ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC vs.
Revision 2720 by tim, Wed Apr 19 19:46:53 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 115 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209   \begin{equation}
210 < r = r(q,p)^T
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
208 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 \begin{equation}
210 J = \left( {\begin{array}{*{20}c}
211   0 & I  \\
212   { - I} & 0  \\
213 \end{array}} \right)
214 \label{introEquation:canonicalMatrix}
215 \end{equation}
216 where $I$ is a $n \times n$ identity matrix and $J$ is a
217 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
218 can be rewritten as,
219 \begin{equation}
220 \frac{d}{{dt}}r = J\nabla _r H(r)
221 \label{introEquation:compactHamiltonian}
222 \end{equation}
217  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 %Transformation}
226
227 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228
229 \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230
231 \subsection{\label{Construction of Symplectic Methods}}
232
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226 >
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 >
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381 >
382 > Liouville's theorem states that the distribution function is
383 > constant along any trajectory in phase space. In classical
384 > statistical mechanics, since the number of particles in the system
385 > is huge, we may be able to believe the system is stationary,
386 > \begin{equation}
387 > \frac{{\partial \rho }}{{\partial t}} = 0.
388 > \label{introEquation:stationary}
389 > \end{equation}
390 > In such stationary system, the density of distribution $\rho$ can be
391 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 > distribution,
393 > \begin{equation}
394 > \rho  \propto e^{ - \beta H}
395 > \label{introEquation:densityAndHamiltonian}
396 > \end{equation}
397 >
398 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 > Lets consider a region in the phase space,
400 > \begin{equation}
401 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 > \end{equation}
403 > If this region is small enough, the density $\rho$ can be regarded
404 > as uniform over the whole phase space. Thus, the number of phase
405 > points inside this region is given by,
406 > \begin{equation}
407 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 > dp_1 } ..dp_f.
409 > \end{equation}
410  
411 < \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
411 > \begin{equation}
412 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 > \frac{d}{{dt}}(\delta v) = 0.
414 > \end{equation}
415 > With the help of stationary assumption
416 > (\ref{introEquation:stationary}), we obtain the principle of the
417 > \emph{conservation of extension in phase space},
418 > \begin{equation}
419 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 > ...dq_f dp_1 } ..dp_f  = 0.
421 > \label{introEquation:volumePreserving}
422 > \end{equation}
423  
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 254 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
493 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 > A variety of numerical integrators were proposed to simulate the
495 > motions. They usually begin with an initial conditionals and move
496 > the objects in the direction governed by the differential equations.
497 > However, most of them ignore the hidden physical law contained
498 > within the equations. Since 1990, geometric integrators, which
499 > preserve various phase-flow invariants such as symplectic structure,
500 > volume and time reversal symmetry, are developed to address this
501 > issue. The velocity verlet method, which happens to be a simple
502 > example of symplectic integrator, continues to gain its popularity
503 > in molecular dynamics community. This fact can be partly explained
504 > by its geometric nature.
505  
506 < As a special discipline of molecular modeling, Molecular dynamics
507 < has proven to be a powerful tool for studying the functions of
508 < biological systems, providing structural, thermodynamic and
509 < dynamical information.
506 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 > A \emph{manifold} is an abstract mathematical space. It locally
508 > looks like Euclidean space, but when viewed globally, it may have
509 > more complicate structure. A good example of manifold is the surface
510 > of Earth. It seems to be flat locally, but it is round if viewed as
511 > a whole. A \emph{differentiable manifold} (also known as
512 > \emph{smooth manifold}) is a manifold with an open cover in which
513 > the covering neighborhoods are all smoothly isomorphic to one
514 > another. In other words,it is possible to apply calculus on
515 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 > defined as a pair $(M, \omega)$ which consisting of a
517 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 > bilinear symplectic form, $\omega$. A symplectic form on a vector
519 > space $V$ is a function $\omega(x, y)$ which satisfies
520 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 > $\omega(x, x) = 0$. Cross product operation in vector field is an
523 > example of symplectic form.
524  
525 < \subsection{\label{introSec:mdInit}Initialization}
525 > One of the motivations to study \emph{symplectic manifold} in
526 > Hamiltonian Mechanics is that a symplectic manifold can represent
527 > all possible configurations of the system and the phase space of the
528 > system can be described by it's cotangent bundle. Every symplectic
529 > manifold is even dimensional. For instance, in Hamilton equations,
530 > coordinate and momentum always appear in pairs.
531  
532 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
532 > Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 > \[
534 > f : M \rightarrow N
535 > \]
536 > is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 > the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 > Canonical transformation is an example of symplectomorphism in
539 > classical mechanics.
540  
541 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
541 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542  
543 < A rigid body is a body in which the distance between any two given
544 < points of a rigid body remains constant regardless of external
545 < forces exerted on it. A rigid body therefore conserves its shape
546 < during its motion.
543 > For a ordinary differential system defined as
544 > \begin{equation}
545 > \dot x = f(x)
546 > \end{equation}
547 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 > \begin{equation}
549 > f(r) = J\nabla _x H(r).
550 > \end{equation}
551 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 > matrix
553 > \begin{equation}
554 > J = \left( {\begin{array}{*{20}c}
555 >   0 & I  \\
556 >   { - I} & 0  \\
557 > \end{array}} \right)
558 > \label{introEquation:canonicalMatrix}
559 > \end{equation}
560 > where $I$ is an identity matrix. Using this notation, Hamiltonian
561 > system can be rewritten as,
562 > \begin{equation}
563 > \frac{d}{{dt}}x = J\nabla _x H(x)
564 > \label{introEquation:compactHamiltonian}
565 > \end{equation}In this case, $f$ is
566 > called a \emph{Hamiltonian vector field}.
567  
568 < Applications of dynamics of rigid bodies.
568 > Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 > \begin{equation}
570 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 > \end{equation}
572 > The most obvious change being that matrix $J$ now depends on $x$.
573  
574 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
577 <
578 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
579 <
580 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
581 <
582 < \section{\label{introSection:correlationFunctions}Correlation Functions}
583 <
584 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
585 <
586 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
576 > Let $x(t)$ be the exact solution of the ODE system,
577 > \begin{equation}
578 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579 > \end{equation}
580 > The exact flow(solution) $\varphi_\tau$ is defined by
581 > \[
582 > x(t+\tau) =\varphi_\tau(x(t))
583 > \]
584 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 > space to itself. The flow has the continuous group property,
586 > \begin{equation}
587 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 > + \tau _2 } .
589 > \end{equation}
590 > In particular,
591 > \begin{equation}
592 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 > \end{equation}
594 > Therefore, the exact flow is self-adjoint,
595 > \begin{equation}
596 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 > \end{equation}
598 > The exact flow can also be written in terms of the of an operator,
599 > \begin{equation}
600 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 > \label{introEquation:exponentialOperator}
603 > \end{equation}
604  
605 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
605 > In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 > Instead, we use a approximate map, $\psi_\tau$, which is usually
607 > called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 > the Taylor series of $\psi_\tau$ agree to order $p$,
609 > \begin{equation}
610 > \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611 > \end{equation}
612 >
613 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 >
615 > The hidden geometric properties of ODE and its flow play important
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621 > \begin{equation}
622 > {\varphi '}^T J \varphi ' = J.
623 > \end{equation}
624 > According to Liouville's theorem, the symplectic volume is invariant
625 > under a Hamiltonian flow, which is the basis for classical
626 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 > field on a symplectic manifold can be shown to be a
628 > symplectomorphism. As to the Poisson system,
629 > \begin{equation}
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631 > \end{equation}
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641 > \[
642 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643 > \]
644 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645 > In other words, the flow of this vector field is reversible if and
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647 >
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 > \[
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653 > \]
654 > Using chain rule, one may obtain,
655 > \[
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 > \]
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670 > \[
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 > \]
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675 > \[
676 > \left\{ {G,H} \right\} = 0.
677 > \]
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681 >
682 >
683 > When designing any numerical methods, one should always try to
684 > preserve the structural properties of the original ODE and its flow.
685 >
686 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 > A lot of well established and very effective numerical methods have
688 > been successful precisely because of their symplecticities even
689 > though this fact was not recognized when they were first
690 > constructed. The most famous example is leapfrog methods in
691 > molecular dynamics. In general, symplectic integrators can be
692 > constructed using one of four different methods.
693 > \begin{enumerate}
694 > \item Generating functions
695 > \item Variational methods
696 > \item Runge-Kutta methods
697 > \item Splitting methods
698 > \end{enumerate}
699 >
700 > Generating function tends to lead to methods which are cumbersome
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717 > \begin{equation}
718 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 > \varphi _{h_n }
720 > \label{introEquation:FlowDecomposition}
721 > \end{equation}
722 > where each of the sub-flow is chosen such that each represent a
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726 > \[
727 > H = H_1 + H_2.
728 > \]
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735 > \begin{equation}
736 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 > \label{introEquation:firstOrderSplitting}
738 > \end{equation}
739 > where $\varphi _h$ is the result of applying the corresponding
740 > continuous $\varphi _i$ over a time $h$. By definition, as
741 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 > It is easy to show that any composition of symplectic flows yields a
744 > symplectic map,
745 > \begin{equation}
746 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 > '\phi ' = \phi '^T J\phi ' = J,
748 > \label{introEquation:SymplecticFlowComposition}
749 > \end{equation}
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752 >
753 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 > introduces local errors proportional to $h^2$, while Strang
755 > splitting gives a second-order decomposition,
756 > \begin{equation}
757 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 > \end{equation}
760 > which has a local error proportional to $h^3$. Sprang splitting's
761 > popularity in molecular simulation community attribute to its
762 > symmetric property,
763 > \begin{equation}
764 > \varphi _h^{ - 1} = \varphi _{ - h}.
765 > \label{introEquation:timeReversible}
766 > \end{equation}
767 >
768 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 > The classical equation for a system consisting of interacting
770 > particles can be written in Hamiltonian form,
771 > \[
772 > H = T + V
773 > \]
774 > where $T$ is the kinetic energy and $V$ is the potential energy.
775 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 > obtains the following:
777 > \begin{align}
778 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 > \label{introEquation:Lp10a} \\%
781 > %
782 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 > \label{introEquation:Lp10b}
785 > \end{align}
786 > where $F(t)$ is the force at time $t$. This integration scheme is
787 > known as \emph{velocity verlet} which is
788 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 > time-reversible(\ref{introEquation:timeReversible}) and
790 > volume-preserving (\ref{introEquation:volumePreserving}). These
791 > geometric properties attribute to its long-time stability and its
792 > popularity in the community. However, the most commonly used
793 > velocity verlet integration scheme is written as below,
794 > \begin{align}
795 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 > %
798 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 >    \label{introEquation:Lp9b}\\%
800 > %
801 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 > \end{align}
804 > From the preceding splitting, one can see that the integration of
805 > the equations of motion would follow:
806 > \begin{enumerate}
807 > \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808 >
809 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 >
811 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 >
813 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 > \end{enumerate}
815 >
816 > Simply switching the order of splitting and composing, a new
817 > integrator, the \emph{position verlet} integrator, can be generated,
818 > \begin{align}
819 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 > \label{introEquation:positionVerlet1} \\%
822 > %
823 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 > q(\Delta t)} \right]. %
825 > \label{introEquation:positionVerlet2}
826 > \end{align}
827 >
828 > \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 >
830 > Baker-Campbell-Hausdorff formula can be used to determine the local
831 > error of splitting method in terms of commutator of the
832 > operators(\ref{introEquation:exponentialOperator}) associated with
833 > the sub-flow. For operators $hX$ and $hY$ which are associate to
834 > $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 > \begin{equation}
836 > \exp (hX + hY) = \exp (hZ)
837 > \end{equation}
838 > where
839 > \begin{equation}
840 > hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 > {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 > \end{equation}
843 > Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 > \[
845 > [X,Y] = XY - YX .
846 > \]
847 > Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 > can obtain
849 > \begin{eqnarray*}
850 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 > & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 > \ldots )
854 > \end{eqnarray*}
855 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 > error of Spring splitting is proportional to $h^3$. The same
857 > procedure can be applied to general splitting,  of the form
858 > \begin{equation}
859 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 > \end{equation}
862 > Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 > order method. Yoshida proposed an elegant way to compose higher
864 > order methods based on symmetric splitting. Given a symmetric second
865 > order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 > method can be constructed by composing,
867 > \[
868 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 > \]
871 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 > \begin{equation}
875 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 > \end{equation}
878 > , if the weights are chosen as
879 > \[
880 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 > \]
883 >
884 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885 >
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900 >
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920 >
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922 >
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940 >
941 > \subsubsection{Minimization}
942 >
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962 >
963 > \subsubsection{Heating}
964 >
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986 >
987 > \subsection{\label{introSection:production}Production}
988 >
989 > \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 >
991 > \subsubsection{\label{introSection:integrationSchemes} Integration
992 > Schemes}
993 >
994 > \subsection{\label{introSection:Analysis} Analysis}
995 >
996 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
997 >
998 > Rigid bodies are frequently involved in the modeling of different
999 > areas, from engineering, physics, to chemistry. For example,
1000 > missiles and vehicle are usually modeled by rigid bodies.  The
1001 > movement of the objects in 3D gaming engine or other physics
1002 > simulator is governed by the rigid body dynamics. In molecular
1003 > simulation, rigid body is used to simplify the model in
1004 > protein-protein docking study{\cite{Gray03}}.
1005 >
1006 > It is very important to develop stable and efficient methods to
1007 > integrate the equations of motion of orientational degrees of
1008 > freedom. Euler angles are the nature choice to describe the
1009 > rotational degrees of freedom. However, due to its singularity, the
1010 > numerical integration of corresponding equations of motion is very
1011 > inefficient and inaccurate. Although an alternative integrator using
1012 > different sets of Euler angles can overcome this difficulty\cite{},
1013 > the computational penalty and the lost of angular momentum
1014 > conservation still remain. A singularity free representation
1015 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
1016 > this approach suffer from the nonseparable Hamiltonian resulted from
1017 > quaternion representation, which prevents the symplectic algorithm
1018 > to be utilized. Another different approach is to apply holonomic
1019 > constraints to the atoms belonging to the rigid body. Each atom
1020 > moves independently under the normal forces deriving from potential
1021 > energy and constraint forces which are used to guarantee the
1022 > rigidness. However, due to their iterative nature, SHAKE and Rattle
1023 > algorithm converge very slowly when the number of constraint
1024 > increases.
1025 >
1026 > The break through in geometric literature suggests that, in order to
1027 > develop a long-term integration scheme, one should preserve the
1028 > symplectic structure of the flow. Introducing conjugate momentum to
1029 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1030 > symplectic integrator, RSHAKE, was proposed to evolve the
1031 > Hamiltonian system in a constraint manifold by iteratively
1032 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1033 > method using quaternion representation was developed by Omelyan.
1034 > However, both of these methods are iterative and inefficient. In
1035 > this section, we will present a symplectic Lie-Poisson integrator
1036 > for rigid body developed by Dullweber and his
1037 > coworkers\cite{Dullweber1997} in depth.
1038 >
1039 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1040 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1041 > function
1042 > \begin{equation}
1043 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1044 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1045 > \label{introEquation:RBHamiltonian}
1046 > \end{equation}
1047 > Here, $q$ and $Q$  are the position and rotation matrix for the
1048 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1049 > $J$, a diagonal matrix, is defined by
1050 > \[
1051 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1052 > \]
1053 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1054 > constrained Hamiltonian equation subjects to a holonomic constraint,
1055 > \begin{equation}
1056 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1057 > \end{equation}
1058 > which is used to ensure rotation matrix's orthogonality.
1059 > Differentiating \ref{introEquation:orthogonalConstraint} and using
1060 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1061 > \begin{equation}
1062 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1063 > \label{introEquation:RBFirstOrderConstraint}
1064 > \end{equation}
1065 >
1066 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1067 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1068 > the equations of motion,
1069 > \[
1070 > \begin{array}{c}
1071 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1072 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1073 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1074 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1075 > \end{array}
1076 > \]
1077 >
1078 > In general, there are two ways to satisfy the holonomic constraints.
1079 > We can use constraint force provided by lagrange multiplier on the
1080 > normal manifold to keep the motion on constraint space. Or we can
1081 > simply evolve the system in constraint manifold. The two method are
1082 > proved to be equivalent. The holonomic constraint and equations of
1083 > motions define a constraint manifold for rigid body
1084 > \[
1085 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1086 > \right\}.
1087 > \]
1088 >
1089 > Unfortunately, this constraint manifold is not the cotangent bundle
1090 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1091 > transformation, the cotangent space and the phase space are
1092 > diffeomorphic. Introducing
1093 > \[
1094 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1095 > \]
1096 > the mechanical system subject to a holonomic constraint manifold $M$
1097 > can be re-formulated as a Hamiltonian system on the cotangent space
1098 > \[
1099 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1100 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1101 > \]
1102 >
1103 > For a body fixed vector $X_i$ with respect to the center of mass of
1104 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1105 > given as
1106 > \begin{equation}
1107 > X_i^{lab} = Q X_i + q.
1108 > \end{equation}
1109 > Therefore, potential energy $V(q,Q)$ is defined by
1110 > \[
1111 > V(q,Q) = V(Q X_0 + q).
1112 > \]
1113 > Hence, the force and torque are given by
1114 > \[
1115 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1116 > \]
1117 > and
1118 > \[
1119 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1120 > \]
1121 > respectively.
1122 >
1123 > As a common choice to describe the rotation dynamics of the rigid
1124 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1125 > rewrite the equations of motion,
1126 > \begin{equation}
1127 > \begin{array}{l}
1128 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1129 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1130 > \end{array}
1131 > \label{introEqaution:RBMotionPI}
1132 > \end{equation}
1133 > , as well as holonomic constraints,
1134 > \[
1135 > \begin{array}{l}
1136 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1137 > Q^T Q = 1 \\
1138 > \end{array}
1139 > \]
1140 >
1141 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1142 > so(3)^ \star$, the hat-map isomorphism,
1143 > \begin{equation}
1144 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1145 > {\begin{array}{*{20}c}
1146 >   0 & { - v_3 } & {v_2 }  \\
1147 >   {v_3 } & 0 & { - v_1 }  \\
1148 >   { - v_2 } & {v_1 } & 0  \\
1149 > \end{array}} \right),
1150 > \label{introEquation:hatmapIsomorphism}
1151 > \end{equation}
1152 > will let us associate the matrix products with traditional vector
1153 > operations
1154 > \[
1155 > \hat vu = v \times u
1156 > \]
1157 >
1158 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1159 > matrix,
1160 > \begin{equation}
1161 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1162 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1163 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1164 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1165 > \end{equation}
1166 > Since $\Lambda$ is symmetric, the last term of Equation
1167 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1168 > multiplier $\Lambda$ is absent from the equations of motion. This
1169 > unique property eliminate the requirement of iterations which can
1170 > not be avoided in other methods\cite{}.
1171 >
1172 > Applying hat-map isomorphism, we obtain the equation of motion for
1173 > angular momentum on body frame
1174 > \begin{equation}
1175 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1176 > F_i (r,Q)} \right) \times X_i }.
1177 > \label{introEquation:bodyAngularMotion}
1178 > \end{equation}
1179 > In the same manner, the equation of motion for rotation matrix is
1180 > given by
1181 > \[
1182 > \dot Q = Qskew(I^{ - 1} \pi )
1183 > \]
1184 >
1185 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1186 > Lie-Poisson Integrator for Free Rigid Body}
1187 >
1188 > If there is not external forces exerted on the rigid body, the only
1189 > contribution to the rotational is from the kinetic potential (the
1190 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1191 > rigid body is an example of Lie-Poisson system with Hamiltonian
1192 > function
1193 > \begin{equation}
1194 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1195 > \label{introEquation:rotationalKineticRB}
1196 > \end{equation}
1197 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1198 > Lie-Poisson structure matrix,
1199 > \begin{equation}
1200 > J(\pi ) = \left( {\begin{array}{*{20}c}
1201 >   0 & {\pi _3 } & { - \pi _2 }  \\
1202 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1203 >   {\pi _2 } & { - \pi _1 } & 0  \\
1204 > \end{array}} \right)
1205 > \end{equation}
1206 > Thus, the dynamics of free rigid body is governed by
1207 > \begin{equation}
1208 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1209 > \end{equation}
1210 >
1211 > One may notice that each $T_i^r$ in Equation
1212 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1213 > instance, the equations of motion due to $T_1^r$ are given by
1214 > \begin{equation}
1215 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1216 > \label{introEqaution:RBMotionSingleTerm}
1217 > \end{equation}
1218 > where
1219 > \[ R_1  = \left( {\begin{array}{*{20}c}
1220 >   0 & 0 & 0  \\
1221 >   0 & 0 & {\pi _1 }  \\
1222 >   0 & { - \pi _1 } & 0  \\
1223 > \end{array}} \right).
1224 > \]
1225 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1226 > \[
1227 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1228 > Q(0)e^{\Delta tR_1 }
1229 > \]
1230 > with
1231 > \[
1232 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1233 >   0 & 0 & 0  \\
1234 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1235 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1236 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1237 > \]
1238 > To reduce the cost of computing expensive functions in $e^{\Delta
1239 > tR_1 }$, we can use Cayley transformation,
1240 > \[
1241 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1242 > )
1243 > \]
1244 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1245 > manner.
1246 >
1247 > In order to construct a second-order symplectic method, we split the
1248 > angular kinetic Hamiltonian function can into five terms
1249 > \[
1250 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1251 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1252 > (\pi _1 )
1253 > \].
1254 > Concatenating flows corresponding to these five terms, we can obtain
1255 > an symplectic integrator,
1256 > \[
1257 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1258 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1259 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1260 > _1 }.
1261 > \]
1262 >
1263 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1264 > $F(\pi )$ and $G(\pi )$ is defined by
1265 > \[
1266 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1267 > )
1268 > \]
1269 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1270 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1271 > conserved quantity in Poisson system. We can easily verify that the
1272 > norm of the angular momentum, $\parallel \pi
1273 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1274 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1275 > then by the chain rule
1276 > \[
1277 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1278 > }}{2})\pi
1279 > \]
1280 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1281 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1282 > Lie-Poisson integrator is found to be extremely efficient and stable
1283 > which can be explained by the fact the small angle approximation is
1284 > used and the norm of the angular momentum is conserved.
1285 >
1286 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1287 > Splitting for Rigid Body}
1288 >
1289 > The Hamiltonian of rigid body can be separated in terms of kinetic
1290 > energy and potential energy,
1291 > \[
1292 > H = T(p,\pi ) + V(q,Q)
1293 > \]
1294 > The equations of motion corresponding to potential energy and
1295 > kinetic energy are listed in the below table,
1296 > \begin{center}
1297 > \begin{tabular}{|l|l|}
1298 >  \hline
1299 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1300 >  Potential & Kinetic \\
1301 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1302 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1303 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1304 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1305 >  \hline
1306 > \end{tabular}
1307 > \end{center}
1308 > A second-order symplectic method is now obtained by the composition
1309 > of the flow maps,
1310 > \[
1311 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1312 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1313 > \]
1314 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1315 > sub-flows which corresponding to force and torque respectively,
1316 > \[
1317 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1318 > _{\Delta t/2,\tau }.
1319 > \]
1320 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1321 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1322 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1323 >
1324 > Furthermore, kinetic potential can be separated to translational
1325 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1326 > \begin{equation}
1327 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1328 > \end{equation}
1329 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1330 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1331 > corresponding flow maps are given by
1332 > \[
1333 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1334 > _{\Delta t,T^r }.
1335 > \]
1336 > Finally, we obtain the overall symplectic flow maps for free moving
1337 > rigid body
1338 > \begin{equation}
1339 > \begin{array}{c}
1340 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1341 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1342 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1343 > \end{array}
1344 > \label{introEquation:overallRBFlowMaps}
1345 > \end{equation}
1346 >
1347 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1348 > As an alternative to newtonian dynamics, Langevin dynamics, which
1349 > mimics a simple heat bath with stochastic and dissipative forces,
1350 > has been applied in a variety of studies. This section will review
1351 > the theory of Langevin dynamics simulation. A brief derivation of
1352 > generalized Langevin equation will be given first. Follow that, we
1353 > will discuss the physical meaning of the terms appearing in the
1354 > equation as well as the calculation of friction tensor from
1355 > hydrodynamics theory.
1356 >
1357 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1358 >
1359 > Harmonic bath model, in which an effective set of harmonic
1360 > oscillators are used to mimic the effect of a linearly responding
1361 > environment, has been widely used in quantum chemistry and
1362 > statistical mechanics. One of the successful applications of
1363 > Harmonic bath model is the derivation of Deriving Generalized
1364 > Langevin Dynamics. Lets consider a system, in which the degree of
1365 > freedom $x$ is assumed to couple to the bath linearly, giving a
1366 > Hamiltonian of the form
1367 > \begin{equation}
1368 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1369 > \label{introEquation:bathGLE}.
1370 > \end{equation}
1371 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1372 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1373 > \[
1374 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1376 > \right\}}
1377 > \]
1378 > where the index $\alpha$ runs over all the bath degrees of freedom,
1379 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1380 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1381 > coupling,
1382 > \[
1383 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1384 > \]
1385 > where $g_\alpha$ are the coupling constants between the bath and the
1386 > coordinate $x$. Introducing
1387 > \[
1388 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1389 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1390 > \] and combining the last two terms in Equation
1391 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1392 > Hamiltonian as
1393 > \[
1394 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1395 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1396 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1397 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1398 > \]
1399 > Since the first two terms of the new Hamiltonian depend only on the
1400 > system coordinates, we can get the equations of motion for
1401 > Generalized Langevin Dynamics by Hamilton's equations
1402 > \ref{introEquation:motionHamiltonianCoordinate,
1403 > introEquation:motionHamiltonianMomentum},
1404 > \begin{equation}
1405 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1406 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1407 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1408 > \label{introEquation:coorMotionGLE}
1409 > \end{equation}
1410 > and
1411 > \begin{equation}
1412 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1413 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1414 > \label{introEquation:bathMotionGLE}
1415 > \end{equation}
1416 >
1417 > In order to derive an equation for $x$, the dynamics of the bath
1418 > variables $x_\alpha$ must be solved exactly first. As an integral
1419 > transform which is particularly useful in solving linear ordinary
1420 > differential equations, Laplace transform is the appropriate tool to
1421 > solve this problem. The basic idea is to transform the difficult
1422 > differential equations into simple algebra problems which can be
1423 > solved easily. Then applying inverse Laplace transform, also known
1424 > as the Bromwich integral, we can retrieve the solutions of the
1425 > original problems.
1426 >
1427 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1428 > transform of f(t) is a new function defined as
1429 > \[
1430 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1431 > \]
1432 > where  $p$ is real and  $L$ is called the Laplace Transform
1433 > Operator. Below are some important properties of Laplace transform
1434 > \begin{equation}
1435 > \begin{array}{c}
1436 > L(x + y) = L(x) + L(y) \\
1437 > L(ax) = aL(x) \\
1438 > L(\dot x) = pL(x) - px(0) \\
1439 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1440 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1441 > \end{array}
1442 > \end{equation}
1443 >
1444 > Applying Laplace transform to the bath coordinates, we obtain
1445 > \[
1446 > \begin{array}{c}
1447 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1448 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1449 > \end{array}
1450 > \]
1451 > By the same way, the system coordinates become
1452 > \[
1453 > \begin{array}{c}
1454 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1455 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1456 > \end{array}
1457 > \]
1458 >
1459 > With the help of some relatively important inverse Laplace
1460 > transformations:
1461 > \[
1462 > \begin{array}{c}
1463 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1464 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1465 > L(1) = \frac{1}{p} \\
1466 > \end{array}
1467 > \]
1468 > , we obtain
1469 > \begin{align}
1470 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1471 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1472 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1473 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1474 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1475 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1476 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1477 > %
1478 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1479 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1480 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1481 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1482 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1483 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1484 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1485 > (\omega _\alpha  t)} \right\}}
1486 > \end{align}
1487 >
1488 > Introducing a \emph{dynamic friction kernel}
1489 > \begin{equation}
1490 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1491 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1492 > \label{introEquation:dynamicFrictionKernelDefinition}
1493 > \end{equation}
1494 > and \emph{a random force}
1495 > \begin{equation}
1496 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1497 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1498 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1499 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1500 > \label{introEquation:randomForceDefinition}
1501 > \end{equation}
1502 > the equation of motion can be rewritten as
1503 > \begin{equation}
1504 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1505 > (t)\dot x(t - \tau )d\tau }  + R(t)
1506 > \label{introEuqation:GeneralizedLangevinDynamics}
1507 > \end{equation}
1508 > which is known as the \emph{generalized Langevin equation}.
1509 >
1510 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1511 >
1512 > One may notice that $R(t)$ depends only on initial conditions, which
1513 > implies it is completely deterministic within the context of a
1514 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1515 > uncorrelated to $x$ and $\dot x$,
1516 > \[
1517 > \begin{array}{l}
1518 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1519 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1520 > \end{array}
1521 > \]
1522 > This property is what we expect from a truly random process. As long
1523 > as the model, which is gaussian distribution in general, chosen for
1524 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1525 > still remains.
1526 >
1527 > %dynamic friction kernel
1528 > The convolution integral
1529 > \[
1530 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1531 > \]
1532 > depends on the entire history of the evolution of $x$, which implies
1533 > that the bath retains memory of previous motions. In other words,
1534 > the bath requires a finite time to respond to change in the motion
1535 > of the system. For a sluggish bath which responds slowly to changes
1536 > in the system coordinate, we may regard $\xi(t)$ as a constant
1537 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1538 > \[
1539 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1540 > \]
1541 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1542 > \[
1543 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1544 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1545 > \]
1546 > which can be used to describe dynamic caging effect. The other
1547 > extreme is the bath that responds infinitely quickly to motions in
1548 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1549 > time:
1550 > \[
1551 > \xi (t) = 2\xi _0 \delta (t)
1552 > \]
1553 > Hence, the convolution integral becomes
1554 > \[
1555 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1556 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1557 > \]
1558 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1559 > \begin{equation}
1560 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1561 > x(t) + R(t) \label{introEquation:LangevinEquation}
1562 > \end{equation}
1563 > which is known as the Langevin equation. The static friction
1564 > coefficient $\xi _0$ can either be calculated from spectral density
1565 > or be determined by Stokes' law for regular shaped particles.A
1566 > briefly review on calculating friction tensor for arbitrary shaped
1567 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1568 >
1569 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1570 >
1571 > Defining a new set of coordinates,
1572 > \[
1573 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1574 > ^2 }}x(0)
1575 > \],
1576 > we can rewrite $R(T)$ as
1577 > \[
1578 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1579 > \]
1580 > And since the $q$ coordinates are harmonic oscillators,
1581 > \[
1582 > \begin{array}{c}
1583 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1584 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1585 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1586 > \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1587 >  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1588 >  = kT\xi (t) \\
1589 > \end{array}
1590 > \]
1591 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1592 > \begin{equation}
1593 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1594 > \label{introEquation:secondFluctuationDissipation}.
1595 > \end{equation}
1596 > In effect, it acts as a constraint on the possible ways in which one
1597 > can model the random force and friction kernel.
1598 >
1599 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1600 > Theoretically, the friction kernel can be determined using velocity
1601 > autocorrelation function. However, this approach become impractical
1602 > when the system become more and more complicate. Instead, various
1603 > approaches based on hydrodynamics have been developed to calculate
1604 > the friction coefficients. The friction effect is isotropic in
1605 > Equation, \zeta can be taken as a scalar. In general, friction
1606 > tensor \Xi is a $6\times 6$ matrix given by
1607 > \[
1608 > \Xi  = \left( {\begin{array}{*{20}c}
1609 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1610 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1611 > \end{array}} \right).
1612 > \]
1613 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1614 > tensor and rotational resistance (friction) tensor respectively,
1615 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1616 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1617 > particle moves in a fluid, it may experience friction force or
1618 > torque along the opposite direction of the velocity or angular
1619 > velocity,
1620 > \[
1621 > \left( \begin{array}{l}
1622 > F_R  \\
1623 > \tau _R  \\
1624 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1625 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1626 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1627 > \end{array}} \right)\left( \begin{array}{l}
1628 > v \\
1629 > w \\
1630 > \end{array} \right)
1631 > \]
1632 > where $F_r$ is the friction force and $\tau _R$ is the friction
1633 > toque.
1634 >
1635 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1636 >
1637 > For a spherical particle, the translational and rotational friction
1638 > constant can be calculated from Stoke's law,
1639 > \[
1640 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1641 >   {6\pi \eta R} & 0 & 0  \\
1642 >   0 & {6\pi \eta R} & 0  \\
1643 >   0 & 0 & {6\pi \eta R}  \\
1644 > \end{array}} \right)
1645 > \]
1646 > and
1647 > \[
1648 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1649 >   {8\pi \eta R^3 } & 0 & 0  \\
1650 >   0 & {8\pi \eta R^3 } & 0  \\
1651 >   0 & 0 & {8\pi \eta R^3 }  \\
1652 > \end{array}} \right)
1653 > \]
1654 > where $\eta$ is the viscosity of the solvent and $R$ is the
1655 > hydrodynamics radius.
1656 >
1657 > Other non-spherical shape, such as cylinder and ellipsoid
1658 > \textit{etc}, are widely used as reference for developing new
1659 > hydrodynamics theory, because their properties can be calculated
1660 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1661 > also called a triaxial ellipsoid, which is given in Cartesian
1662 > coordinates by
1663 > \[
1664 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1665 > }} = 1
1666 > \]
1667 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1668 > due to the complexity of the elliptic integral, only the ellipsoid
1669 > with the restriction of two axes having to be equal, \textit{i.e.}
1670 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1671 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1672 > \[
1673 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1674 > } }}{b},
1675 > \]
1676 > and oblate,
1677 > \[
1678 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1679 > }}{a}
1680 > \],
1681 > one can write down the translational and rotational resistance
1682 > tensors
1683 > \[
1684 > \begin{array}{l}
1685 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1686 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1687 > \end{array},
1688 > \]
1689 > and
1690 > \[
1691 > \begin{array}{l}
1692 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1693 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1694 > \end{array}.
1695 > \]
1696 >
1697 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1698 >
1699 > Unlike spherical and other regular shaped molecules, there is not
1700 > analytical solution for friction tensor of any arbitrary shaped
1701 > rigid molecules. The ellipsoid of revolution model and general
1702 > triaxial ellipsoid model have been used to approximate the
1703 > hydrodynamic properties of rigid bodies. However, since the mapping
1704 > from all possible ellipsoidal space, $r$-space, to all possible
1705 > combination of rotational diffusion coefficients, $D$-space is not
1706 > unique\cite{Wegener79} as well as the intrinsic coupling between
1707 > translational and rotational motion of rigid body\cite{}, general
1708 > ellipsoid is not always suitable for modeling arbitrarily shaped
1709 > rigid molecule. A number of studies have been devoted to determine
1710 > the friction tensor for irregularly shaped rigid bodies using more
1711 > advanced method\cite{} where the molecule of interest was modeled by
1712 > combinations of spheres(beads)\cite{} and the hydrodynamics
1713 > properties of the molecule can be calculated using the hydrodynamic
1714 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1715 > immersed in a continuous medium. Due to hydrodynamics interaction,
1716 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1717 > unperturbed velocity $v_i$,
1718 > \[
1719 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1720 > \]
1721 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1722 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1723 > proportional to its ``net'' velocity
1724 > \begin{equation}
1725 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1726 > \label{introEquation:tensorExpression}
1727 > \end{equation}
1728 > This equation is the basis for deriving the hydrodynamic tensor. In
1729 > 1930, Oseen and Burgers gave a simple solution to Equation
1730 > \ref{introEquation:tensorExpression}
1731 > \begin{equation}
1732 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1733 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1734 > \label{introEquation:oseenTensor}
1735 > \end{equation}
1736 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1737 > A second order expression for element of different size was
1738 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1739 > la Torre and Bloomfield,
1740 > \begin{equation}
1741 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1742 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1743 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1744 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1745 > \label{introEquation:RPTensorNonOverlapped}
1746 > \end{equation}
1747 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1748 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1749 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1750 > overlapping beads with the same radius, $\sigma$, is given by
1751 > \begin{equation}
1752 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1753 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1754 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1755 > \label{introEquation:RPTensorOverlapped}
1756 > \end{equation}
1757 >
1758 > To calculate the resistance tensor at an arbitrary origin $O$, we
1759 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1760 > $B_{ij}$ blocks
1761 > \begin{equation}
1762 > B = \left( {\begin{array}{*{20}c}
1763 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1764 >    \vdots  &  \ddots  &  \vdots   \\
1765 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1766 > \end{array}} \right),
1767 > \end{equation}
1768 > where $B_{ij}$ is given by
1769 > \[
1770 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1771 > )T_{ij}
1772 > \]
1773 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1774 > $B$, we obtain
1775 >
1776 > \[
1777 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1778 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1779 >    \vdots  &  \ddots  &  \vdots   \\
1780 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1781 > \end{array}} \right)
1782 > \]
1783 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1784 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1785 > \[
1786 > U_i  = \left( {\begin{array}{*{20}c}
1787 >   0 & { - z_i } & {y_i }  \\
1788 >   {z_i } & 0 & { - x_i }  \\
1789 >   { - y_i } & {x_i } & 0  \\
1790 > \end{array}} \right)
1791 > \]
1792 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1793 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1794 > arbitrary origin $O$ can be written as
1795 > \begin{equation}
1796 > \begin{array}{l}
1797 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1798 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1799 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1800 > \end{array}
1801 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1802 > \end{equation}
1803 >
1804 > The resistance tensor depends on the origin to which they refer. The
1805 > proper location for applying friction force is the center of
1806 > resistance (reaction), at which the trace of rotational resistance
1807 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1808 > resistance is defined as an unique point of the rigid body at which
1809 > the translation-rotation coupling tensor are symmetric,
1810 > \begin{equation}
1811 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1812 > \label{introEquation:definitionCR}
1813 > \end{equation}
1814 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1815 > we can easily find out that the translational resistance tensor is
1816 > origin independent, while the rotational resistance tensor and
1817 > translation-rotation coupling resistance tensor depend on the
1818 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1819 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1820 > obtain the resistance tensor at $P$ by
1821 > \begin{equation}
1822 > \begin{array}{l}
1823 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1824 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1825 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1826 > \end{array}
1827 > \label{introEquation:resistanceTensorTransformation}
1828 > \end{equation}
1829 > where
1830 > \[
1831 > U_{OP}  = \left( {\begin{array}{*{20}c}
1832 >   0 & { - z_{OP} } & {y_{OP} }  \\
1833 >   {z_i } & 0 & { - x_{OP} }  \\
1834 >   { - y_{OP} } & {x_{OP} } & 0  \\
1835 > \end{array}} \right)
1836 > \]
1837 > Using Equations \ref{introEquation:definitionCR} and
1838 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1839 > the position of center of resistance,
1840 > \[
1841 > \left( \begin{array}{l}
1842 > x_{OR}  \\
1843 > y_{OR}  \\
1844 > z_{OR}  \\
1845 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1846 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1847 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1848 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1849 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1850 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1851 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1852 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1853 > \end{array} \right).
1854 > \]
1855 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1856 > joining center of resistance $R$ and origin $O$.
1857 >
1858 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines