ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2692 by tim, Tue Apr 4 21:32:58 2006 UTC vs.
Revision 2699 by tim, Mon Apr 10 05:35:55 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
10 \subsection{\label{introSection:classicalMechanics}Classical Mechanics}
11
6   Closely related to Classical Mechanics, Molecular Dynamics
7   simulations are carried out by integrating the equations of motion
8   for a given system of particles. There are three fundamental ideas
# Line 20 | Line 14 | sufficient to predict the future behavior of the syste
14   when further combine with the laws of mechanics will also be
15   sufficient to predict the future behavior of the system.
16  
17 < \subsubsection{\label{introSection:newtonian}Newtonian Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_ij = -F_ji
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 < \subsubsection{\label{introSection:lagrangian}Lagrangian Mechanics}
38 > Conservation laws of Newtonian Mechanics play very important roles
39 > in solving mechanics problems. The linear momentum of a particle is
40 > conserved if it is free or it experiences no force. The second
41 > conservation theorem concerns the angular momentum of a particle.
42 > The angular momentum $L$ of a particle with respect to an origin
43 > from which $r$ is measured is defined to be
44 > \begin{equation}
45 > L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 > \end{equation}
47 > The torque $\tau$ with respect to the same origin is defined to be
48 > \begin{equation}
49 > N \equiv r \times F \label{introEquation:torqueDefinition}
50 > \end{equation}
51 > Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 > \[
53 > \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 > \dot p)
55 > \]
56 > since
57 > \[
58 > \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 > \]
60 > thus,
61 > \begin{equation}
62 > \dot L = r \times \dot p = N
63 > \end{equation}
64 > If there are no external torques acting on a body, the angular
65 > momentum of it is conserved. The last conservation theorem state
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 +
75   Newtonian Mechanics suffers from two important limitations: it
76   describes their motion in special cartesian coordinate systems.
77   Another limitation of Newtonian mechanics becomes obvious when we
# Line 35 | Line 83 | system, alternative procedures may be developed.
83   which arise in attempts to apply Newton's equation to complex
84   system, alternative procedures may be developed.
85  
86 < \subsubsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
86 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87   Principle}
88  
89   Hamilton introduced the dynamical principle upon which it is
# Line 45 | Line 93 | the kinetic, $K$, and potential energies, $U$.
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$.
96 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 < \lable{introEquation:halmitonianPrinciple1}
99 > \label{introEquation:halmitonianPrinciple1}
100   \end{equation}
101  
102   For simple mechanical systems, where the forces acting on the
# Line 62 | Line 110 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
110   \end{equation}
111   then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112   \begin{equation}
113 < \delta \int_{t_1 }^{t_2 } {K dt = 0} ,
114 < \lable{introEquation:halmitonianPrinciple2}
113 > \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 > \label{introEquation:halmitonianPrinciple2}
115   \end{equation}
116  
117 < \subsubsubsection{\label{introSection:equationOfMotionLagrangian}The
117 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120   for a holonomic system of $f$ degrees of freedom, the equations of
# Line 74 | Line 122 | motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 < \lable{introEquation:eqMotionLagrangian}
125 > \label{introEquation:eqMotionLagrangian}
126   \end{equation}
127   where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128   generalized velocity.
129  
130 < \subsubsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
130 > \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131  
132   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133   introduced by William Rowan Hamilton in 1833 as a re-formulation of
# Line 90 | Line 138 | With the help of these momenta, we may now define a ne
138   p_i = \frac{\partial L}{\partial \dot q_i}
139   \label{introEquation:generalizedMomenta}
140   \end{equation}
141 < With the help of these momenta, we may now define a new quantity $H$
94 < by the equation
141 > The Lagrange equations of motion are then expressed by
142   \begin{equation}
143 < H = p_1 \dot q_1  +  \ldots  + p_f \dot q_f  - L,
143 > p_i  = \frac{{\partial L}}{{\partial q_i }}
144 > \label{introEquation:generalizedMomentaDot}
145 > \end{equation}
146 >
147 > With the help of the generalized momenta, we may now define a new
148 > quantity $H$ by the equation
149 > \begin{equation}
150 > H = \sum\limits_k {p_k \dot q_k }  - L ,
151   \label{introEquation:hamiltonianDefByLagrangian}
152   \end{equation}
153   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
154   $L$ is the Lagrangian function for the system.
155  
156 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 + one can obtain
158 + \begin{equation}
159 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
160 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
161 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
162 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 + \end{equation}
164 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
165 + second and fourth terms in the parentheses cancel. Therefore,
166 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 + \begin{equation}
168 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
169 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
170 + \label{introEquation:diffHamiltonian2}
171 + \end{equation}
172 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 + find
174 + \begin{equation}
175 + \frac{{\partial H}}{{\partial p_k }} = q_k
176 + \label{introEquation:motionHamiltonianCoordinate}
177 + \end{equation}
178 + \begin{equation}
179 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
180 + \label{introEquation:motionHamiltonianMomentum}
181 + \end{equation}
182 + and
183 + \begin{equation}
184 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
185 + t}}
186 + \label{introEquation:motionHamiltonianTime}
187 + \end{equation}
188 +
189 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 + equation of motion. Due to their symmetrical formula, they are also
192 + known as the canonical equations of motions \cite{Goldstein01}.
193 +
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
196   function of the generalized velocities $\dot q_i$ and the
# Line 108 | Line 200 | equations.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations.
203 > equations\cite{Marion90}.
204  
205 + In Newtonian Mechanics, a system described by conservative forces
206 + conserves the total energy \ref{introEquation:energyConservation}.
207 + It follows that Hamilton's equations of motion conserve the total
208 + Hamiltonian.
209 + \begin{equation}
210 + \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 + H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 + }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 + H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 + \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 + q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 + \end{equation}
217  
218 < \subsubsection{\label{introSection:canonicalTransformation}Canonical Transformation}
218 > \section{\label{introSection:statisticalMechanics}Statistical
219 > Mechanics}
220  
221 < \subsection{\label{introSection:statisticalMechanics}Statistical Mechanics}
117 <
118 < The thermodynamic behaviors and properties  of Molecular Dynamics
221 > The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224   Statistical Mechanics concepts presented in this dissertation.
225  
226 < \subsubsection{\label{introSection::ensemble}Ensemble}
226 > \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227  
228 < \subsubsection{\label{introSection:ergodic}The Ergodic Hypothesis}
228 > \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
229  
230 < \subsection{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
230 > Various thermodynamic properties can be calculated from Molecular
231 > Dynamics simulation. By comparing experimental values with the
232 > calculated properties, one can determine the accuracy of the
233 > simulation and the quality of the underlying model. However, both of
234 > experiment and computer simulation are usually performed during a
235 > certain time interval and the measurements are averaged over a
236 > period of them which is different from the average behavior of
237 > many-body system in Statistical Mechanics. Fortunately, Ergodic
238 > Hypothesis is proposed to make a connection between time average and
239 > ensemble average. It states that time average and average over the
240 > statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
241 > \begin{equation}
242 > \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
243 > \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
244 > {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
245 > \end{equation}
246 > where $\langle A \rangle_t$ is an equilibrium value of a physical
247 > quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
248 > function. If an observation is averaged over a sufficiently long
249 > time (longer than relaxation time), all accessible microstates in
250 > phase space are assumed to be equally probed, giving a properly
251 > weighted statistical average. This allows the researcher freedom of
252 > choice when deciding how best to measure a given observable. In case
253 > an ensemble averaged approach sounds most reasonable, the Monte
254 > Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
255 > system lends itself to a time averaging approach, the Molecular
256 > Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
257 > will be the best choice\cite{Frenkel1996}.
258  
259 < \subsection{\label{introSection:correlationFunctions}Correlation Functions}
259 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
260 > A variety of numerical integrators were proposed to simulate the
261 > motions. They usually begin with an initial conditionals and move
262 > the objects in the direction governed by the differential equations.
263 > However, most of them ignore the hidden physical law contained
264 > within the equations. Since 1990, geometric integrators, which
265 > preserve various phase-flow invariants such as symplectic structure,
266 > volume and time reversal symmetry, are developed to address this
267 > issue. The velocity verlet method, which happens to be a simple
268 > example of symplectic integrator, continues to gain its popularity
269 > in molecular dynamics community. This fact can be partly explained
270 > by its geometric nature.
271  
272 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
273 + A \emph{manifold} is an abstract mathematical space. It locally
274 + looks like Euclidean space, but when viewed globally, it may have
275 + more complicate structure. A good example of manifold is the surface
276 + of Earth. It seems to be flat locally, but it is round if viewed as
277 + a whole. A \emph{differentiable manifold} (also known as
278 + \emph{smooth manifold}) is a manifold with an open cover in which
279 + the covering neighborhoods are all smoothly isomorphic to one
280 + another. In other words,it is possible to apply calculus on
281 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
282 + defined as a pair $(M, \omega)$ which consisting of a
283 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
284 + bilinear symplectic form, $\omega$. A symplectic form on a vector
285 + space $V$ is a function $\omega(x, y)$ which satisfies
286 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
287 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
288 + $\omega(x, x) = 0$. Cross product operation in vector field is an
289 + example of symplectic form.
290 +
291 + One of the motivations to study \emph{symplectic manifold} in
292 + Hamiltonian Mechanics is that a symplectic manifold can represent
293 + all possible configurations of the system and the phase space of the
294 + system can be described by it's cotangent bundle. Every symplectic
295 + manifold is even dimensional. For instance, in Hamilton equations,
296 + coordinate and momentum always appear in pairs.
297 +
298 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
299 + \[
300 + f : M \rightarrow N
301 + \]
302 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304 + Canonical transformation is an example of symplectomorphism in
305 + classical mechanics.
306 +
307 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
308 +
309 + For a ordinary differential system defined as
310 + \begin{equation}
311 + \dot x = f(x)
312 + \end{equation}
313 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
314 + \begin{equation}
315 + f(r) = J\nabla _x H(r).
316 + \end{equation}
317 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318 + matrix
319 + \begin{equation}
320 + J = \left( {\begin{array}{*{20}c}
321 +   0 & I  \\
322 +   { - I} & 0  \\
323 + \end{array}} \right)
324 + \label{introEquation:canonicalMatrix}
325 + \end{equation}
326 + where $I$ is an identity matrix. Using this notation, Hamiltonian
327 + system can be rewritten as,
328 + \begin{equation}
329 + \frac{d}{{dt}}x = J\nabla _x H(x)
330 + \label{introEquation:compactHamiltonian}
331 + \end{equation}In this case, $f$ is
332 + called a \emph{Hamiltonian vector field}.
333 +
334 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
335 + \begin{equation}
336 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
337 + \end{equation}
338 + The most obvious change being that matrix $J$ now depends on $x$.
339 + The free rigid body is an example of Poisson system (actually a
340 + Lie-Poisson system) with Hamiltonian function of angular kinetic
341 + energy.
342 + \begin{equation}
343 + J(\pi ) = \left( {\begin{array}{*{20}c}
344 +   0 & {\pi _3 } & { - \pi _2 }  \\
345 +   { - \pi _3 } & 0 & {\pi _1 }  \\
346 +   {\pi _2 } & { - \pi _1 } & 0  \\
347 + \end{array}} \right)
348 + \end{equation}
349 +
350 + \begin{equation}
351 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 + \end{equation}
354 +
355 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
356 + Let $x(t)$ be the exact solution of the ODE system,
357 + \begin{equation}
358 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
359 + \end{equation}
360 + The exact flow(solution) $\varphi_\tau$ is defined by
361 + \[
362 + x(t+\tau) =\varphi_\tau(x(t))
363 + \]
364 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365 + space to itself. In most cases, it is not easy to find the exact
366 + flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 + which is usually called integrator. The order of an integrator
368 + $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 + order $p$,
370 + \begin{equation}
371 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
372 + \end{equation}
373 +
374 + The hidden geometric properties of ODE and its flow play important
375 + roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
376 + vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
377 + \begin{equation}
378 + '\varphi^T J '\varphi = J.
379 + \end{equation}
380 + According to Liouville's theorem, the symplectic volume is invariant
381 + under a Hamiltonian flow, which is the basis for classical
382 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
383 + field on a symplectic manifold can be shown to be a
384 + symplectomorphism. As to the Poisson system,
385 + \begin{equation}
386 + '\varphi ^T J '\varphi  = J \circ \varphi
387 + \end{equation}
388 + is the property must be preserved by the integrator. It is possible
389 + to construct a \emph{volume-preserving} flow for a source free($
390 + \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
391 + 1$. Changing the variables $y = h(x)$ in a
392 + ODE\ref{introEquation:ODE} will result in a new system,
393 + \[
394 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
395 + \]
396 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
397 + In other words, the flow of this vector field is reversible if and
398 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 + designing any numerical methods, one should always try to preserve
400 + the structural properties of the original ODE and its flow.
401 +
402 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
403 + A lot of well established and very effective numerical methods have
404 + been successful precisely because of their symplecticities even
405 + though this fact was not recognized when they were first
406 + constructed. The most famous example is leapfrog methods in
407 + molecular dynamics. In general, symplectic integrators can be
408 + constructed using one of four different methods.
409 + \begin{enumerate}
410 + \item Generating functions
411 + \item Variational methods
412 + \item Runge-Kutta methods
413 + \item Splitting methods
414 + \end{enumerate}
415 +
416 + Generating function tends to lead to methods which are cumbersome
417 + and difficult to use\cite{}. In dissipative systems, variational
418 + methods can capture the decay of energy accurately\cite{}. Since
419 + their geometrically unstable nature against non-Hamiltonian
420 + perturbations, ordinary implicit Runge-Kutta methods are not
421 + suitable for Hamiltonian system. Recently, various high-order
422 + explicit Runge--Kutta methods have been developed to overcome this
423 + instability \cite{}. However, due to computational penalty involved
424 + in implementing the Runge-Kutta methods, they do not attract too
425 + much attention from Molecular Dynamics community. Instead, splitting
426 + have been widely accepted since they exploit natural decompositions
427 + of the system\cite{Tuckerman92}. The main idea behind splitting
428 + methods is to decompose the discrete $\varphi_h$ as a composition of
429 + simpler flows,
430 + \begin{equation}
431 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
432 + \varphi _{h_n }
433 + \label{introEquation:FlowDecomposition}
434 + \end{equation}
435 + where each of the sub-flow is chosen such that each represent a
436 + simpler integration of the system. Let $\phi$ and $\psi$ both be
437 + symplectic maps, it is easy to show that any composition of
438 + symplectic flows yields a symplectic map,
439 + \begin{equation}
440 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
441 + '\phi ' = \phi '^T J\phi ' = J.
442 + \label{introEquation:SymplecticFlowComposition}
443 + \end{equation}
444 + Suppose that a Hamiltonian system has a form with $H = T + V$
445 +
446 +
447 +
448 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
449 +
450 + As a special discipline of molecular modeling, Molecular dynamics
451 + has proven to be a powerful tool for studying the functions of
452 + biological systems, providing structural, thermodynamic and
453 + dynamical information.
454 +
455 + \subsection{\label{introSec:mdInit}Initialization}
456 +
457 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
458 +
459 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
460 +
461 + A rigid body is a body in which the distance between any two given
462 + points of a rigid body remains constant regardless of external
463 + forces exerted on it. A rigid body therefore conserves its shape
464 + during its motion.
465 +
466 + Applications of dynamics of rigid bodies.
467 +
468 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
469 +
470 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
471 +
472 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
473 +
474 + %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
475 +
476 + \section{\label{introSection:correlationFunctions}Correlation Functions}
477 +
478   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
479  
480 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
481 +
482   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
483  
484 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
484 > \begin{equation}
485 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
486 > \label{introEquation:bathGLE}
487 > \end{equation}
488 > where $H_B$ is harmonic bath Hamiltonian,
489 > \[
490 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
491 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
492 > \]
493 > and $\Delta U$ is bilinear system-bath coupling,
494 > \[
495 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
496 > \]
497 > Completing the square,
498 > \[
499 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
500 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
501 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
502 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
503 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
504 > \]
505 > and putting it back into Eq.~\ref{introEquation:bathGLE},
506 > \[
507 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
508 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
509 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
510 > w_\alpha ^2 }}x} \right)^2 } \right\}}
511 > \]
512 > where
513 > \[
514 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
515 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
516 > \]
517 > Since the first two terms of the new Hamiltonian depend only on the
518 > system coordinates, we can get the equations of motion for
519 > Generalized Langevin Dynamics by Hamilton's equations
520 > \ref{introEquation:motionHamiltonianCoordinate,
521 > introEquation:motionHamiltonianMomentum},
522 > \begin{align}
523 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
524 >       &= m\ddot x
525 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
526 > \label{introEq:Lp5}
527 > \end{align}
528 > , and
529 > \begin{align}
530 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
531 >                &= m\ddot x_\alpha
532 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
533 > \end{align}
534 >
535 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
536 >
537 > \[
538 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
539 > \]
540 >
541 > \[
542 > L(x + y) = L(x) + L(y)
543 > \]
544 >
545 > \[
546 > L(ax) = aL(x)
547 > \]
548 >
549 > \[
550 > L(\dot x) = pL(x) - px(0)
551 > \]
552 >
553 > \[
554 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
555 > \]
556 >
557 > \[
558 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
559 > \]
560 >
561 > Some relatively important transformation,
562 > \[
563 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
564 > \]
565 >
566 > \[
567 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
568 > \]
569 >
570 > \[
571 > L(1) = \frac{1}{p}
572 > \]
573 >
574 > First, the bath coordinates,
575 > \[
576 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
577 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
578 > }}L(x)
579 > \]
580 > \[
581 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
582 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
583 > \]
584 > Then, the system coordinates,
585 > \begin{align}
586 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
587 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
588 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
589 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
590 > }}\omega _\alpha ^2 L(x)} \right\}}
591 > %
592 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
593 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
594 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
595 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
596 > \end{align}
597 > Then, the inverse transform,
598 >
599 > \begin{align}
600 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
601 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
602 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
603 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
604 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
605 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
606 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
607 > %
608 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
609 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
610 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
611 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
612 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
613 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
614 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
615 > (\omega _\alpha  t)} \right\}}
616 > \end{align}
617 >
618 > \begin{equation}
619 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
620 > (t)\dot x(t - \tau )d\tau }  + R(t)
621 > \label{introEuqation:GeneralizedLangevinDynamics}
622 > \end{equation}
623 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
624 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
625 > \[
626 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
627 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
628 > \]
629 > For an infinite harmonic bath, we can use the spectral density and
630 > an integral over frequencies.
631 >
632 > \[
633 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
634 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
635 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
636 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
637 > \]
638 > The random forces depend only on initial conditions.
639 >
640 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
641 > So we can define a new set of coordinates,
642 > \[
643 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
644 > ^2 }}x(0)
645 > \]
646 > This makes
647 > \[
648 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
649 > \]
650 > And since the $q$ coordinates are harmonic oscillators,
651 > \[
652 > \begin{array}{l}
653 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
654 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
655 > \end{array}
656 > \]
657 >
658 > \begin{align}
659 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
660 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
661 > (t)q_\beta  (0)} \right\rangle } }
662 > %
663 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
664 > \right\rangle \cos (\omega _\alpha  t)}
665 > %
666 > &= kT\xi (t)
667 > \end{align}
668 >
669 > \begin{equation}
670 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
671 > \label{introEquation:secondFluctuationDissipation}
672 > \end{equation}
673 >
674 > \section{\label{introSection:hydroynamics}Hydrodynamics}
675 >
676 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
677 > \subsection{\label{introSection:analyticalApproach}Analytical
678 > Approach}
679 >
680 > \subsection{\label{introSection:approximationApproach}Approximation
681 > Approach}
682 >
683 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
684 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines