechanics.
238   The following section will give a brief introduction to some of the
239   Statistical Mechanics concepts presented in this dissertation.
240  
241 < \subsubsection{\label{introSection::ensemble}Ensemble}
241 > \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
242  
243 < \subsubsection{\label{introSection:ergodic}The Ergodic Hypothesis}
243 > \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
244  
245 < \subsection{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
245 > Various thermodynamic properties can be calculated from Molecular
246 > Dynamics simulation. By comparing experimental values with the
247 > calculated properties, one can determine the accuracy of the
248 > simulation and the quality of the underlying model. However, both of
249 > experiment and computer simulation are usually performed during a
250 > certain time interval and the measurements are averaged over a
251 > period of them which is different from the average behavior of
252 > many-body system in Statistical Mechanics. Fortunately, Ergodic
253 > Hypothesis is proposed to make a connection between time average and
254 > ensemble average. It states that time average and average over the
255 > statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
256 > \begin{equation}
257 > \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
258 > \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
259 > {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
260 > \end{equation}
261 > where $\langle A \rangle_t$ is an equilibrium value of a physical
262 > quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
263 > function. If an observation is averaged over a sufficiently long
264 > time (longer than relaxation time), all accessible microstates in
265 > phase space are assumed to be equally probed, giving a properly
266 > weighted statistical average. This allows the researcher freedom of
267 > choice when deciding how best to measure a given observable. In case
268 > an ensemble averaged approach sounds most reasonable, the Monte
269 > Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
270 > system lends itself to a time averaging approach, the Molecular
271 > Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
272 > will be the best choice.
273  
274 < \subsection{\label{introSection:correlationFunctions}Correlation Functions}
274 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
275  
276 + As a special discipline of molecular modeling, Molecular dynamics
277 + has proven to be a powerful tool for studying the functions of
278 + biological systems, providing structural, thermodynamic and
279 + dynamical information.
280 +
281 + \subsection{\label{introSec:mdInit}Initialization}
282 +
283 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
284 +
285 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
286 +
287 + A rigid body is a body in which the distance between any two given
288 + points of a rigid body remains constant regardless of external
289 + forces exerted on it. A rigid body therefore conserves its shape
290 + during its motion.
291 +
292 + Applications of dynamics of rigid bodies.
293 +
294 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
295 +
296 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
297 +
298 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
299 +
300 + %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
301 +
302 + \section{\label{introSection:correlationFunctions}Correlation Functions}
303 +
304   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
305  
306   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines