ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2698 by tim, Fri Apr 7 22:05:48 2006 UTC vs.
Revision 2721 by tim, Thu Apr 20 03:42:21 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 117 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 221 | Line 221 | Statistical Mechanics concepts presented in this disse
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 >
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381 >
382 > Liouville's theorem states that the distribution function is
383 > constant along any trajectory in phase space. In classical
384 > statistical mechanics, since the number of particles in the system
385 > is huge, we may be able to believe the system is stationary,
386 > \begin{equation}
387 > \frac{{\partial \rho }}{{\partial t}} = 0.
388 > \label{introEquation:stationary}
389 > \end{equation}
390 > In such stationary system, the density of distribution $\rho$ can be
391 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 > distribution,
393 > \begin{equation}
394 > \rho  \propto e^{ - \beta H}
395 > \label{introEquation:densityAndHamiltonian}
396 > \end{equation}
397 >
398 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 > Lets consider a region in the phase space,
400 > \begin{equation}
401 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 > \end{equation}
403 > If this region is small enough, the density $\rho$ can be regarded
404 > as uniform over the whole phase space. Thus, the number of phase
405 > points inside this region is given by,
406 > \begin{equation}
407 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 > dp_1 } ..dp_f.
409 > \end{equation}
410 >
411 > \begin{equation}
412 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 > \frac{d}{{dt}}(\delta v) = 0.
414 > \end{equation}
415 > With the help of stationary assumption
416 > (\ref{introEquation:stationary}), we obtain the principle of the
417 > \emph{conservation of extension in phase space},
418 > \begin{equation}
419 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 > ...dq_f dp_1 } ..dp_f  = 0.
421 > \label{introEquation:volumePreserving}
422 > \end{equation}
423 >
424 > \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 >
426 > Liouville's theorem can be expresses in a variety of different forms
427 > which are convenient within different contexts. For any two function
428 > $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 > bracket ${F, G}$ is defined as
430 > \begin{equation}
431 > \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 > F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 > \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 > q_i }}} \right)}.
435 > \label{introEquation:poissonBracket}
436 > \end{equation}
437 > Substituting equations of motion in Hamiltonian formalism(
438 > \ref{introEquation:motionHamiltonianCoordinate} ,
439 > \ref{introEquation:motionHamiltonianMomentum} ) into
440 > (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 > theorem using Poisson bracket notion,
442 > \begin{equation}
443 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 > {\rho ,H} \right\}.
445 > \label{introEquation:liouvilleTheromInPoissin}
446 > \end{equation}
447 > Moreover, the Liouville operator is defined as
448 > \begin{equation}
449 > iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 > p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 > H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 > \label{introEquation:liouvilleOperator}
453 > \end{equation}
454 > In terms of Liouville operator, Liouville's equation can also be
455 > expressed as
456 > \begin{equation}
457 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 > \label{introEquation:liouvilleTheoremInOperator}
459 > \end{equation}
460  
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
# Line 239 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice\cite{Frenkel1996}.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494   A variety of numerical integrators were proposed to simulate the
# Line 312 | Line 546 | f(r) = J\nabla _x H(r)
546   \end{equation}
547   where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548   \begin{equation}
549 < f(r) = J\nabla _x H(r)
549 > f(r) = J\nabla _x H(r).
550   \end{equation}
551   $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552   matrix
# Line 336 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
339 The free rigid body is an example of Poisson system (actually a
340 Lie-Poisson system) with Hamiltonian function of angular kinetic
341 energy.
342 \begin{equation}
343 J(\pi ) = \left( {\begin{array}{*{20}c}
344   0 & {\pi _3 } & { - \pi _2 }  \\
345   { - \pi _3 } & 0 & {\pi _1 }  \\
346   {\pi _2 } & { - \pi _1 } & 0  \\
347 \end{array}} \right)
348 \end{equation}
573  
574 < \begin{equation}
351 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 < \end{equation}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
355 \subsection{\label{introSection:geometricProperties}Geometric Properties}
576   Let $x(t)$ be the exact solution of the ODE system,
577   \begin{equation}
578   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 362 | Line 582 | space to itself. In most cases, it is not easy to find
582   x(t+\tau) =\varphi_\tau(x(t))
583   \]
584   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
585 > space to itself. The flow has the continuous group property,
586   \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611   \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615   The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. The flow of a Hamiltonian vector field
617 < on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
618 < the flow of Hamiltonian vector field, $\varphi$ is a
619 < \emph{symplectic} flow if it satisfies,
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < d \varphi^T J d \varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
626 < statistical mechanics. As to the Poisson system,
626 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 > field on a symplectic manifold can be shown to be a
628 > symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < d\varphi ^T Jd\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632 < is the property must be preserved by the integrator. It is possible
633 < to construct a \emph{volume-preserving} flow for a source free($
634 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
635 < 1$. Changing the variables $y = h(x)$ in a
636 < ODE\ref{introEquation:ODE} will result in a new system,
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641   \[
642   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643   \]
644   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645   In other words, the flow of this vector field is reversible if and
646 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 < designing any numerical methods, one should always try to preserve
400 < the structural properties of the original ODE and its flow.
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 < \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
649 <
650 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
405 <
406 < As a special discipline of molecular modeling, Molecular dynamics
407 < has proven to be a powerful tool for studying the functions of
408 < biological systems, providing structural, thermodynamic and
409 < dynamical information.
410 <
411 < \subsection{\label{introSec:mdInit}Initialization}
412 <
413 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
414 <
415 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
416 <
417 < A rigid body is a body in which the distance between any two given
418 < points of a rigid body remains constant regardless of external
419 < forces exerted on it. A rigid body therefore conserves its shape
420 < during its motion.
421 <
422 < Applications of dynamics of rigid bodies.
423 <
424 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
425 <
426 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
427 <
428 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
429 <
430 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
431 <
432 < \section{\label{introSection:correlationFunctions}Correlation Functions}
433 <
434 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
435 <
436 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
437 <
438 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
439 <
440 < \begin{equation}
441 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
442 < \label{introEquation:bathGLE}
443 < \end{equation}
444 < where $H_B$ is harmonic bath Hamiltonian,
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651   \[
652 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
447 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653   \]
654 < and $\Delta U$ is bilinear system-bath coupling,
654 > Using chain rule, one may obtain,
655   \[
656 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657   \]
658 < Completing the square,
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670   \[
671 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
456 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
457 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
458 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
459 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672   \]
673 < and putting it back into Eq.~\ref{introEquation:bathGLE},
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675   \[
676 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
464 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
465 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
466 < w_\alpha ^2 }}x} \right)^2 } \right\}}
676 > \left\{ {G,H} \right\} = 0.
677   \]
678 < where
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681 >
682 >
683 > When designing any numerical methods, one should always try to
684 > preserve the structural properties of the original ODE and its flow.
685 >
686 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 > A lot of well established and very effective numerical methods have
688 > been successful precisely because of their symplecticities even
689 > though this fact was not recognized when they were first
690 > constructed. The most famous example is leapfrog methods in
691 > molecular dynamics. In general, symplectic integrators can be
692 > constructed using one of four different methods.
693 > \begin{enumerate}
694 > \item Generating functions
695 > \item Variational methods
696 > \item Runge-Kutta methods
697 > \item Splitting methods
698 > \end{enumerate}
699 >
700 > Generating function tends to lead to methods which are cumbersome
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717 > \begin{equation}
718 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 > \varphi _{h_n }
720 > \label{introEquation:FlowDecomposition}
721 > \end{equation}
722 > where each of the sub-flow is chosen such that each represent a
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726   \[
727 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
471 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
727 > H = H_1 + H_2.
728   \]
729 < Since the first two terms of the new Hamiltonian depend only on the
730 < system coordinates, we can get the equations of motion for
731 < Generalized Langevin Dynamics by Hamilton's equations
732 < \ref{introEquation:motionHamiltonianCoordinate,
733 < introEquation:motionHamiltonianMomentum},
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735 > \begin{equation}
736 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 > \label{introEquation:firstOrderSplitting}
738 > \end{equation}
739 > where $\varphi _h$ is the result of applying the corresponding
740 > continuous $\varphi _i$ over a time $h$. By definition, as
741 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 > It is easy to show that any composition of symplectic flows yields a
744 > symplectic map,
745 > \begin{equation}
746 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 > '\phi ' = \phi '^T J\phi ' = J,
748 > \label{introEquation:SymplecticFlowComposition}
749 > \end{equation}
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752 >
753 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 > introduces local errors proportional to $h^2$, while Strang
755 > splitting gives a second-order decomposition,
756 > \begin{equation}
757 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 > \end{equation}
760 > which has a local error proportional to $h^3$. Sprang splitting's
761 > popularity in molecular simulation community attribute to its
762 > symmetric property,
763 > \begin{equation}
764 > \varphi _h^{ - 1} = \varphi _{ - h}.
765 > \label{introEquation:timeReversible}
766 > \end{equation}
767 >
768 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 > The classical equation for a system consisting of interacting
770 > particles can be written in Hamiltonian form,
771 > \[
772 > H = T + V
773 > \]
774 > where $T$ is the kinetic energy and $V$ is the potential energy.
775 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 > obtains the following:
777   \begin{align}
778 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
779 <       &= m\ddot x
780 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
781 < \label{introEq:Lp5}
778 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 > \label{introEquation:Lp10a} \\%
781 > %
782 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 > \label{introEquation:Lp10b}
785   \end{align}
786 < , and
786 > where $F(t)$ is the force at time $t$. This integration scheme is
787 > known as \emph{velocity verlet} which is
788 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 > time-reversible(\ref{introEquation:timeReversible}) and
790 > volume-preserving (\ref{introEquation:volumePreserving}). These
791 > geometric properties attribute to its long-time stability and its
792 > popularity in the community. However, the most commonly used
793 > velocity verlet integration scheme is written as below,
794   \begin{align}
795 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
796 <                &= m\ddot x_\alpha
797 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
795 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 > %
798 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 >    \label{introEquation:Lp9b}\\%
800 > %
801 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803   \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808  
809 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
809 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
810  
811 < \[
494 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
495 < \]
811 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812  
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet2}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844   \[
845 < L(x + y) = L(x) + L(y)
845 > [X,Y] = XY - YX .
846   \]
847 <
847 > Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 > can obtain
849 > \begin{eqnarray*}
850 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 > & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 > \ldots )
854 > \end{eqnarray*}
855 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 > error of Spring splitting is proportional to $h^3$. The same
857 > procedure can be applied to general splitting,  of the form
858 > \begin{equation}
859 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 > \end{equation}
862 > Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 > order method. Yoshida proposed an elegant way to compose higher
864 > order methods based on symmetric splitting. Given a symmetric second
865 > order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 > method can be constructed by composing,
867   \[
868 < L(ax) = aL(x)
868 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870   \]
871 <
871 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 > \begin{equation}
875 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 > \end{equation}
878 > , if the weights are chosen as
879   \[
880 < L(\dot x) = pL(x) - px(0)
880 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882   \]
883  
884 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885 +
886 + As one of the principal tools of molecular modeling, Molecular
887 + dynamics has proven to be a powerful tool for studying the functions
888 + of biological systems, providing structural, thermodynamic and
889 + dynamical information. The basic idea of molecular dynamics is that
890 + macroscopic properties are related to microscopic behavior and
891 + microscopic behavior can be calculated from the trajectories in
892 + simulations. For instance, instantaneous temperature of an
893 + Hamiltonian system of $N$ particle can be measured by
894   \[
895 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896   \]
897 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 + the boltzman constant.
900  
901 + A typical molecular dynamics run consists of three essential steps:
902 + \begin{enumerate}
903 +  \item Initialization
904 +    \begin{enumerate}
905 +    \item Preliminary preparation
906 +    \item Minimization
907 +    \item Heating
908 +    \item Equilibration
909 +    \end{enumerate}
910 +  \item Production
911 +  \item Analysis
912 + \end{enumerate}
913 + These three individual steps will be covered in the following
914 + sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 + initialization of a simulation. Sec.~\ref{introSec:production} will
916 + discusses issues in production run, including the force evaluation
917 + and the numerical integration schemes of the equations of motion .
918 + Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 + trajectory analysis.
920 +
921 + \subsection{\label{introSec:initialSystemSettings}Initialization}
922 +
923 + \subsubsection{Preliminary preparation}
924 +
925 + When selecting the starting structure of a molecule for molecular
926 + simulation, one may retrieve its Cartesian coordinates from public
927 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 + thousands of crystal structures of molecules are discovered every
929 + year, many more remain unknown due to the difficulties of
930 + purification and crystallization. Even for the molecule with known
931 + structure, some important information is missing. For example, the
932 + missing hydrogen atom which acts as donor in hydrogen bonding must
933 + be added. Moreover, in order to include electrostatic interaction,
934 + one may need to specify the partial charges for individual atoms.
935 + Under some circumstances, we may even need to prepare the system in
936 + a special setup. For instance, when studying transport phenomenon in
937 + membrane system, we may prepare the lipids in bilayer structure
938 + instead of placing lipids randomly in solvent, since we are not
939 + interested in self-aggregation and it takes a long time to happen.
940 +
941 + \subsubsection{Minimization}
942 +
943 + It is quite possible that some of molecules in the system from
944 + preliminary preparation may be overlapped with each other. This
945 + close proximity leads to high potential energy which consequently
946 + jeopardizes any molecular dynamics simulations. To remove these
947 + steric overlaps, one typically performs energy minimization to find
948 + a more reasonable conformation. Several energy minimization methods
949 + have been developed to exploit the energy surface and to locate the
950 + local minimum. While converging slowly near the minimum, steepest
951 + descent method is extremely robust when systems are far from
952 + harmonic. Thus, it is often used to refine structure from
953 + crystallographic data. Relied on the gradient or hessian, advanced
954 + methods like conjugate gradient and Newton-Raphson converge rapidly
955 + to a local minimum, while become unstable if the energy surface is
956 + far from quadratic. Another factor must be taken into account, when
957 + choosing energy minimization method, is the size of the system.
958 + Steepest descent and conjugate gradient can deal with models of any
959 + size. Because of the limit of computation power to calculate hessian
960 + matrix and insufficient storage capacity to store them, most
961 + Newton-Raphson methods can not be used with very large models.
962 +
963 + \subsubsection{Heating}
964 +
965 + Typically, Heating is performed by assigning random velocities
966 + according to a Gaussian distribution for a temperature. Beginning at
967 + a lower temperature and gradually increasing the temperature by
968 + assigning greater random velocities, we end up with setting the
969 + temperature of the system to a final temperature at which the
970 + simulation will be conducted. In heating phase, we should also keep
971 + the system from drifting or rotating as a whole. Equivalently, the
972 + net linear momentum and angular momentum of the system should be
973 + shifted to zero.
974 +
975 + \subsubsection{Equilibration}
976 +
977 + The purpose of equilibration is to allow the system to evolve
978 + spontaneously for a period of time and reach equilibrium. The
979 + procedure is continued until various statistical properties, such as
980 + temperature, pressure, energy, volume and other structural
981 + properties \textit{etc}, become independent of time. Strictly
982 + speaking, minimization and heating are not necessary, provided the
983 + equilibration process is long enough. However, these steps can serve
984 + as a means to arrive at an equilibrated structure in an effective
985 + way.
986 +
987 + \subsection{\label{introSection:production}Production}
988 +
989 + \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 +
991 + \subsubsection{\label{introSection:integrationSchemes} Integration
992 + Schemes}
993 +
994 + \subsection{\label{introSection:Analysis} Analysis}
995 +
996 + Recently, advanced visualization technique are widely applied to
997 + monitor the motions of molecules. Although the dynamics of the
998 + system can be described qualitatively from animation, quantitative
999 + trajectory analysis are more appreciable. According to the
1000 + principles of Statistical Mechanics,
1001 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1002 + thermodynamics properties, analyze fluctuations of structural
1003 + parameters, and investigate time-dependent processes of the molecule
1004 + from the trajectories.
1005 +
1006 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1007 +
1008 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1009 +
1010 + Structural Properties of a simple fluid can be described by a set of
1011 + distribution functions. Among these functions,\emph{pair
1012 + distribution function}, also known as \emph{radial distribution
1013 + function}, are of most fundamental importance to liquid-state
1014 + theory. Pair distribution function can be gathered by Fourier
1015 + transforming raw data from a series of neutron diffraction
1016 + experiments and integrating over the surface factor \cite{Powles73}.
1017 + The experiment result can serve as a criterion to justify the
1018 + correctness of the theory. Moreover, various equilibrium
1019 + thermodynamic and structural properties can also be expressed in
1020 + terms of radial distribution function \cite{allen87:csl}.
1021 +
1022 + A pair distribution functions $g(r)$ gives the probability that a
1023 + particle $i$ will be located at a distance $r$ from a another
1024 + particle $j$ in the system
1025   \[
1026 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1026 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1027 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1028   \]
1029 + Note that the delta function can be replaced by a histogram in
1030 + computer simulation. Figure
1031 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1032 + distribution function for the liquid argon system. The occurrence of
1033 + several peaks in the plot of $g(r)$ suggests that it is more likely
1034 + to find particles at certain radial values than at others. This is a
1035 + result of the attractive interaction at such distances. Because of
1036 + the strong repulsive forces at short distance, the probability of
1037 + locating particles at distances less than about 2.5{\AA} from each
1038 + other is essentially zero.
1039  
1040 < Some relatively important transformation,
1041 < \[
1042 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1040 > %\begin{figure}
1041 > %\centering
1042 > %\includegraphics[width=\linewidth]{pdf.eps}
1043 > %\caption[Pair distribution function for the liquid argon
1044 > %]{Pair distribution function for the liquid argon}
1045 > %\label{introFigure:pairDistributionFunction}
1046 > %\end{figure}
1047 >
1048 > \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1049 > Properties}
1050 >
1051 > Time-dependent properties are usually calculated using \emph{time
1052 > correlation function}, which correlates random variables $A$ and $B$
1053 > at two different time
1054 > \begin{equation}
1055 > C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1056 > \label{introEquation:timeCorrelationFunction}
1057 > \end{equation}
1058 > If $A$ and $B$ refer to same variable, this kind of correlation
1059 > function is called \emph{auto correlation function}. One example of
1060 > auto correlation function is velocity auto-correlation function
1061 > which is directly related to transport properties of molecular
1062 > liquids. Another example is the calculation of the IR spectrum
1063 > through a Fourier transform of the dipole autocorrelation function.
1064 >
1065 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1066 >
1067 > Rigid bodies are frequently involved in the modeling of different
1068 > areas, from engineering, physics, to chemistry. For example,
1069 > missiles and vehicle are usually modeled by rigid bodies.  The
1070 > movement of the objects in 3D gaming engine or other physics
1071 > simulator is governed by the rigid body dynamics. In molecular
1072 > simulation, rigid body is used to simplify the model in
1073 > protein-protein docking study{\cite{Gray03}}.
1074 >
1075 > It is very important to develop stable and efficient methods to
1076 > integrate the equations of motion of orientational degrees of
1077 > freedom. Euler angles are the nature choice to describe the
1078 > rotational degrees of freedom. However, due to its singularity, the
1079 > numerical integration of corresponding equations of motion is very
1080 > inefficient and inaccurate. Although an alternative integrator using
1081 > different sets of Euler angles can overcome this difficulty\cite{},
1082 > the computational penalty and the lost of angular momentum
1083 > conservation still remain. A singularity free representation
1084 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
1085 > this approach suffer from the nonseparable Hamiltonian resulted from
1086 > quaternion representation, which prevents the symplectic algorithm
1087 > to be utilized. Another different approach is to apply holonomic
1088 > constraints to the atoms belonging to the rigid body. Each atom
1089 > moves independently under the normal forces deriving from potential
1090 > energy and constraint forces which are used to guarantee the
1091 > rigidness. However, due to their iterative nature, SHAKE and Rattle
1092 > algorithm converge very slowly when the number of constraint
1093 > increases.
1094 >
1095 > The break through in geometric literature suggests that, in order to
1096 > develop a long-term integration scheme, one should preserve the
1097 > symplectic structure of the flow. Introducing conjugate momentum to
1098 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1099 > symplectic integrator, RSHAKE, was proposed to evolve the
1100 > Hamiltonian system in a constraint manifold by iteratively
1101 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1102 > method using quaternion representation was developed by Omelyan.
1103 > However, both of these methods are iterative and inefficient. In
1104 > this section, we will present a symplectic Lie-Poisson integrator
1105 > for rigid body developed by Dullweber and his
1106 > coworkers\cite{Dullweber1997} in depth.
1107 >
1108 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1109 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1110 > function
1111 > \begin{equation}
1112 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1113 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1114 > \label{introEquation:RBHamiltonian}
1115 > \end{equation}
1116 > Here, $q$ and $Q$  are the position and rotation matrix for the
1117 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1118 > $J$, a diagonal matrix, is defined by
1119 > \[
1120 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1121   \]
1122 + where $I_{ii}$ is the diagonal element of the inertia tensor. This
1123 + constrained Hamiltonian equation subjects to a holonomic constraint,
1124 + \begin{equation}
1125 + Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1126 + \end{equation}
1127 + which is used to ensure rotation matrix's orthogonality.
1128 + Differentiating \ref{introEquation:orthogonalConstraint} and using
1129 + Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1130 + \begin{equation}
1131 + Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1132 + \label{introEquation:RBFirstOrderConstraint}
1133 + \end{equation}
1134  
1135 + Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1136 + \ref{introEquation:motionHamiltonianMomentum}), one can write down
1137 + the equations of motion,
1138   \[
1139 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1139 > \begin{array}{c}
1140 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1141 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1142 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1143 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1144 > \end{array}
1145   \]
1146  
1147 + In general, there are two ways to satisfy the holonomic constraints.
1148 + We can use constraint force provided by lagrange multiplier on the
1149 + normal manifold to keep the motion on constraint space. Or we can
1150 + simply evolve the system in constraint manifold. The two method are
1151 + proved to be equivalent. The holonomic constraint and equations of
1152 + motions define a constraint manifold for rigid body
1153   \[
1154 < L(1) = \frac{1}{p}
1154 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1155 > \right\}.
1156   \]
1157  
1158 < First, the bath coordinates,
1158 > Unfortunately, this constraint manifold is not the cotangent bundle
1159 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1160 > transformation, the cotangent space and the phase space are
1161 > diffeomorphic. Introducing
1162   \[
1163 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
533 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
534 < }}L(x)
1163 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1164   \]
1165 + the mechanical system subject to a holonomic constraint manifold $M$
1166 + can be re-formulated as a Hamiltonian system on the cotangent space
1167   \[
1168 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1169 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1168 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1169 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1170   \]
1171 < Then, the system coordinates,
1172 < \begin{align}
1173 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1174 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1175 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1176 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1177 < }}\omega _\alpha ^2 L(x)} \right\}}
1178 < %
1179 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1180 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1181 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1182 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1183 < \end{align}
1184 < Then, the inverse transform,
1171 >
1172 > For a body fixed vector $X_i$ with respect to the center of mass of
1173 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1174 > given as
1175 > \begin{equation}
1176 > X_i^{lab} = Q X_i + q.
1177 > \end{equation}
1178 > Therefore, potential energy $V(q,Q)$ is defined by
1179 > \[
1180 > V(q,Q) = V(Q X_0 + q).
1181 > \]
1182 > Hence, the force and torque are given by
1183 > \[
1184 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1185 > \]
1186 > and
1187 > \[
1188 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1189 > \]
1190 > respectively.
1191 >
1192 > As a common choice to describe the rotation dynamics of the rigid
1193 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1194 > rewrite the equations of motion,
1195 > \begin{equation}
1196 > \begin{array}{l}
1197 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1198 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1199 > \end{array}
1200 > \label{introEqaution:RBMotionPI}
1201 > \end{equation}
1202 > , as well as holonomic constraints,
1203 > \[
1204 > \begin{array}{l}
1205 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1206 > Q^T Q = 1 \\
1207 > \end{array}
1208 > \]
1209 >
1210 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1211 > so(3)^ \star$, the hat-map isomorphism,
1212 > \begin{equation}
1213 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1214 > {\begin{array}{*{20}c}
1215 >   0 & { - v_3 } & {v_2 }  \\
1216 >   {v_3 } & 0 & { - v_1 }  \\
1217 >   { - v_2 } & {v_1 } & 0  \\
1218 > \end{array}} \right),
1219 > \label{introEquation:hatmapIsomorphism}
1220 > \end{equation}
1221 > will let us associate the matrix products with traditional vector
1222 > operations
1223 > \[
1224 > \hat vu = v \times u
1225 > \]
1226 >
1227 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1228 > matrix,
1229 > \begin{equation}
1230 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1231 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1232 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1233 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1234 > \end{equation}
1235 > Since $\Lambda$ is symmetric, the last term of Equation
1236 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1237 > multiplier $\Lambda$ is absent from the equations of motion. This
1238 > unique property eliminate the requirement of iterations which can
1239 > not be avoided in other methods\cite{}.
1240 >
1241 > Applying hat-map isomorphism, we obtain the equation of motion for
1242 > angular momentum on body frame
1243 > \begin{equation}
1244 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1245 > F_i (r,Q)} \right) \times X_i }.
1246 > \label{introEquation:bodyAngularMotion}
1247 > \end{equation}
1248 > In the same manner, the equation of motion for rotation matrix is
1249 > given by
1250 > \[
1251 > \dot Q = Qskew(I^{ - 1} \pi )
1252 > \]
1253 >
1254 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1255 > Lie-Poisson Integrator for Free Rigid Body}
1256 >
1257 > If there is not external forces exerted on the rigid body, the only
1258 > contribution to the rotational is from the kinetic potential (the
1259 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1260 > rigid body is an example of Lie-Poisson system with Hamiltonian
1261 > function
1262 > \begin{equation}
1263 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1264 > \label{introEquation:rotationalKineticRB}
1265 > \end{equation}
1266 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1267 > Lie-Poisson structure matrix,
1268 > \begin{equation}
1269 > J(\pi ) = \left( {\begin{array}{*{20}c}
1270 >   0 & {\pi _3 } & { - \pi _2 }  \\
1271 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1272 >   {\pi _2 } & { - \pi _1 } & 0  \\
1273 > \end{array}} \right)
1274 > \end{equation}
1275 > Thus, the dynamics of free rigid body is governed by
1276 > \begin{equation}
1277 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1278 > \end{equation}
1279 >
1280 > One may notice that each $T_i^r$ in Equation
1281 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1282 > instance, the equations of motion due to $T_1^r$ are given by
1283 > \begin{equation}
1284 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1285 > \label{introEqaution:RBMotionSingleTerm}
1286 > \end{equation}
1287 > where
1288 > \[ R_1  = \left( {\begin{array}{*{20}c}
1289 >   0 & 0 & 0  \\
1290 >   0 & 0 & {\pi _1 }  \\
1291 >   0 & { - \pi _1 } & 0  \\
1292 > \end{array}} \right).
1293 > \]
1294 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1295 > \[
1296 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1297 > Q(0)e^{\Delta tR_1 }
1298 > \]
1299 > with
1300 > \[
1301 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1302 >   0 & 0 & 0  \\
1303 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1304 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1305 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1306 > \]
1307 > To reduce the cost of computing expensive functions in $e^{\Delta
1308 > tR_1 }$, we can use Cayley transformation,
1309 > \[
1310 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1311 > )
1312 > \]
1313 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1314 > manner.
1315 >
1316 > In order to construct a second-order symplectic method, we split the
1317 > angular kinetic Hamiltonian function can into five terms
1318 > \[
1319 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1320 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1321 > (\pi _1 )
1322 > \].
1323 > Concatenating flows corresponding to these five terms, we can obtain
1324 > an symplectic integrator,
1325 > \[
1326 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1327 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1328 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1329 > _1 }.
1330 > \]
1331 >
1332 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1333 > $F(\pi )$ and $G(\pi )$ is defined by
1334 > \[
1335 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1336 > )
1337 > \]
1338 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1339 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1340 > conserved quantity in Poisson system. We can easily verify that the
1341 > norm of the angular momentum, $\parallel \pi
1342 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1343 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1344 > then by the chain rule
1345 > \[
1346 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1347 > }}{2})\pi
1348 > \]
1349 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1350 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1351 > Lie-Poisson integrator is found to be extremely efficient and stable
1352 > which can be explained by the fact the small angle approximation is
1353 > used and the norm of the angular momentum is conserved.
1354 >
1355 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1356 > Splitting for Rigid Body}
1357 >
1358 > The Hamiltonian of rigid body can be separated in terms of kinetic
1359 > energy and potential energy,
1360 > \[
1361 > H = T(p,\pi ) + V(q,Q)
1362 > \]
1363 > The equations of motion corresponding to potential energy and
1364 > kinetic energy are listed in the below table,
1365 > \begin{center}
1366 > \begin{tabular}{|l|l|}
1367 >  \hline
1368 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1369 >  Potential & Kinetic \\
1370 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1371 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1372 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1373 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1374 >  \hline
1375 > \end{tabular}
1376 > \end{center}
1377 > A second-order symplectic method is now obtained by the composition
1378 > of the flow maps,
1379 > \[
1380 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1381 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1382 > \]
1383 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1384 > sub-flows which corresponding to force and torque respectively,
1385 > \[
1386 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1387 > _{\Delta t/2,\tau }.
1388 > \]
1389 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1390 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1391 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1392 >
1393 > Furthermore, kinetic potential can be separated to translational
1394 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1395 > \begin{equation}
1396 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1397 > \end{equation}
1398 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1399 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1400 > corresponding flow maps are given by
1401 > \[
1402 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1403 > _{\Delta t,T^r }.
1404 > \]
1405 > Finally, we obtain the overall symplectic flow maps for free moving
1406 > rigid body
1407 > \begin{equation}
1408 > \begin{array}{c}
1409 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1410 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1411 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1412 > \end{array}
1413 > \label{introEquation:overallRBFlowMaps}
1414 > \end{equation}
1415 >
1416 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1417 > As an alternative to newtonian dynamics, Langevin dynamics, which
1418 > mimics a simple heat bath with stochastic and dissipative forces,
1419 > has been applied in a variety of studies. This section will review
1420 > the theory of Langevin dynamics simulation. A brief derivation of
1421 > generalized Langevin equation will be given first. Follow that, we
1422 > will discuss the physical meaning of the terms appearing in the
1423 > equation as well as the calculation of friction tensor from
1424 > hydrodynamics theory.
1425 >
1426 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1427 >
1428 > Harmonic bath model, in which an effective set of harmonic
1429 > oscillators are used to mimic the effect of a linearly responding
1430 > environment, has been widely used in quantum chemistry and
1431 > statistical mechanics. One of the successful applications of
1432 > Harmonic bath model is the derivation of Deriving Generalized
1433 > Langevin Dynamics. Lets consider a system, in which the degree of
1434 > freedom $x$ is assumed to couple to the bath linearly, giving a
1435 > Hamiltonian of the form
1436 > \begin{equation}
1437 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1438 > \label{introEquation:bathGLE}.
1439 > \end{equation}
1440 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1441 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1442 > \[
1443 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1444 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1445 > \right\}}
1446 > \]
1447 > where the index $\alpha$ runs over all the bath degrees of freedom,
1448 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1449 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1450 > coupling,
1451 > \[
1452 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1453 > \]
1454 > where $g_\alpha$ are the coupling constants between the bath and the
1455 > coordinate $x$. Introducing
1456 > \[
1457 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1458 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1459 > \] and combining the last two terms in Equation
1460 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1461 > Hamiltonian as
1462 > \[
1463 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1464 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1465 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1466 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1467 > \]
1468 > Since the first two terms of the new Hamiltonian depend only on the
1469 > system coordinates, we can get the equations of motion for
1470 > Generalized Langevin Dynamics by Hamilton's equations
1471 > \ref{introEquation:motionHamiltonianCoordinate,
1472 > introEquation:motionHamiltonianMomentum},
1473 > \begin{equation}
1474 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1475 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1476 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1477 > \label{introEquation:coorMotionGLE}
1478 > \end{equation}
1479 > and
1480 > \begin{equation}
1481 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1482 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1483 > \label{introEquation:bathMotionGLE}
1484 > \end{equation}
1485 >
1486 > In order to derive an equation for $x$, the dynamics of the bath
1487 > variables $x_\alpha$ must be solved exactly first. As an integral
1488 > transform which is particularly useful in solving linear ordinary
1489 > differential equations, Laplace transform is the appropriate tool to
1490 > solve this problem. The basic idea is to transform the difficult
1491 > differential equations into simple algebra problems which can be
1492 > solved easily. Then applying inverse Laplace transform, also known
1493 > as the Bromwich integral, we can retrieve the solutions of the
1494 > original problems.
1495 >
1496 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1497 > transform of f(t) is a new function defined as
1498 > \[
1499 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1500 > \]
1501 > where  $p$ is real and  $L$ is called the Laplace Transform
1502 > Operator. Below are some important properties of Laplace transform
1503 > \begin{equation}
1504 > \begin{array}{c}
1505 > L(x + y) = L(x) + L(y) \\
1506 > L(ax) = aL(x) \\
1507 > L(\dot x) = pL(x) - px(0) \\
1508 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1509 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1510 > \end{array}
1511 > \end{equation}
1512 >
1513 > Applying Laplace transform to the bath coordinates, we obtain
1514 > \[
1515 > \begin{array}{c}
1516 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1517 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1518 > \end{array}
1519 > \]
1520 > By the same way, the system coordinates become
1521 > \[
1522 > \begin{array}{c}
1523 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1524 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1525 > \end{array}
1526 > \]
1527  
1528 + With the help of some relatively important inverse Laplace
1529 + transformations:
1530 + \[
1531 + \begin{array}{c}
1532 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1533 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1534 + L(1) = \frac{1}{p} \\
1535 + \end{array}
1536 + \]
1537 + , we obtain
1538   \begin{align}
1539   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1540   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 571 | Line 1554 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1554   (\omega _\alpha  t)} \right\}}
1555   \end{align}
1556  
1557 + Introducing a \emph{dynamic friction kernel}
1558   \begin{equation}
1559 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1560 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1561 + \label{introEquation:dynamicFrictionKernelDefinition}
1562 + \end{equation}
1563 + and \emph{a random force}
1564 + \begin{equation}
1565 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1566 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1567 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1568 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1569 + \label{introEquation:randomForceDefinition}
1570 + \end{equation}
1571 + the equation of motion can be rewritten as
1572 + \begin{equation}
1573   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1574   (t)\dot x(t - \tau )d\tau }  + R(t)
1575   \label{introEuqation:GeneralizedLangevinDynamics}
1576   \end{equation}
1577 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1578 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1577 > which is known as the \emph{generalized Langevin equation}.
1578 >
1579 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1580 >
1581 > One may notice that $R(t)$ depends only on initial conditions, which
1582 > implies it is completely deterministic within the context of a
1583 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1584 > uncorrelated to $x$ and $\dot x$,
1585   \[
1586 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1587 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1586 > \begin{array}{l}
1587 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1588 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1589 > \end{array}
1590   \]
1591 < For an infinite harmonic bath, we can use the spectral density and
1592 < an integral over frequencies.
1591 > This property is what we expect from a truly random process. As long
1592 > as the model, which is gaussian distribution in general, chosen for
1593 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1594 > still remains.
1595  
1596 + %dynamic friction kernel
1597 + The convolution integral
1598   \[
1599 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
590 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
591 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
592 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1599 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1600   \]
1601 < The random forces depend only on initial conditions.
1601 > depends on the entire history of the evolution of $x$, which implies
1602 > that the bath retains memory of previous motions. In other words,
1603 > the bath requires a finite time to respond to change in the motion
1604 > of the system. For a sluggish bath which responds slowly to changes
1605 > in the system coordinate, we may regard $\xi(t)$ as a constant
1606 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1607 > \[
1608 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1609 > \]
1610 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1611 > \[
1612 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1613 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1614 > \]
1615 > which can be used to describe dynamic caging effect. The other
1616 > extreme is the bath that responds infinitely quickly to motions in
1617 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1618 > time:
1619 > \[
1620 > \xi (t) = 2\xi _0 \delta (t)
1621 > \]
1622 > Hence, the convolution integral becomes
1623 > \[
1624 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1625 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1626 > \]
1627 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1628 > \begin{equation}
1629 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1630 > x(t) + R(t) \label{introEquation:LangevinEquation}
1631 > \end{equation}
1632 > which is known as the Langevin equation. The static friction
1633 > coefficient $\xi _0$ can either be calculated from spectral density
1634 > or be determined by Stokes' law for regular shaped particles.A
1635 > briefly review on calculating friction tensor for arbitrary shaped
1636 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1637  
1638   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1639 < So we can define a new set of coordinates,
1639 >
1640 > Defining a new set of coordinates,
1641   \[
1642   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1643   ^2 }}x(0)
1644 < \]
1645 < This makes
1644 > \],
1645 > we can rewrite $R(T)$ as
1646   \[
1647 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1647 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1648   \]
1649   And since the $q$ coordinates are harmonic oscillators,
1650   \[
1651 < \begin{array}{l}
1651 > \begin{array}{c}
1652 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1653   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1654   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1655 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1656 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1657 +  = kT\xi (t) \\
1658   \end{array}
1659   \]
1660 <
614 < \begin{align}
615 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
616 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
617 < (t)q_\beta  (0)} \right\rangle } }
618 < %
619 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
620 < \right\rangle \cos (\omega _\alpha  t)}
621 < %
622 < &= kT\xi (t)
623 < \end{align}
624 <
1660 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1661   \begin{equation}
1662   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1663 < \label{introEquation:secondFluctuationDissipation}
1663 > \label{introEquation:secondFluctuationDissipation}.
1664   \end{equation}
1665 + In effect, it acts as a constraint on the possible ways in which one
1666 + can model the random force and friction kernel.
1667  
630 \section{\label{introSection:hydroynamics}Hydrodynamics}
631
1668   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1669 < \subsection{\label{introSection:analyticalApproach}Analytical
1670 < Approach}
1669 > Theoretically, the friction kernel can be determined using velocity
1670 > autocorrelation function. However, this approach become impractical
1671 > when the system become more and more complicate. Instead, various
1672 > approaches based on hydrodynamics have been developed to calculate
1673 > the friction coefficients. The friction effect is isotropic in
1674 > Equation, \zeta can be taken as a scalar. In general, friction
1675 > tensor \Xi is a $6\times 6$ matrix given by
1676 > \[
1677 > \Xi  = \left( {\begin{array}{*{20}c}
1678 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1679 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1680 > \end{array}} \right).
1681 > \]
1682 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1683 > tensor and rotational resistance (friction) tensor respectively,
1684 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1685 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1686 > particle moves in a fluid, it may experience friction force or
1687 > torque along the opposite direction of the velocity or angular
1688 > velocity,
1689 > \[
1690 > \left( \begin{array}{l}
1691 > F_R  \\
1692 > \tau _R  \\
1693 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1694 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1695 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1696 > \end{array}} \right)\left( \begin{array}{l}
1697 > v \\
1698 > w \\
1699 > \end{array} \right)
1700 > \]
1701 > where $F_r$ is the friction force and $\tau _R$ is the friction
1702 > toque.
1703  
1704 < \subsection{\label{introSection:approximationApproach}Approximation
637 < Approach}
1704 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1705  
1706 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1707 < Body}
1706 > For a spherical particle, the translational and rotational friction
1707 > constant can be calculated from Stoke's law,
1708 > \[
1709 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1710 >   {6\pi \eta R} & 0 & 0  \\
1711 >   0 & {6\pi \eta R} & 0  \\
1712 >   0 & 0 & {6\pi \eta R}  \\
1713 > \end{array}} \right)
1714 > \]
1715 > and
1716 > \[
1717 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1718 >   {8\pi \eta R^3 } & 0 & 0  \\
1719 >   0 & {8\pi \eta R^3 } & 0  \\
1720 >   0 & 0 & {8\pi \eta R^3 }  \\
1721 > \end{array}} \right)
1722 > \]
1723 > where $\eta$ is the viscosity of the solvent and $R$ is the
1724 > hydrodynamics radius.
1725 >
1726 > Other non-spherical shape, such as cylinder and ellipsoid
1727 > \textit{etc}, are widely used as reference for developing new
1728 > hydrodynamics theory, because their properties can be calculated
1729 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1730 > also called a triaxial ellipsoid, which is given in Cartesian
1731 > coordinates by
1732 > \[
1733 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1734 > }} = 1
1735 > \]
1736 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1737 > due to the complexity of the elliptic integral, only the ellipsoid
1738 > with the restriction of two axes having to be equal, \textit{i.e.}
1739 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1740 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1741 > \[
1742 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1743 > } }}{b},
1744 > \]
1745 > and oblate,
1746 > \[
1747 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1748 > }}{a}
1749 > \],
1750 > one can write down the translational and rotational resistance
1751 > tensors
1752 > \[
1753 > \begin{array}{l}
1754 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1755 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1756 > \end{array},
1757 > \]
1758 > and
1759 > \[
1760 > \begin{array}{l}
1761 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1762 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1763 > \end{array}.
1764 > \]
1765 >
1766 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1767 >
1768 > Unlike spherical and other regular shaped molecules, there is not
1769 > analytical solution for friction tensor of any arbitrary shaped
1770 > rigid molecules. The ellipsoid of revolution model and general
1771 > triaxial ellipsoid model have been used to approximate the
1772 > hydrodynamic properties of rigid bodies. However, since the mapping
1773 > from all possible ellipsoidal space, $r$-space, to all possible
1774 > combination of rotational diffusion coefficients, $D$-space is not
1775 > unique\cite{Wegener79} as well as the intrinsic coupling between
1776 > translational and rotational motion of rigid body\cite{}, general
1777 > ellipsoid is not always suitable for modeling arbitrarily shaped
1778 > rigid molecule. A number of studies have been devoted to determine
1779 > the friction tensor for irregularly shaped rigid bodies using more
1780 > advanced method\cite{} where the molecule of interest was modeled by
1781 > combinations of spheres(beads)\cite{} and the hydrodynamics
1782 > properties of the molecule can be calculated using the hydrodynamic
1783 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1784 > immersed in a continuous medium. Due to hydrodynamics interaction,
1785 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1786 > unperturbed velocity $v_i$,
1787 > \[
1788 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1789 > \]
1790 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1791 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1792 > proportional to its ``net'' velocity
1793 > \begin{equation}
1794 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1795 > \label{introEquation:tensorExpression}
1796 > \end{equation}
1797 > This equation is the basis for deriving the hydrodynamic tensor. In
1798 > 1930, Oseen and Burgers gave a simple solution to Equation
1799 > \ref{introEquation:tensorExpression}
1800 > \begin{equation}
1801 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1802 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1803 > \label{introEquation:oseenTensor}
1804 > \end{equation}
1805 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1806 > A second order expression for element of different size was
1807 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1808 > la Torre and Bloomfield,
1809 > \begin{equation}
1810 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1811 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1812 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1813 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1814 > \label{introEquation:RPTensorNonOverlapped}
1815 > \end{equation}
1816 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1817 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1818 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1819 > overlapping beads with the same radius, $\sigma$, is given by
1820 > \begin{equation}
1821 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1822 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1823 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1824 > \label{introEquation:RPTensorOverlapped}
1825 > \end{equation}
1826 >
1827 > To calculate the resistance tensor at an arbitrary origin $O$, we
1828 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1829 > $B_{ij}$ blocks
1830 > \begin{equation}
1831 > B = \left( {\begin{array}{*{20}c}
1832 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1833 >    \vdots  &  \ddots  &  \vdots   \\
1834 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1835 > \end{array}} \right),
1836 > \end{equation}
1837 > where $B_{ij}$ is given by
1838 > \[
1839 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1840 > )T_{ij}
1841 > \]
1842 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1843 > $B$, we obtain
1844 >
1845 > \[
1846 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1847 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1848 >    \vdots  &  \ddots  &  \vdots   \\
1849 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1850 > \end{array}} \right)
1851 > \]
1852 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1853 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1854 > \[
1855 > U_i  = \left( {\begin{array}{*{20}c}
1856 >   0 & { - z_i } & {y_i }  \\
1857 >   {z_i } & 0 & { - x_i }  \\
1858 >   { - y_i } & {x_i } & 0  \\
1859 > \end{array}} \right)
1860 > \]
1861 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1862 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1863 > arbitrary origin $O$ can be written as
1864 > \begin{equation}
1865 > \begin{array}{l}
1866 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1867 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1868 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1869 > \end{array}
1870 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1871 > \end{equation}
1872 >
1873 > The resistance tensor depends on the origin to which they refer. The
1874 > proper location for applying friction force is the center of
1875 > resistance (reaction), at which the trace of rotational resistance
1876 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1877 > resistance is defined as an unique point of the rigid body at which
1878 > the translation-rotation coupling tensor are symmetric,
1879 > \begin{equation}
1880 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1881 > \label{introEquation:definitionCR}
1882 > \end{equation}
1883 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1884 > we can easily find out that the translational resistance tensor is
1885 > origin independent, while the rotational resistance tensor and
1886 > translation-rotation coupling resistance tensor depend on the
1887 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1888 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1889 > obtain the resistance tensor at $P$ by
1890 > \begin{equation}
1891 > \begin{array}{l}
1892 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1893 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1894 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1895 > \end{array}
1896 > \label{introEquation:resistanceTensorTransformation}
1897 > \end{equation}
1898 > where
1899 > \[
1900 > U_{OP}  = \left( {\begin{array}{*{20}c}
1901 >   0 & { - z_{OP} } & {y_{OP} }  \\
1902 >   {z_i } & 0 & { - x_{OP} }  \\
1903 >   { - y_{OP} } & {x_{OP} } & 0  \\
1904 > \end{array}} \right)
1905 > \]
1906 > Using Equations \ref{introEquation:definitionCR} and
1907 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1908 > the position of center of resistance,
1909 > \[
1910 > \left( \begin{array}{l}
1911 > x_{OR}  \\
1912 > y_{OR}  \\
1913 > z_{OR}  \\
1914 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1915 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1916 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1917 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1918 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1919 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1920 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1921 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1922 > \end{array} \right).
1923 > \]
1924 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1925 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines