ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2694 by tim, Wed Apr 5 21:00:19 2006 UTC vs.
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 115 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209   \begin{equation}
210 < r = r(q,p)^T
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
208 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 \begin{equation}
210 J = \left( {\begin{array}{*{20}c}
211   0 & I  \\
212   { - I} & 0  \\
213 \end{array}} \right)
214 \label{introEquation:canonicalMatrix}
215 \end{equation}
216 Thus, Hamiltonian system can be rewritten as,
217 \begin{equation}
218 \frac{d}{{dt}}r = J\nabla _r H(r)
219 \label{introEquation:compactHamiltonian}
220 \end{equation}
221 where $I$ is an identity matrix and $J$ is a skew-symmetrix matrix
222 ($ J^T  =  - J $).
217  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 Transformation}
226
227 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228
229 \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230
231 \subsection{\label{Construction of Symplectic Methods}}
232
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection::ensemble}Ensemble}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228  
229 + Mathematically, phase space is the space which represents all
230 + possible states. Each possible state of the system corresponds to
231 + one unique point in the phase space. For mechanical systems, the
232 + phase space usually consists of all possible values of position and
233 + momentum variables. Consider a dynamic system in a cartesian space,
234 + where each of the $6f$ coordinates and momenta is assigned to one of
235 + $6f$ mutually orthogonal axes, the phase space of this system is a
236 + $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 + \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 + momenta is a phase space vector.
239 +
240 + A microscopic state or microstate of a classical system is
241 + specification of the complete phase space vector of a system at any
242 + instant in time. An ensemble is defined as a collection of systems
243 + sharing one or more macroscopic characteristics but each being in a
244 + unique microstate. The complete ensemble is specified by giving all
245 + systems or microstates consistent with the common macroscopic
246 + characteristics of the ensemble. Although the state of each
247 + individual system in the ensemble could be precisely described at
248 + any instance in time by a suitable phase space vector, when using
249 + ensembles for statistical purposes, there is no need to maintain
250 + distinctions between individual systems, since the numbers of
251 + systems at any time in the different states which correspond to
252 + different regions of the phase space are more interesting. Moreover,
253 + in the point of view of statistical mechanics, one would prefer to
254 + use ensembles containing a large enough population of separate
255 + members so that the numbers of systems in such different states can
256 + be regarded as changing continuously as we traverse different
257 + regions of the phase space. The condition of an ensemble at any time
258 + can be regarded as appropriately specified by the density $\rho$
259 + with which representative points are distributed over the phase
260 + space. The density of distribution for an ensemble with $f$ degrees
261 + of freedom is defined as,
262 + \begin{equation}
263 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 + \label{introEquation:densityDistribution}
265 + \end{equation}
266 + Governed by the principles of mechanics, the phase points change
267 + their value which would change the density at any time at phase
268 + space. Hence, the density of distribution is also to be taken as a
269 + function of the time.
270 +
271 + The number of systems $\delta N$ at time $t$ can be determined by,
272 + \begin{equation}
273 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 + \label{introEquation:deltaN}
275 + \end{equation}
276 + Assuming a large enough population of systems are exploited, we can
277 + sufficiently approximate $\delta N$ without introducing
278 + discontinuity when we go from one region in the phase space to
279 + another. By integrating over the whole phase space,
280 + \begin{equation}
281 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 + \label{introEquation:totalNumberSystem}
283 + \end{equation}
284 + gives us an expression for the total number of the systems. Hence,
285 + the probability per unit in the phase space can be obtained by,
286 + \begin{equation}
287 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 + \label{introEquation:unitProbability}
290 + \end{equation}
291 + With the help of Equation(\ref{introEquation:unitProbability}) and
292 + the knowledge of the system, it is possible to calculate the average
293 + value of any desired quantity which depends on the coordinates and
294 + momenta of the system. Even when the dynamics of the real system is
295 + complex, or stochastic, or even discontinuous, the average
296 + properties of the ensemble of possibilities as a whole may still
297 + remain well defined. For a classical system in thermal equilibrium
298 + with its environment, the ensemble average of a mechanical quantity,
299 + $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 + phase space of the system,
301 + \begin{equation}
302 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 + \label{introEquation:ensembelAverage}
306 + \end{equation}
307 +
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 + \end{equation}
320 + A canonical ensemble(NVT)is an ensemble of systems, each of which
321 + can share its energy with a large heat reservoir. The distribution
322 + of the total energy amongst the possible dynamical states is given
323 + by the partition function,
324 + \begin{equation}
325 + \Omega (N,V,T) = e^{ - \beta A}
326 + \label{introEquation:NVTPartition}
327 + \end{equation}
328 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 + TS$. Since most experiment are carried out under constant pressure
330 + condition, isothermal-isobaric ensemble(NPT) play a very important
331 + role in molecular simulation. The isothermal-isobaric ensemble allow
332 + the system to exchange energy with a heat bath of temperature $T$
333 + and to change the volume as well. Its partition function is given as
334 + \begin{equation}
335 + \Delta (N,P,T) =  - e^{\beta G}.
336 + \label{introEquation:NPTPartition}
337 + \end{equation}
338 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 +
340 + \subsection{\label{introSection:liouville}Liouville's theorem}
341 +
342 + The Liouville's theorem is the foundation on which statistical
343 + mechanics rests. It describes the time evolution of phase space
344 + distribution function. In order to calculate the rate of change of
345 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 + consider the two faces perpendicular to the $q_1$ axis, which are
347 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 + leaving the opposite face is given by the expression,
349 + \begin{equation}
350 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 + \ldots \delta p_f .
354 + \end{equation}
355 + Summing all over the phase space, we obtain
356 + \begin{equation}
357 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 + \end{equation}
364 + Differentiating the equations of motion in Hamiltonian formalism
365 + (\ref{introEquation:motionHamiltonianCoordinate},
366 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 + \begin{equation}
368 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 + \end{equation}
371 + which cancels the first terms of the right hand side. Furthermore,
372 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 + p_f $ in both sides, we can write out Liouville's theorem in a
374 + simple form,
375 + \begin{equation}
376 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 + \label{introEquation:liouvilleTheorem}
380 + \end{equation}
381 +
382 + Liouville's theorem states that the distribution function is
383 + constant along any trajectory in phase space. In classical
384 + statistical mechanics, since the number of particles in the system
385 + is huge, we may be able to believe the system is stationary,
386 + \begin{equation}
387 + \frac{{\partial \rho }}{{\partial t}} = 0.
388 + \label{introEquation:stationary}
389 + \end{equation}
390 + In such stationary system, the density of distribution $\rho$ can be
391 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 + distribution,
393 + \begin{equation}
394 + \rho  \propto e^{ - \beta H}
395 + \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 +
463 + Various thermodynamic properties can be calculated from Molecular
464 + Dynamics simulation. By comparing experimental values with the
465 + calculated properties, one can determine the accuracy of the
466 + simulation and the quality of the underlying model. However, both of
467 + experiment and computer simulation are usually performed during a
468 + certain time interval and the measurements are averaged over a
469 + period of them which is different from the average behavior of
470 + many-body system in Statistical Mechanics. Fortunately, Ergodic
471 + Hypothesis is proposed to make a connection between time average and
472 + ensemble average. It states that time average and average over the
473 + statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474 + \begin{equation}
475 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 + \end{equation}
479 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 + distribution function. If an observation is averaged over a
482 + sufficiently long time (longer than relaxation time), all accessible
483 + microstates in phase space are assumed to be equally probed, giving
484 + a properly weighted statistical average. This allows the researcher
485 + freedom of choice when deciding how best to measure a given
486 + observable. In case an ensemble averaged approach sounds most
487 + reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 + utilized. Or if the system lends itself to a time averaging
489 + approach, the Molecular Dynamics techniques in
490 + Sec.~\ref{introSection:molecularDynamics} will be the best
491 + choice\cite{Frenkel1996}.
492 +
493 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 + A variety of numerical integrators were proposed to simulate the
495 + motions. They usually begin with an initial conditionals and move
496 + the objects in the direction governed by the differential equations.
497 + However, most of them ignore the hidden physical law contained
498 + within the equations. Since 1990, geometric integrators, which
499 + preserve various phase-flow invariants such as symplectic structure,
500 + volume and time reversal symmetry, are developed to address this
501 + issue. The velocity verlet method, which happens to be a simple
502 + example of symplectic integrator, continues to gain its popularity
503 + in molecular dynamics community. This fact can be partly explained
504 + by its geometric nature.
505 +
506 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 + A \emph{manifold} is an abstract mathematical space. It locally
508 + looks like Euclidean space, but when viewed globally, it may have
509 + more complicate structure. A good example of manifold is the surface
510 + of Earth. It seems to be flat locally, but it is round if viewed as
511 + a whole. A \emph{differentiable manifold} (also known as
512 + \emph{smooth manifold}) is a manifold with an open cover in which
513 + the covering neighborhoods are all smoothly isomorphic to one
514 + another. In other words,it is possible to apply calculus on
515 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 + defined as a pair $(M, \omega)$ which consisting of a
517 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 + bilinear symplectic form, $\omega$. A symplectic form on a vector
519 + space $V$ is a function $\omega(x, y)$ which satisfies
520 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 + $\omega(x, x) = 0$. Cross product operation in vector field is an
523 + example of symplectic form.
524 +
525 + One of the motivations to study \emph{symplectic manifold} in
526 + Hamiltonian Mechanics is that a symplectic manifold can represent
527 + all possible configurations of the system and the phase space of the
528 + system can be described by it's cotangent bundle. Every symplectic
529 + manifold is even dimensional. For instance, in Hamilton equations,
530 + coordinate and momentum always appear in pairs.
531 +
532 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 + \[
534 + f : M \rightarrow N
535 + \]
536 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 + Canonical transformation is an example of symplectomorphism in
539 + classical mechanics.
540 +
541 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 +
543 + For a ordinary differential system defined as
544 + \begin{equation}
545 + \dot x = f(x)
546 + \end{equation}
547 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 + \begin{equation}
549 + f(r) = J\nabla _x H(r).
550 + \end{equation}
551 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 + matrix
553 + \begin{equation}
554 + J = \left( {\begin{array}{*{20}c}
555 +   0 & I  \\
556 +   { - I} & 0  \\
557 + \end{array}} \right)
558 + \label{introEquation:canonicalMatrix}
559 + \end{equation}
560 + where $I$ is an identity matrix. Using this notation, Hamiltonian
561 + system can be rewritten as,
562 + \begin{equation}
563 + \frac{d}{{dt}}x = J\nabla _x H(x)
564 + \label{introEquation:compactHamiltonian}
565 + \end{equation}In this case, $f$ is
566 + called a \emph{Hamiltonian vector field}.
567 +
568 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 + \begin{equation}
570 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 + \end{equation}
572 + The most obvious change being that matrix $J$ now depends on $x$.
573 + The free rigid body is an example of Poisson system (actually a
574 + Lie-Poisson system) with Hamiltonian function of angular kinetic
575 + energy.
576 + \begin{equation}
577 + J(\pi ) = \left( {\begin{array}{*{20}c}
578 +   0 & {\pi _3 } & { - \pi _2 }  \\
579 +   { - \pi _3 } & 0 & {\pi _1 }  \\
580 +   {\pi _2 } & { - \pi _1 } & 0  \\
581 + \end{array}} \right)
582 + \end{equation}
583 +
584 + \begin{equation}
585 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 + \end{equation}
588 +
589 + \subsection{\label{introSection:exactFlow}Exact Flow}
590 +
591 + Let $x(t)$ be the exact solution of the ODE system,
592 + \begin{equation}
593 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
594 + \end{equation}
595 + The exact flow(solution) $\varphi_\tau$ is defined by
596 + \[
597 + x(t+\tau) =\varphi_\tau(x(t))
598 + \]
599 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
600 + space to itself. The flow has the continuous group property,
601 + \begin{equation}
602 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
603 + + \tau _2 } .
604 + \end{equation}
605 + In particular,
606 + \begin{equation}
607 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
608 + \end{equation}
609 + Therefore, the exact flow is self-adjoint,
610 + \begin{equation}
611 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
612 + \end{equation}
613 + The exact flow can also be written in terms of the of an operator,
614 + \begin{equation}
615 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
616 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
617 + \label{introEquation:exponentialOperator}
618 + \end{equation}
619 +
620 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
621 + Instead, we use a approximate map, $\psi_\tau$, which is usually
622 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
623 + the Taylor series of $\psi_\tau$ agree to order $p$,
624 + \begin{equation}
625 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
626 + \end{equation}
627 +
628 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
629 +
630 + The hidden geometric properties of ODE and its flow play important
631 + roles in numerical studies. Many of them can be found in systems
632 + which occur naturally in applications.
633 +
634 + Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
635 + a \emph{symplectic} flow if it satisfies,
636 + \begin{equation}
637 + {\varphi '}^T J \varphi ' = J.
638 + \end{equation}
639 + According to Liouville's theorem, the symplectic volume is invariant
640 + under a Hamiltonian flow, which is the basis for classical
641 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
642 + field on a symplectic manifold can be shown to be a
643 + symplectomorphism. As to the Poisson system,
644 + \begin{equation}
645 + {\varphi '}^T J \varphi ' = J \circ \varphi
646 + \end{equation}
647 + is the property must be preserved by the integrator.
648 +
649 + It is possible to construct a \emph{volume-preserving} flow for a
650 + source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
651 + \det d\varphi  = 1$. One can show easily that a symplectic flow will
652 + be volume-preserving.
653 +
654 + Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
655 + will result in a new system,
656 + \[
657 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
658 + \]
659 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
660 + In other words, the flow of this vector field is reversible if and
661 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
662 +
663 + A \emph{first integral}, or conserved quantity of a general
664 + differential function is a function $ G:R^{2d}  \to R^d $ which is
665 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
666 + \[
667 + \frac{{dG(x(t))}}{{dt}} = 0.
668 + \]
669 + Using chain rule, one may obtain,
670 + \[
671 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
672 + \]
673 + which is the condition for conserving \emph{first integral}. For a
674 + canonical Hamiltonian system, the time evolution of an arbitrary
675 + smooth function $G$ is given by,
676 + \begin{equation}
677 + \begin{array}{c}
678 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
679 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
680 + \end{array}
681 + \label{introEquation:firstIntegral1}
682 + \end{equation}
683 + Using poisson bracket notion, Equation
684 + \ref{introEquation:firstIntegral1} can be rewritten as
685 + \[
686 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
687 + \]
688 + Therefore, the sufficient condition for $G$ to be the \emph{first
689 + integral} of a Hamiltonian system is
690 + \[
691 + \left\{ {G,H} \right\} = 0.
692 + \]
693 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
694 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
695 + 0$.
696 +
697 +
698 + When designing any numerical methods, one should always try to
699 + preserve the structural properties of the original ODE and its flow.
700  
701 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
702 + A lot of well established and very effective numerical methods have
703 + been successful precisely because of their symplecticities even
704 + though this fact was not recognized when they were first
705 + constructed. The most famous example is leapfrog methods in
706 + molecular dynamics. In general, symplectic integrators can be
707 + constructed using one of four different methods.
708 + \begin{enumerate}
709 + \item Generating functions
710 + \item Variational methods
711 + \item Runge-Kutta methods
712 + \item Splitting methods
713 + \end{enumerate}
714  
715 + Generating function tends to lead to methods which are cumbersome
716 + and difficult to use. In dissipative systems, variational methods
717 + can capture the decay of energy accurately. Since their
718 + geometrically unstable nature against non-Hamiltonian perturbations,
719 + ordinary implicit Runge-Kutta methods are not suitable for
720 + Hamiltonian system. Recently, various high-order explicit
721 + Runge--Kutta methods have been developed to overcome this
722 + instability. However, due to computational penalty involved in
723 + implementing the Runge-Kutta methods, they do not attract too much
724 + attention from Molecular Dynamics community. Instead, splitting have
725 + been widely accepted since they exploit natural decompositions of
726 + the system\cite{Tuckerman92}.
727 +
728 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
729 +
730 + The main idea behind splitting methods is to decompose the discrete
731 + $\varphi_h$ as a composition of simpler flows,
732 + \begin{equation}
733 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
734 + \varphi _{h_n }
735 + \label{introEquation:FlowDecomposition}
736 + \end{equation}
737 + where each of the sub-flow is chosen such that each represent a
738 + simpler integration of the system.
739 +
740 + Suppose that a Hamiltonian system takes the form,
741 + \[
742 + H = H_1 + H_2.
743 + \]
744 + Here, $H_1$ and $H_2$ may represent different physical processes of
745 + the system. For instance, they may relate to kinetic and potential
746 + energy respectively, which is a natural decomposition of the
747 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
748 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
749 + order is then given by the Lie-Trotter formula
750 + \begin{equation}
751 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
752 + \label{introEquation:firstOrderSplitting}
753 + \end{equation}
754 + where $\varphi _h$ is the result of applying the corresponding
755 + continuous $\varphi _i$ over a time $h$. By definition, as
756 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
757 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
758 + It is easy to show that any composition of symplectic flows yields a
759 + symplectic map,
760 + \begin{equation}
761 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
762 + '\phi ' = \phi '^T J\phi ' = J,
763 + \label{introEquation:SymplecticFlowComposition}
764 + \end{equation}
765 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
766 + splitting in this context automatically generates a symplectic map.
767 +
768 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
769 + introduces local errors proportional to $h^2$, while Strang
770 + splitting gives a second-order decomposition,
771 + \begin{equation}
772 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
773 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
774 + \end{equation}
775 + which has a local error proportional to $h^3$. Sprang splitting's
776 + popularity in molecular simulation community attribute to its
777 + symmetric property,
778 + \begin{equation}
779 + \varphi _h^{ - 1} = \varphi _{ - h}.
780 + \label{introEquation:timeReversible}
781 + \end{equation}
782 +
783 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
784 + The classical equation for a system consisting of interacting
785 + particles can be written in Hamiltonian form,
786 + \[
787 + H = T + V
788 + \]
789 + where $T$ is the kinetic energy and $V$ is the potential energy.
790 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
791 + obtains the following:
792 + \begin{align}
793 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
794 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
795 + \label{introEquation:Lp10a} \\%
796 + %
797 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
798 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
799 + \label{introEquation:Lp10b}
800 + \end{align}
801 + where $F(t)$ is the force at time $t$. This integration scheme is
802 + known as \emph{velocity verlet} which is
803 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
804 + time-reversible(\ref{introEquation:timeReversible}) and
805 + volume-preserving (\ref{introEquation:volumePreserving}). These
806 + geometric properties attribute to its long-time stability and its
807 + popularity in the community. However, the most commonly used
808 + velocity verlet integration scheme is written as below,
809 + \begin{align}
810 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
811 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
812 + %
813 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
814 +    \label{introEquation:Lp9b}\\%
815 + %
816 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
817 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
818 + \end{align}
819 + From the preceding splitting, one can see that the integration of
820 + the equations of motion would follow:
821 + \begin{enumerate}
822 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
823 +
824 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
825 +
826 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
827 +
828 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
829 + \end{enumerate}
830 +
831 + Simply switching the order of splitting and composing, a new
832 + integrator, the \emph{position verlet} integrator, can be generated,
833 + \begin{align}
834 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
835 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
836 + \label{introEquation:positionVerlet1} \\%
837 + %
838 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
839 + q(\Delta t)} \right]. %
840 + \label{introEquation:positionVerlet1}
841 + \end{align}
842 +
843 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
844 +
845 + Baker-Campbell-Hausdorff formula can be used to determine the local
846 + error of splitting method in terms of commutator of the
847 + operators(\ref{introEquation:exponentialOperator}) associated with
848 + the sub-flow. For operators $hX$ and $hY$ which are associate to
849 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
850 + \begin{equation}
851 + \exp (hX + hY) = \exp (hZ)
852 + \end{equation}
853 + where
854 + \begin{equation}
855 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
856 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
857 + \end{equation}
858 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
859 + \[
860 + [X,Y] = XY - YX .
861 + \]
862 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
863 + can obtain
864 + \begin{eqnarray*}
865 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
866 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
867 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
868 + \ldots )
869 + \end{eqnarray*}
870 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
871 + error of Spring splitting is proportional to $h^3$. The same
872 + procedure can be applied to general splitting,  of the form
873 + \begin{equation}
874 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
875 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
876 + \end{equation}
877 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
878 + order method. Yoshida proposed an elegant way to compose higher
879 + order methods based on symmetric splitting. Given a symmetric second
880 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
881 + method can be constructed by composing,
882 + \[
883 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
884 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
885 + \]
886 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
887 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
888 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
889 + \begin{equation}
890 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
891 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
892 + \end{equation}
893 + , if the weights are chosen as
894 + \[
895 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
896 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
897 + \]
898 +
899   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
900  
901   As a special discipline of molecular modeling, Molecular dynamics
# Line 252 | Line 905 | dynamical information.
905  
906   \subsection{\label{introSec:mdInit}Initialization}
907  
908 + \subsection{\label{introSec:forceEvaluation}Force Evaluation}
909 +
910   \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
911  
912   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
913  
914 < A rigid body is a body in which the distance between any two given
915 < points of a rigid body remains constant regardless of external
916 < forces exerted on it. A rigid body therefore conserves its shape
917 < during its motion.
914 > Rigid bodies are frequently involved in the modeling of different
915 > areas, from engineering, physics, to chemistry. For example,
916 > missiles and vehicle are usually modeled by rigid bodies.  The
917 > movement of the objects in 3D gaming engine or other physics
918 > simulator is governed by the rigid body dynamics. In molecular
919 > simulation, rigid body is used to simplify the model in
920 > protein-protein docking study{\cite{Gray03}}.
921  
922 < Applications of dynamics of rigid bodies.
922 > It is very important to develop stable and efficient methods to
923 > integrate the equations of motion of orientational degrees of
924 > freedom. Euler angles are the nature choice to describe the
925 > rotational degrees of freedom. However, due to its singularity, the
926 > numerical integration of corresponding equations of motion is very
927 > inefficient and inaccurate. Although an alternative integrator using
928 > different sets of Euler angles can overcome this difficulty\cite{},
929 > the computational penalty and the lost of angular momentum
930 > conservation still remain. A singularity free representation
931 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
932 > this approach suffer from the nonseparable Hamiltonian resulted from
933 > quaternion representation, which prevents the symplectic algorithm
934 > to be utilized. Another different approach is to apply holonomic
935 > constraints to the atoms belonging to the rigid body. Each atom
936 > moves independently under the normal forces deriving from potential
937 > energy and constraint forces which are used to guarantee the
938 > rigidness. However, due to their iterative nature, SHAKE and Rattle
939 > algorithm converge very slowly when the number of constraint
940 > increases.
941  
942 + The break through in geometric literature suggests that, in order to
943 + develop a long-term integration scheme, one should preserve the
944 + symplectic structure of the flow. Introducing conjugate momentum to
945 + rotation matrix $A$ and re-formulating Hamiltonian's equation, a
946 + symplectic integrator, RSHAKE, was proposed to evolve the
947 + Hamiltonian system in a constraint manifold by iteratively
948 + satisfying the orthogonality constraint $A_t A = 1$. An alternative
949 + method using quaternion representation was developed by Omelyan.
950 + However, both of these methods are iterative and inefficient. In
951 + this section, we will present a symplectic Lie-Poisson integrator
952 + for rigid body developed by Dullweber and his coworkers\cite{}.
953  
954 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
954 > \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955  
956 < \section{\label{introSection:correlationFunctions}Correlation Functions}
956 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
957 >
958 > \begin{equation}
959 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
960 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
961 > \label{introEquation:RBHamiltonian}
962 > \end{equation}
963 > Here, $q$ and $Q$  are the position and rotation matrix for the
964 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
965 > $J$, a diagonal matrix, is defined by
966 > \[
967 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
968 > \]
969 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
970 > constrained Hamiltonian equation subjects to a holonomic constraint,
971 > \begin{equation}
972 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
973 > \end{equation}
974 > which is used to ensure rotation matrix's orthogonality.
975 > Differentiating \ref{introEquation:orthogonalConstraint} and using
976 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
977 > \begin{equation}
978 > Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
979 > \label{introEquation:RBFirstOrderConstraint}
980 > \end{equation}
981  
982 + Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
983 + \ref{introEquation:motionHamiltonianMomentum}), one can write down
984 + the equations of motion,
985 + \[
986 + \begin{array}{c}
987 + \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
988 + \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
989 + \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
990 + \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
991 + \end{array}
992 + \]
993 +
994 +
995 + \[
996 + M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
997 + \right\} .
998 + \]
999 +
1000 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1001 +
1002 + \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1003 +
1004 +
1005   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006  
1007 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1008 +
1009   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1010  
1011 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
1011 > \begin{equation}
1012 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1013 > \label{introEquation:bathGLE}
1014 > \end{equation}
1015 > where $H_B$ is harmonic bath Hamiltonian,
1016 > \[
1017 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1018 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1019 > \]
1020 > and $\Delta U$ is bilinear system-bath coupling,
1021 > \[
1022 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1023 > \]
1024 > Completing the square,
1025 > \[
1026 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1027 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1028 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1029 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1030 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1031 > \]
1032 > and putting it back into Eq.~\ref{introEquation:bathGLE},
1033 > \[
1034 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1035 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1036 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1037 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1038 > \]
1039 > where
1040 > \[
1041 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1042 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1043 > \]
1044 > Since the first two terms of the new Hamiltonian depend only on the
1045 > system coordinates, we can get the equations of motion for
1046 > Generalized Langevin Dynamics by Hamilton's equations
1047 > \ref{introEquation:motionHamiltonianCoordinate,
1048 > introEquation:motionHamiltonianMomentum},
1049 > \begin{align}
1050 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
1051 >       &= m\ddot x
1052 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1053 > \label{introEquation:Lp5}
1054 > \end{align}
1055 > , and
1056 > \begin{align}
1057 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1058 >                &= m\ddot x_\alpha
1059 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1060 > \end{align}
1061 >
1062 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1063 >
1064 > \[
1065 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1066 > \]
1067 >
1068 > \[
1069 > L(x + y) = L(x) + L(y)
1070 > \]
1071 >
1072 > \[
1073 > L(ax) = aL(x)
1074 > \]
1075 >
1076 > \[
1077 > L(\dot x) = pL(x) - px(0)
1078 > \]
1079 >
1080 > \[
1081 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1082 > \]
1083 >
1084 > \[
1085 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1086 > \]
1087 >
1088 > Some relatively important transformation,
1089 > \[
1090 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
1091 > \]
1092 >
1093 > \[
1094 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
1095 > \]
1096 >
1097 > \[
1098 > L(1) = \frac{1}{p}
1099 > \]
1100 >
1101 > First, the bath coordinates,
1102 > \[
1103 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1104 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1105 > }}L(x)
1106 > \]
1107 > \[
1108 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1109 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1110 > \]
1111 > Then, the system coordinates,
1112 > \begin{align}
1113 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1114 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1115 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1116 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1117 > }}\omega _\alpha ^2 L(x)} \right\}}
1118 > %
1119 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1120 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1121 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1122 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1123 > \end{align}
1124 > Then, the inverse transform,
1125 >
1126 > \begin{align}
1127 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1128 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1129 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1130 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1131 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1132 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1133 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1134 > %
1135 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1136 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1137 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1138 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1139 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1140 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1141 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1142 > (\omega _\alpha  t)} \right\}}
1143 > \end{align}
1144 >
1145 > \begin{equation}
1146 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1147 > (t)\dot x(t - \tau )d\tau }  + R(t)
1148 > \label{introEuqation:GeneralizedLangevinDynamics}
1149 > \end{equation}
1150 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1151 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1152 > \[
1153 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1154 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1155 > \]
1156 > For an infinite harmonic bath, we can use the spectral density and
1157 > an integral over frequencies.
1158 >
1159 > \[
1160 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1161 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1162 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1163 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1164 > \]
1165 > The random forces depend only on initial conditions.
1166 >
1167 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1168 > So we can define a new set of coordinates,
1169 > \[
1170 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1171 > ^2 }}x(0)
1172 > \]
1173 > This makes
1174 > \[
1175 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1176 > \]
1177 > And since the $q$ coordinates are harmonic oscillators,
1178 > \[
1179 > \begin{array}{l}
1180 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1181 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1182 > \end{array}
1183 > \]
1184 >
1185 > \begin{align}
1186 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1187 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1188 > (t)q_\beta  (0)} \right\rangle } }
1189 > %
1190 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1191 > \right\rangle \cos (\omega _\alpha  t)}
1192 > %
1193 > &= kT\xi (t)
1194 > \end{align}
1195 >
1196 > \begin{equation}
1197 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1198 > \label{introEquation:secondFluctuationDissipation}
1199 > \end{equation}
1200 >
1201 > \section{\label{introSection:hydroynamics}Hydrodynamics}
1202 >
1203 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1204 > \subsection{\label{introSection:analyticalApproach}Analytical
1205 > Approach}
1206 >
1207 > \subsection{\label{introSection:approximationApproach}Approximation
1208 > Approach}
1209 >
1210 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1211 > Body}
1212 >
1213 > \section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines