ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC vs.
Revision 2725 by tim, Fri Apr 21 05:45:14 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
573  
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
588
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576   Let $x(t)$ be the exact solution of the ODE system,
# Line 837 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 898 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
902 <
903 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
904 <
905 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
917 > provides the theoretical tools for trajectory analysis.
918  
919 + \subsection{\label{introSec:initialSystemSettings}Initialization}
920 +
921 + \subsubsection{Preliminary preparation}
922 +
923 + When selecting the starting structure of a molecule for molecular
924 + simulation, one may retrieve its Cartesian coordinates from public
925 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
926 + thousands of crystal structures of molecules are discovered every
927 + year, many more remain unknown due to the difficulties of
928 + purification and crystallization. Even for the molecule with known
929 + structure, some important information is missing. For example, the
930 + missing hydrogen atom which acts as donor in hydrogen bonding must
931 + be added. Moreover, in order to include electrostatic interaction,
932 + one may need to specify the partial charges for individual atoms.
933 + Under some circumstances, we may even need to prepare the system in
934 + a special setup. For instance, when studying transport phenomenon in
935 + membrane system, we may prepare the lipids in bilayer structure
936 + instead of placing lipids randomly in solvent, since we are not
937 + interested in self-aggregation and it takes a long time to happen.
938 +
939 + \subsubsection{Minimization}
940 +
941 + It is quite possible that some of molecules in the system from
942 + preliminary preparation may be overlapped with each other. This
943 + close proximity leads to high potential energy which consequently
944 + jeopardizes any molecular dynamics simulations. To remove these
945 + steric overlaps, one typically performs energy minimization to find
946 + a more reasonable conformation. Several energy minimization methods
947 + have been developed to exploit the energy surface and to locate the
948 + local minimum. While converging slowly near the minimum, steepest
949 + descent method is extremely robust when systems are far from
950 + harmonic. Thus, it is often used to refine structure from
951 + crystallographic data. Relied on the gradient or hessian, advanced
952 + methods like conjugate gradient and Newton-Raphson converge rapidly
953 + to a local minimum, while become unstable if the energy surface is
954 + far from quadratic. Another factor must be taken into account, when
955 + choosing energy minimization method, is the size of the system.
956 + Steepest descent and conjugate gradient can deal with models of any
957 + size. Because of the limit of computation power to calculate hessian
958 + matrix and insufficient storage capacity to store them, most
959 + Newton-Raphson methods can not be used with very large models.
960 +
961 + \subsubsection{Heating}
962 +
963 + Typically, Heating is performed by assigning random velocities
964 + according to a Gaussian distribution for a temperature. Beginning at
965 + a lower temperature and gradually increasing the temperature by
966 + assigning greater random velocities, we end up with setting the
967 + temperature of the system to a final temperature at which the
968 + simulation will be conducted. In heating phase, we should also keep
969 + the system from drifting or rotating as a whole. Equivalently, the
970 + net linear momentum and angular momentum of the system should be
971 + shifted to zero.
972 +
973 + \subsubsection{Equilibration}
974 +
975 + The purpose of equilibration is to allow the system to evolve
976 + spontaneously for a period of time and reach equilibrium. The
977 + procedure is continued until various statistical properties, such as
978 + temperature, pressure, energy, volume and other structural
979 + properties \textit{etc}, become independent of time. Strictly
980 + speaking, minimization and heating are not necessary, provided the
981 + equilibration process is long enough. However, these steps can serve
982 + as a means to arrive at an equilibrated structure in an effective
983 + way.
984 +
985 + \subsection{\label{introSection:production}Production}
986 +
987 + Production run is the most important steps of the simulation, in
988 + which the equilibrated structure is used as a starting point and the
989 + motions of the molecules are collected for later analysis. In order
990 + to capture the macroscopic properties of the system, the molecular
991 + dynamics simulation must be performed in correct and efficient way.
992 +
993 + The most expensive part of a molecular dynamics simulation is the
994 + calculation of non-bonded forces, such as van der Waals force and
995 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
996 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
997 + which making large simulations prohibitive in the absence of any
998 + computation saving techniques.
999 +
1000 + A natural approach to avoid system size issue is to represent the
1001 + bulk behavior by a finite number of the particles. However, this
1002 + approach will suffer from the surface effect. To offset this,
1003 + \textit{Periodic boundary condition} is developed to simulate bulk
1004 + properties with a relatively small number of particles. In this
1005 + method, the simulation box is replicated throughout space to form an
1006 + infinite lattice. During the simulation, when a particle moves in
1007 + the primary cell, its image in other cells move in exactly the same
1008 + direction with exactly the same orientation. Thus, as a particle
1009 + leaves the primary cell, one of its images will enter through the
1010 + opposite face.
1011 + %\begin{figure}
1012 + %\centering
1013 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1014 + %\caption[An illustration of periodic boundary conditions]{A 2-D
1015 + %illustration of periodic boundary conditions. As one particle leaves
1016 + %the right of the simulation box, an image of it enters the left.}
1017 + %\label{introFig:pbc}
1018 + %\end{figure}
1019 +
1020 + %cutoff and minimum image convention
1021 + Another important technique to improve the efficiency of force
1022 + evaluation is to apply cutoff where particles farther than a
1023 + predetermined distance, are not included in the calculation
1024 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1025 + discontinuity in the potential energy curve
1026 + (Fig.~\ref{introFig:shiftPot}). Fortunately, one can shift the
1027 + potential to ensure the potential curve go smoothly to zero at the
1028 + cutoff radius. Cutoff strategy works pretty well for Lennard-Jones
1029 + interaction because of its short range nature. However, simply
1030 + truncating the electrostatic interaction with the use of cutoff has
1031 + been shown to lead to severe artifacts in simulations. Ewald
1032 + summation, in which the slowly conditionally convergent Coulomb
1033 + potential is transformed into direct and reciprocal sums with rapid
1034 + and absolute convergence, has proved to minimize the periodicity
1035 + artifacts in liquid simulations. Taking the advantages of the fast
1036 + Fourier transform (FFT) for calculating discrete Fourier transforms,
1037 + the particle mesh-based methods are accelerated from $O(N^{3/2})$ to
1038 + $O(N logN)$. An alternative approach is \emph{fast multipole
1039 + method}, which treats Coulombic interaction exactly at short range,
1040 + and approximate the potential at long range through multipolar
1041 + expansion. In spite of their wide acceptances at the molecular
1042 + simulation community, these two methods are hard to be implemented
1043 + correctly and efficiently. Instead, we use a damped and
1044 + charge-neutralized Coulomb potential method developed by Wolf and
1045 + his coworkers. The shifted Coulomb potential for particle $i$ and
1046 + particle $j$ at distance $r_{rj}$ is given by:
1047 + \begin{equation}
1048 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1049 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1050 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1051 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1052 + \end{equation}
1053 + where $\alpha$ is the convergence parameter. Due to the lack of
1054 + inherent periodicity and rapid convergence,this method is extremely
1055 + efficient and easy to implement.
1056 + %\begin{figure}
1057 + %\centering
1058 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1059 + %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1060 + %\label{introFigure:shiftedCoulomb}
1061 + %\end{figure}
1062 +
1063 + %multiple time step
1064 +
1065 + \subsection{\label{introSection:Analysis} Analysis}
1066 +
1067 + Recently, advanced visualization technique are widely applied to
1068 + monitor the motions of molecules. Although the dynamics of the
1069 + system can be described qualitatively from animation, quantitative
1070 + trajectory analysis are more appreciable. According to the
1071 + principles of Statistical Mechanics,
1072 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1073 + thermodynamics properties, analyze fluctuations of structural
1074 + parameters, and investigate time-dependent processes of the molecule
1075 + from the trajectories.
1076 +
1077 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1078 +
1079 + Thermodynamics properties, which can be expressed in terms of some
1080 + function of the coordinates and momenta of all particles in the
1081 + system, can be directly computed from molecular dynamics. The usual
1082 + way to measure the pressure is based on virial theorem of Clausius
1083 + which states that the virial is equal to $-3Nk_BT$. For a system
1084 + with forces between particles, the total virial, $W$, contains the
1085 + contribution from external pressure and interaction between the
1086 + particles:
1087 + \[
1088 + W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1089 + f_{ij} } } \right\rangle
1090 + \]
1091 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1092 + distance $r_{ij}$. Thus, the expression for the pressure is given
1093 + by:
1094 + \begin{equation}
1095 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1096 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1097 + \end{equation}
1098 +
1099 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1100 +
1101 + Structural Properties of a simple fluid can be described by a set of
1102 + distribution functions. Among these functions,\emph{pair
1103 + distribution function}, also known as \emph{radial distribution
1104 + function}, is of most fundamental importance to liquid-state theory.
1105 + Pair distribution function can be gathered by Fourier transforming
1106 + raw data from a series of neutron diffraction experiments and
1107 + integrating over the surface factor \cite{Powles73}. The experiment
1108 + result can serve as a criterion to justify the correctness of the
1109 + theory. Moreover, various equilibrium thermodynamic and structural
1110 + properties can also be expressed in terms of radial distribution
1111 + function \cite{allen87:csl}.
1112 +
1113 + A pair distribution functions $g(r)$ gives the probability that a
1114 + particle $i$ will be located at a distance $r$ from a another
1115 + particle $j$ in the system
1116 + \[
1117 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1118 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1119 + \]
1120 + Note that the delta function can be replaced by a histogram in
1121 + computer simulation. Figure
1122 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1123 + distribution function for the liquid argon system. The occurrence of
1124 + several peaks in the plot of $g(r)$ suggests that it is more likely
1125 + to find particles at certain radial values than at others. This is a
1126 + result of the attractive interaction at such distances. Because of
1127 + the strong repulsive forces at short distance, the probability of
1128 + locating particles at distances less than about 2.5{\AA} from each
1129 + other is essentially zero.
1130 +
1131 + %\begin{figure}
1132 + %\centering
1133 + %\includegraphics[width=\linewidth]{pdf.eps}
1134 + %\caption[Pair distribution function for the liquid argon
1135 + %]{Pair distribution function for the liquid argon}
1136 + %\label{introFigure:pairDistributionFunction}
1137 + %\end{figure}
1138 +
1139 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1140 + Properties}
1141 +
1142 + Time-dependent properties are usually calculated using \emph{time
1143 + correlation function}, which correlates random variables $A$ and $B$
1144 + at two different time
1145 + \begin{equation}
1146 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1147 + \label{introEquation:timeCorrelationFunction}
1148 + \end{equation}
1149 + If $A$ and $B$ refer to same variable, this kind of correlation
1150 + function is called \emph{auto correlation function}. One example of
1151 + auto correlation function is velocity auto-correlation function
1152 + which is directly related to transport properties of molecular
1153 + liquids:
1154 + \[
1155 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1156 + \right\rangle } dt
1157 + \]
1158 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1159 + function which is averaging over time origins and over all the
1160 + atoms, dipole autocorrelation are calculated for the entire system.
1161 + The dipole autocorrelation function is given by:
1162 + \[
1163 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1164 + \right\rangle
1165 + \]
1166 + Here $u_{tot}$ is the net dipole of the entire system and is given
1167 + by
1168 + \[
1169 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1170 + \]
1171 + In principle, many time correlation functions can be related with
1172 + Fourier transforms of the infrared, Raman, and inelastic neutron
1173 + scattering spectra of molecular liquids. In practice, one can
1174 + extract the IR spectrum from the intensity of dipole fluctuation at
1175 + each frequency using the following relationship:
1176 + \[
1177 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1178 + i2\pi vt} dt}
1179 + \]
1180 +
1181   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1182  
1183   Rigid bodies are frequently involved in the modeling of different
# Line 942 | Line 1211 | rotation matrix $A$ and re-formulating Hamiltonian's e
1211   The break through in geometric literature suggests that, in order to
1212   develop a long-term integration scheme, one should preserve the
1213   symplectic structure of the flow. Introducing conjugate momentum to
1214 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1214 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1215   symplectic integrator, RSHAKE, was proposed to evolve the
1216   Hamiltonian system in a constraint manifold by iteratively
1217 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1217 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1218   method using quaternion representation was developed by Omelyan.
1219   However, both of these methods are iterative and inefficient. In
1220   this section, we will present a symplectic Lie-Poisson integrator
1221 < for rigid body developed by Dullweber and his coworkers\cite{}.
1221 > for rigid body developed by Dullweber and his
1222 > coworkers\cite{Dullweber1997} in depth.
1223  
954 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955
1224   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1225 <
1225 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1226 > function
1227   \begin{equation}
1228   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1229   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 975 | Line 1244 | Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
1244   Differentiating \ref{introEquation:orthogonalConstraint} and using
1245   Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1246   \begin{equation}
1247 < Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
1247 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1248   \label{introEquation:RBFirstOrderConstraint}
1249   \end{equation}
1250  
# Line 987 | Line 1256 | the equations of motion,
1256   \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1257   \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1258   \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1259 < \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1259 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1260   \end{array}
1261   \]
1262  
1263 <
1263 > In general, there are two ways to satisfy the holonomic constraints.
1264 > We can use constraint force provided by lagrange multiplier on the
1265 > normal manifold to keep the motion on constraint space. Or we can
1266 > simply evolve the system in constraint manifold. The two method are
1267 > proved to be equivalent. The holonomic constraint and equations of
1268 > motions define a constraint manifold for rigid body
1269   \[
1270 < M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
1271 < \right\} .
1270 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1271 > \right\}.
1272   \]
1273  
1274 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1275 <
1276 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1277 <
1004 <
1005 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006 <
1007 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1008 <
1009 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1010 <
1011 < \begin{equation}
1012 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1013 < \label{introEquation:bathGLE}
1014 < \end{equation}
1015 < where $H_B$ is harmonic bath Hamiltonian,
1274 > Unfortunately, this constraint manifold is not the cotangent bundle
1275 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1276 > transformation, the cotangent space and the phase space are
1277 > diffeomorphic. Introducing
1278   \[
1279 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1018 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1279 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1280   \]
1281 < and $\Delta U$ is bilinear system-bath coupling,
1281 > the mechanical system subject to a holonomic constraint manifold $M$
1282 > can be re-formulated as a Hamiltonian system on the cotangent space
1283   \[
1284 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1284 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1285 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1286   \]
1287 < Completing the square,
1287 >
1288 > For a body fixed vector $X_i$ with respect to the center of mass of
1289 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1290 > given as
1291 > \begin{equation}
1292 > X_i^{lab} = Q X_i + q.
1293 > \end{equation}
1294 > Therefore, potential energy $V(q,Q)$ is defined by
1295   \[
1296 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1027 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1028 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1029 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1030 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1296 > V(q,Q) = V(Q X_0 + q).
1297   \]
1298 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1298 > Hence, the force and torque are given by
1299   \[
1300 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1035 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1036 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1037 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1300 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1301   \]
1302 < where
1302 > and
1303   \[
1304 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1042 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1304 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1305   \]
1306 < Since the first two terms of the new Hamiltonian depend only on the
1045 < system coordinates, we can get the equations of motion for
1046 < Generalized Langevin Dynamics by Hamilton's equations
1047 < \ref{introEquation:motionHamiltonianCoordinate,
1048 < introEquation:motionHamiltonianMomentum},
1049 < \begin{align}
1050 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1051 <       &= m\ddot x
1052 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1053 < \label{introEquation:Lp5}
1054 < \end{align}
1055 < , and
1056 < \begin{align}
1057 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1058 <                &= m\ddot x_\alpha
1059 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1060 < \end{align}
1306 > respectively.
1307  
1308 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1309 <
1308 > As a common choice to describe the rotation dynamics of the rigid
1309 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1310 > rewrite the equations of motion,
1311 > \begin{equation}
1312 > \begin{array}{l}
1313 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1314 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1315 > \end{array}
1316 > \label{introEqaution:RBMotionPI}
1317 > \end{equation}
1318 > , as well as holonomic constraints,
1319   \[
1320 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1320 > \begin{array}{l}
1321 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1322 > Q^T Q = 1 \\
1323 > \end{array}
1324   \]
1325  
1326 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1327 + so(3)^ \star$, the hat-map isomorphism,
1328 + \begin{equation}
1329 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1330 + {\begin{array}{*{20}c}
1331 +   0 & { - v_3 } & {v_2 }  \\
1332 +   {v_3 } & 0 & { - v_1 }  \\
1333 +   { - v_2 } & {v_1 } & 0  \\
1334 + \end{array}} \right),
1335 + \label{introEquation:hatmapIsomorphism}
1336 + \end{equation}
1337 + will let us associate the matrix products with traditional vector
1338 + operations
1339   \[
1340 < L(x + y) = L(x) + L(y)
1340 > \hat vu = v \times u
1341   \]
1342  
1343 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1344 + matrix,
1345 + \begin{equation}
1346 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1347 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1348 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1349 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1350 + \end{equation}
1351 + Since $\Lambda$ is symmetric, the last term of Equation
1352 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1353 + multiplier $\Lambda$ is absent from the equations of motion. This
1354 + unique property eliminate the requirement of iterations which can
1355 + not be avoided in other methods\cite{}.
1356 +
1357 + Applying hat-map isomorphism, we obtain the equation of motion for
1358 + angular momentum on body frame
1359 + \begin{equation}
1360 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1361 + F_i (r,Q)} \right) \times X_i }.
1362 + \label{introEquation:bodyAngularMotion}
1363 + \end{equation}
1364 + In the same manner, the equation of motion for rotation matrix is
1365 + given by
1366   \[
1367 < L(ax) = aL(x)
1367 > \dot Q = Qskew(I^{ - 1} \pi )
1368   \]
1369  
1370 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1371 + Lie-Poisson Integrator for Free Rigid Body}
1372 +
1373 + If there is not external forces exerted on the rigid body, the only
1374 + contribution to the rotational is from the kinetic potential (the
1375 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1376 + rigid body is an example of Lie-Poisson system with Hamiltonian
1377 + function
1378 + \begin{equation}
1379 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1380 + \label{introEquation:rotationalKineticRB}
1381 + \end{equation}
1382 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1383 + Lie-Poisson structure matrix,
1384 + \begin{equation}
1385 + J(\pi ) = \left( {\begin{array}{*{20}c}
1386 +   0 & {\pi _3 } & { - \pi _2 }  \\
1387 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1388 +   {\pi _2 } & { - \pi _1 } & 0  \\
1389 + \end{array}} \right)
1390 + \end{equation}
1391 + Thus, the dynamics of free rigid body is governed by
1392 + \begin{equation}
1393 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1394 + \end{equation}
1395 +
1396 + One may notice that each $T_i^r$ in Equation
1397 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1398 + instance, the equations of motion due to $T_1^r$ are given by
1399 + \begin{equation}
1400 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1401 + \label{introEqaution:RBMotionSingleTerm}
1402 + \end{equation}
1403 + where
1404 + \[ R_1  = \left( {\begin{array}{*{20}c}
1405 +   0 & 0 & 0  \\
1406 +   0 & 0 & {\pi _1 }  \\
1407 +   0 & { - \pi _1 } & 0  \\
1408 + \end{array}} \right).
1409 + \]
1410 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1411   \[
1412 < L(\dot x) = pL(x) - px(0)
1412 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1413 > Q(0)e^{\Delta tR_1 }
1414   \]
1415 <
1415 > with
1416   \[
1417 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1417 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1418 >   0 & 0 & 0  \\
1419 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1420 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1421 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1422   \]
1423 <
1423 > To reduce the cost of computing expensive functions in $e^{\Delta
1424 > tR_1 }$, we can use Cayley transformation,
1425   \[
1426 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1426 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1427 > )
1428   \]
1429 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1430 + manner.
1431  
1432 < Some relatively important transformation,
1432 > In order to construct a second-order symplectic method, we split the
1433 > angular kinetic Hamiltonian function can into five terms
1434   \[
1435 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1435 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1436 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1437 > (\pi _1 )
1438 > \].
1439 > Concatenating flows corresponding to these five terms, we can obtain
1440 > an symplectic integrator,
1441 > \[
1442 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1443 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1444 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1445 > _1 }.
1446   \]
1447  
1448 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1449 + $F(\pi )$ and $G(\pi )$ is defined by
1450   \[
1451 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1451 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1452 > )
1453   \]
1454 <
1454 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1455 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1456 > conserved quantity in Poisson system. We can easily verify that the
1457 > norm of the angular momentum, $\parallel \pi
1458 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1459 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1460 > then by the chain rule
1461   \[
1462 < L(1) = \frac{1}{p}
1462 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1463 > }}{2})\pi
1464   \]
1465 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1466 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1467 + Lie-Poisson integrator is found to be extremely efficient and stable
1468 + which can be explained by the fact the small angle approximation is
1469 + used and the norm of the angular momentum is conserved.
1470  
1471 < First, the bath coordinates,
1471 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1472 > Splitting for Rigid Body}
1473 >
1474 > The Hamiltonian of rigid body can be separated in terms of kinetic
1475 > energy and potential energy,
1476   \[
1477 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1104 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1105 < }}L(x)
1477 > H = T(p,\pi ) + V(q,Q)
1478   \]
1479 < \[
1480 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1481 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1479 > The equations of motion corresponding to potential energy and
1480 > kinetic energy are listed in the below table,
1481 > \begin{center}
1482 > \begin{tabular}{|l|l|}
1483 >  \hline
1484 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1485 >  Potential & Kinetic \\
1486 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1487 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1488 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1489 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1490 >  \hline
1491 > \end{tabular}
1492 > \end{center}
1493 > A second-order symplectic method is now obtained by the composition
1494 > of the flow maps,
1495 > \[
1496 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1497 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1498   \]
1499 < Then, the system coordinates,
1500 < \begin{align}
1501 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1502 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1503 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1504 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1505 < }}\omega _\alpha ^2 L(x)} \right\}}
1506 < %
1507 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1120 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1121 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1122 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1123 < \end{align}
1124 < Then, the inverse transform,
1499 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1500 > sub-flows which corresponding to force and torque respectively,
1501 > \[
1502 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1503 > _{\Delta t/2,\tau }.
1504 > \]
1505 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1506 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1507 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1508  
1509 + Furthermore, kinetic potential can be separated to translational
1510 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1511 + \begin{equation}
1512 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1513 + \end{equation}
1514 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1515 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1516 + corresponding flow maps are given by
1517 + \[
1518 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1519 + _{\Delta t,T^r }.
1520 + \]
1521 + Finally, we obtain the overall symplectic flow maps for free moving
1522 + rigid body
1523 + \begin{equation}
1524 + \begin{array}{c}
1525 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1526 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1527 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1528 + \end{array}
1529 + \label{introEquation:overallRBFlowMaps}
1530 + \end{equation}
1531 +
1532 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1533 + As an alternative to newtonian dynamics, Langevin dynamics, which
1534 + mimics a simple heat bath with stochastic and dissipative forces,
1535 + has been applied in a variety of studies. This section will review
1536 + the theory of Langevin dynamics simulation. A brief derivation of
1537 + generalized Langevin equation will be given first. Follow that, we
1538 + will discuss the physical meaning of the terms appearing in the
1539 + equation as well as the calculation of friction tensor from
1540 + hydrodynamics theory.
1541 +
1542 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1543 +
1544 + Harmonic bath model, in which an effective set of harmonic
1545 + oscillators are used to mimic the effect of a linearly responding
1546 + environment, has been widely used in quantum chemistry and
1547 + statistical mechanics. One of the successful applications of
1548 + Harmonic bath model is the derivation of Deriving Generalized
1549 + Langevin Dynamics. Lets consider a system, in which the degree of
1550 + freedom $x$ is assumed to couple to the bath linearly, giving a
1551 + Hamiltonian of the form
1552 + \begin{equation}
1553 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1554 + \label{introEquation:bathGLE}.
1555 + \end{equation}
1556 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1557 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1558 + \[
1559 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1560 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1561 + \right\}}
1562 + \]
1563 + where the index $\alpha$ runs over all the bath degrees of freedom,
1564 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1565 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1566 + coupling,
1567 + \[
1568 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1569 + \]
1570 + where $g_\alpha$ are the coupling constants between the bath and the
1571 + coordinate $x$. Introducing
1572 + \[
1573 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1574 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1575 + \] and combining the last two terms in Equation
1576 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1577 + Hamiltonian as
1578 + \[
1579 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1580 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1581 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1582 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1583 + \]
1584 + Since the first two terms of the new Hamiltonian depend only on the
1585 + system coordinates, we can get the equations of motion for
1586 + Generalized Langevin Dynamics by Hamilton's equations
1587 + \ref{introEquation:motionHamiltonianCoordinate,
1588 + introEquation:motionHamiltonianMomentum},
1589 + \begin{equation}
1590 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1591 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1592 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1593 + \label{introEquation:coorMotionGLE}
1594 + \end{equation}
1595 + and
1596 + \begin{equation}
1597 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1598 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1599 + \label{introEquation:bathMotionGLE}
1600 + \end{equation}
1601 +
1602 + In order to derive an equation for $x$, the dynamics of the bath
1603 + variables $x_\alpha$ must be solved exactly first. As an integral
1604 + transform which is particularly useful in solving linear ordinary
1605 + differential equations, Laplace transform is the appropriate tool to
1606 + solve this problem. The basic idea is to transform the difficult
1607 + differential equations into simple algebra problems which can be
1608 + solved easily. Then applying inverse Laplace transform, also known
1609 + as the Bromwich integral, we can retrieve the solutions of the
1610 + original problems.
1611 +
1612 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1613 + transform of f(t) is a new function defined as
1614 + \[
1615 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1616 + \]
1617 + where  $p$ is real and  $L$ is called the Laplace Transform
1618 + Operator. Below are some important properties of Laplace transform
1619 + \begin{equation}
1620 + \begin{array}{c}
1621 + L(x + y) = L(x) + L(y) \\
1622 + L(ax) = aL(x) \\
1623 + L(\dot x) = pL(x) - px(0) \\
1624 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1625 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1626 + \end{array}
1627 + \end{equation}
1628 +
1629 + Applying Laplace transform to the bath coordinates, we obtain
1630 + \[
1631 + \begin{array}{c}
1632 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1633 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1634 + \end{array}
1635 + \]
1636 + By the same way, the system coordinates become
1637 + \[
1638 + \begin{array}{c}
1639 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1640 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1641 + \end{array}
1642 + \]
1643 +
1644 + With the help of some relatively important inverse Laplace
1645 + transformations:
1646 + \[
1647 + \begin{array}{c}
1648 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1649 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1650 + L(1) = \frac{1}{p} \\
1651 + \end{array}
1652 + \]
1653 + , we obtain
1654   \begin{align}
1655   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1656   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 1142 | Line 1670 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1670   (\omega _\alpha  t)} \right\}}
1671   \end{align}
1672  
1673 + Introducing a \emph{dynamic friction kernel}
1674   \begin{equation}
1675 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1676 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1677 + \label{introEquation:dynamicFrictionKernelDefinition}
1678 + \end{equation}
1679 + and \emph{a random force}
1680 + \begin{equation}
1681 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1682 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1683 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1684 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1685 + \label{introEquation:randomForceDefinition}
1686 + \end{equation}
1687 + the equation of motion can be rewritten as
1688 + \begin{equation}
1689   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1690   (t)\dot x(t - \tau )d\tau }  + R(t)
1691   \label{introEuqation:GeneralizedLangevinDynamics}
1692   \end{equation}
1693 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1694 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1693 > which is known as the \emph{generalized Langevin equation}.
1694 >
1695 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1696 >
1697 > One may notice that $R(t)$ depends only on initial conditions, which
1698 > implies it is completely deterministic within the context of a
1699 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1700 > uncorrelated to $x$ and $\dot x$,
1701   \[
1702 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1703 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1702 > \begin{array}{l}
1703 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1704 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1705 > \end{array}
1706   \]
1707 < For an infinite harmonic bath, we can use the spectral density and
1708 < an integral over frequencies.
1707 > This property is what we expect from a truly random process. As long
1708 > as the model, which is gaussian distribution in general, chosen for
1709 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1710 > still remains.
1711  
1712 + %dynamic friction kernel
1713 + The convolution integral
1714   \[
1715 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1161 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1162 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1163 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1715 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1716   \]
1717 < The random forces depend only on initial conditions.
1717 > depends on the entire history of the evolution of $x$, which implies
1718 > that the bath retains memory of previous motions. In other words,
1719 > the bath requires a finite time to respond to change in the motion
1720 > of the system. For a sluggish bath which responds slowly to changes
1721 > in the system coordinate, we may regard $\xi(t)$ as a constant
1722 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1723 > \[
1724 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1725 > \]
1726 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1727 > \[
1728 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1729 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1730 > \]
1731 > which can be used to describe dynamic caging effect. The other
1732 > extreme is the bath that responds infinitely quickly to motions in
1733 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1734 > time:
1735 > \[
1736 > \xi (t) = 2\xi _0 \delta (t)
1737 > \]
1738 > Hence, the convolution integral becomes
1739 > \[
1740 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1741 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1742 > \]
1743 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1744 > \begin{equation}
1745 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1746 > x(t) + R(t) \label{introEquation:LangevinEquation}
1747 > \end{equation}
1748 > which is known as the Langevin equation. The static friction
1749 > coefficient $\xi _0$ can either be calculated from spectral density
1750 > or be determined by Stokes' law for regular shaped particles.A
1751 > briefly review on calculating friction tensor for arbitrary shaped
1752 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1753  
1754   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1755 < So we can define a new set of coordinates,
1755 >
1756 > Defining a new set of coordinates,
1757   \[
1758   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1759   ^2 }}x(0)
1760 < \]
1761 < This makes
1760 > \],
1761 > we can rewrite $R(T)$ as
1762   \[
1763 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1763 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1764   \]
1765   And since the $q$ coordinates are harmonic oscillators,
1766   \[
1767 < \begin{array}{l}
1767 > \begin{array}{c}
1768 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1769   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1770   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1771 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1772 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1773 +  = kT\xi (t) \\
1774   \end{array}
1775 + \]
1776 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1777 + \begin{equation}
1778 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1779 + \label{introEquation:secondFluctuationDissipation}.
1780 + \end{equation}
1781 + In effect, it acts as a constraint on the possible ways in which one
1782 + can model the random force and friction kernel.
1783 +
1784 + \subsection{\label{introSection:frictionTensor} Friction Tensor}
1785 + Theoretically, the friction kernel can be determined using velocity
1786 + autocorrelation function. However, this approach become impractical
1787 + when the system become more and more complicate. Instead, various
1788 + approaches based on hydrodynamics have been developed to calculate
1789 + the friction coefficients. The friction effect is isotropic in
1790 + Equation, \zeta can be taken as a scalar. In general, friction
1791 + tensor \Xi is a $6\times 6$ matrix given by
1792 + \[
1793 + \Xi  = \left( {\begin{array}{*{20}c}
1794 +   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1795 +   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1796 + \end{array}} \right).
1797   \]
1798 + Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1799 + tensor and rotational resistance (friction) tensor respectively,
1800 + while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1801 + {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1802 + particle moves in a fluid, it may experience friction force or
1803 + torque along the opposite direction of the velocity or angular
1804 + velocity,
1805 + \[
1806 + \left( \begin{array}{l}
1807 + F_R  \\
1808 + \tau _R  \\
1809 + \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1810 +   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1811 +   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1812 + \end{array}} \right)\left( \begin{array}{l}
1813 + v \\
1814 + w \\
1815 + \end{array} \right)
1816 + \]
1817 + where $F_r$ is the friction force and $\tau _R$ is the friction
1818 + toque.
1819  
1820 < \begin{align}
1186 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1187 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1188 < (t)q_\beta  (0)} \right\rangle } }
1189 < %
1190 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1191 < \right\rangle \cos (\omega _\alpha  t)}
1192 < %
1193 < &= kT\xi (t)
1194 < \end{align}
1820 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1821  
1822 < \begin{equation}
1823 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1824 < \label{introEquation:secondFluctuationDissipation}
1825 < \end{equation}
1822 > For a spherical particle, the translational and rotational friction
1823 > constant can be calculated from Stoke's law,
1824 > \[
1825 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1826 >   {6\pi \eta R} & 0 & 0  \\
1827 >   0 & {6\pi \eta R} & 0  \\
1828 >   0 & 0 & {6\pi \eta R}  \\
1829 > \end{array}} \right)
1830 > \]
1831 > and
1832 > \[
1833 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1834 >   {8\pi \eta R^3 } & 0 & 0  \\
1835 >   0 & {8\pi \eta R^3 } & 0  \\
1836 >   0 & 0 & {8\pi \eta R^3 }  \\
1837 > \end{array}} \right)
1838 > \]
1839 > where $\eta$ is the viscosity of the solvent and $R$ is the
1840 > hydrodynamics radius.
1841  
1842 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1842 > Other non-spherical shape, such as cylinder and ellipsoid
1843 > \textit{etc}, are widely used as reference for developing new
1844 > hydrodynamics theory, because their properties can be calculated
1845 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1846 > also called a triaxial ellipsoid, which is given in Cartesian
1847 > coordinates by
1848 > \[
1849 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1850 > }} = 1
1851 > \]
1852 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1853 > due to the complexity of the elliptic integral, only the ellipsoid
1854 > with the restriction of two axes having to be equal, \textit{i.e.}
1855 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1856 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1857 > \[
1858 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1859 > } }}{b},
1860 > \]
1861 > and oblate,
1862 > \[
1863 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1864 > }}{a}
1865 > \],
1866 > one can write down the translational and rotational resistance
1867 > tensors
1868 > \[
1869 > \begin{array}{l}
1870 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1871 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1872 > \end{array},
1873 > \]
1874 > and
1875 > \[
1876 > \begin{array}{l}
1877 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1878 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1879 > \end{array}.
1880 > \]
1881  
1882 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1204 < \subsection{\label{introSection:analyticalApproach}Analytical
1205 < Approach}
1882 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1883  
1884 < \subsection{\label{introSection:approximationApproach}Approximation
1885 < Approach}
1884 > Unlike spherical and other regular shaped molecules, there is not
1885 > analytical solution for friction tensor of any arbitrary shaped
1886 > rigid molecules. The ellipsoid of revolution model and general
1887 > triaxial ellipsoid model have been used to approximate the
1888 > hydrodynamic properties of rigid bodies. However, since the mapping
1889 > from all possible ellipsoidal space, $r$-space, to all possible
1890 > combination of rotational diffusion coefficients, $D$-space is not
1891 > unique\cite{Wegener79} as well as the intrinsic coupling between
1892 > translational and rotational motion of rigid body\cite{}, general
1893 > ellipsoid is not always suitable for modeling arbitrarily shaped
1894 > rigid molecule. A number of studies have been devoted to determine
1895 > the friction tensor for irregularly shaped rigid bodies using more
1896 > advanced method\cite{} where the molecule of interest was modeled by
1897 > combinations of spheres(beads)\cite{} and the hydrodynamics
1898 > properties of the molecule can be calculated using the hydrodynamic
1899 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1900 > immersed in a continuous medium. Due to hydrodynamics interaction,
1901 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1902 > unperturbed velocity $v_i$,
1903 > \[
1904 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1905 > \]
1906 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1907 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1908 > proportional to its ``net'' velocity
1909 > \begin{equation}
1910 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1911 > \label{introEquation:tensorExpression}
1912 > \end{equation}
1913 > This equation is the basis for deriving the hydrodynamic tensor. In
1914 > 1930, Oseen and Burgers gave a simple solution to Equation
1915 > \ref{introEquation:tensorExpression}
1916 > \begin{equation}
1917 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1918 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1919 > \label{introEquation:oseenTensor}
1920 > \end{equation}
1921 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1922 > A second order expression for element of different size was
1923 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1924 > la Torre and Bloomfield,
1925 > \begin{equation}
1926 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1927 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1928 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1929 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1930 > \label{introEquation:RPTensorNonOverlapped}
1931 > \end{equation}
1932 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1933 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1934 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1935 > overlapping beads with the same radius, $\sigma$, is given by
1936 > \begin{equation}
1937 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1938 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1939 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1940 > \label{introEquation:RPTensorOverlapped}
1941 > \end{equation}
1942  
1943 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1944 < Body}
1943 > To calculate the resistance tensor at an arbitrary origin $O$, we
1944 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1945 > $B_{ij}$ blocks
1946 > \begin{equation}
1947 > B = \left( {\begin{array}{*{20}c}
1948 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1949 >    \vdots  &  \ddots  &  \vdots   \\
1950 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1951 > \end{array}} \right),
1952 > \end{equation}
1953 > where $B_{ij}$ is given by
1954 > \[
1955 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1956 > )T_{ij}
1957 > \]
1958 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1959 > $B$, we obtain
1960  
1961 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1961 > \[
1962 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1963 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1964 >    \vdots  &  \ddots  &  \vdots   \\
1965 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1966 > \end{array}} \right)
1967 > \]
1968 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1969 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1970 > \[
1971 > U_i  = \left( {\begin{array}{*{20}c}
1972 >   0 & { - z_i } & {y_i }  \\
1973 >   {z_i } & 0 & { - x_i }  \\
1974 >   { - y_i } & {x_i } & 0  \\
1975 > \end{array}} \right)
1976 > \]
1977 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1978 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1979 > arbitrary origin $O$ can be written as
1980 > \begin{equation}
1981 > \begin{array}{l}
1982 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1983 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1984 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1985 > \end{array}
1986 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1987 > \end{equation}
1988 >
1989 > The resistance tensor depends on the origin to which they refer. The
1990 > proper location for applying friction force is the center of
1991 > resistance (reaction), at which the trace of rotational resistance
1992 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1993 > resistance is defined as an unique point of the rigid body at which
1994 > the translation-rotation coupling tensor are symmetric,
1995 > \begin{equation}
1996 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1997 > \label{introEquation:definitionCR}
1998 > \end{equation}
1999 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2000 > we can easily find out that the translational resistance tensor is
2001 > origin independent, while the rotational resistance tensor and
2002 > translation-rotation coupling resistance tensor depend on the
2003 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2004 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2005 > obtain the resistance tensor at $P$ by
2006 > \begin{equation}
2007 > \begin{array}{l}
2008 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2009 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2010 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2011 > \end{array}
2012 > \label{introEquation:resistanceTensorTransformation}
2013 > \end{equation}
2014 > where
2015 > \[
2016 > U_{OP}  = \left( {\begin{array}{*{20}c}
2017 >   0 & { - z_{OP} } & {y_{OP} }  \\
2018 >   {z_i } & 0 & { - x_{OP} }  \\
2019 >   { - y_{OP} } & {x_{OP} } & 0  \\
2020 > \end{array}} \right)
2021 > \]
2022 > Using Equations \ref{introEquation:definitionCR} and
2023 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2024 > the position of center of resistance,
2025 > \[
2026 > \left( \begin{array}{l}
2027 > x_{OR}  \\
2028 > y_{OR}  \\
2029 > z_{OR}  \\
2030 > \end{array} \right) = \left( {\begin{array}{*{20}c}
2031 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2032 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2033 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2034 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2035 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2036 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2037 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2038 > \end{array} \right).
2039 > \]
2040 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2041 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines