ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2713 by tim, Sat Apr 15 01:08:18 2006 UTC vs.
Revision 2721 by tim, Thu Apr 20 03:42:21 2006 UTC

# Line 822 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 883 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
890 <
891 < \subsection{\label{introSec:mdInit}Initialization}
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920  
921 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922 >
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940  
941 + \subsubsection{Minimization}
942 +
943 + It is quite possible that some of molecules in the system from
944 + preliminary preparation may be overlapped with each other. This
945 + close proximity leads to high potential energy which consequently
946 + jeopardizes any molecular dynamics simulations. To remove these
947 + steric overlaps, one typically performs energy minimization to find
948 + a more reasonable conformation. Several energy minimization methods
949 + have been developed to exploit the energy surface and to locate the
950 + local minimum. While converging slowly near the minimum, steepest
951 + descent method is extremely robust when systems are far from
952 + harmonic. Thus, it is often used to refine structure from
953 + crystallographic data. Relied on the gradient or hessian, advanced
954 + methods like conjugate gradient and Newton-Raphson converge rapidly
955 + to a local minimum, while become unstable if the energy surface is
956 + far from quadratic. Another factor must be taken into account, when
957 + choosing energy minimization method, is the size of the system.
958 + Steepest descent and conjugate gradient can deal with models of any
959 + size. Because of the limit of computation power to calculate hessian
960 + matrix and insufficient storage capacity to store them, most
961 + Newton-Raphson methods can not be used with very large models.
962 +
963 + \subsubsection{Heating}
964 +
965 + Typically, Heating is performed by assigning random velocities
966 + according to a Gaussian distribution for a temperature. Beginning at
967 + a lower temperature and gradually increasing the temperature by
968 + assigning greater random velocities, we end up with setting the
969 + temperature of the system to a final temperature at which the
970 + simulation will be conducted. In heating phase, we should also keep
971 + the system from drifting or rotating as a whole. Equivalently, the
972 + net linear momentum and angular momentum of the system should be
973 + shifted to zero.
974 +
975 + \subsubsection{Equilibration}
976 +
977 + The purpose of equilibration is to allow the system to evolve
978 + spontaneously for a period of time and reach equilibrium. The
979 + procedure is continued until various statistical properties, such as
980 + temperature, pressure, energy, volume and other structural
981 + properties \textit{etc}, become independent of time. Strictly
982 + speaking, minimization and heating are not necessary, provided the
983 + equilibration process is long enough. However, these steps can serve
984 + as a means to arrive at an equilibrated structure in an effective
985 + way.
986 +
987 + \subsection{\label{introSection:production}Production}
988 +
989 + \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 +
991 + \subsubsection{\label{introSection:integrationSchemes} Integration
992 + Schemes}
993 +
994 + \subsection{\label{introSection:Analysis} Analysis}
995 +
996 + Recently, advanced visualization technique are widely applied to
997 + monitor the motions of molecules. Although the dynamics of the
998 + system can be described qualitatively from animation, quantitative
999 + trajectory analysis are more appreciable. According to the
1000 + principles of Statistical Mechanics,
1001 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1002 + thermodynamics properties, analyze fluctuations of structural
1003 + parameters, and investigate time-dependent processes of the molecule
1004 + from the trajectories.
1005 +
1006 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1007 +
1008 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1009 +
1010 + Structural Properties of a simple fluid can be described by a set of
1011 + distribution functions. Among these functions,\emph{pair
1012 + distribution function}, also known as \emph{radial distribution
1013 + function}, are of most fundamental importance to liquid-state
1014 + theory. Pair distribution function can be gathered by Fourier
1015 + transforming raw data from a series of neutron diffraction
1016 + experiments and integrating over the surface factor \cite{Powles73}.
1017 + The experiment result can serve as a criterion to justify the
1018 + correctness of the theory. Moreover, various equilibrium
1019 + thermodynamic and structural properties can also be expressed in
1020 + terms of radial distribution function \cite{allen87:csl}.
1021 +
1022 + A pair distribution functions $g(r)$ gives the probability that a
1023 + particle $i$ will be located at a distance $r$ from a another
1024 + particle $j$ in the system
1025 + \[
1026 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1027 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1028 + \]
1029 + Note that the delta function can be replaced by a histogram in
1030 + computer simulation. Figure
1031 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1032 + distribution function for the liquid argon system. The occurrence of
1033 + several peaks in the plot of $g(r)$ suggests that it is more likely
1034 + to find particles at certain radial values than at others. This is a
1035 + result of the attractive interaction at such distances. Because of
1036 + the strong repulsive forces at short distance, the probability of
1037 + locating particles at distances less than about 2.5{\AA} from each
1038 + other is essentially zero.
1039 +
1040 + %\begin{figure}
1041 + %\centering
1042 + %\includegraphics[width=\linewidth]{pdf.eps}
1043 + %\caption[Pair distribution function for the liquid argon
1044 + %]{Pair distribution function for the liquid argon}
1045 + %\label{introFigure:pairDistributionFunction}
1046 + %\end{figure}
1047 +
1048 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1049 + Properties}
1050 +
1051 + Time-dependent properties are usually calculated using \emph{time
1052 + correlation function}, which correlates random variables $A$ and $B$
1053 + at two different time
1054 + \begin{equation}
1055 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1056 + \label{introEquation:timeCorrelationFunction}
1057 + \end{equation}
1058 + If $A$ and $B$ refer to same variable, this kind of correlation
1059 + function is called \emph{auto correlation function}. One example of
1060 + auto correlation function is velocity auto-correlation function
1061 + which is directly related to transport properties of molecular
1062 + liquids. Another example is the calculation of the IR spectrum
1063 + through a Fourier transform of the dipole autocorrelation function.
1064 +
1065   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1066  
1067   Rigid bodies are frequently involved in the modeling of different
# Line 927 | Line 1095 | rotation matrix $A$ and re-formulating Hamiltonian's e
1095   The break through in geometric literature suggests that, in order to
1096   develop a long-term integration scheme, one should preserve the
1097   symplectic structure of the flow. Introducing conjugate momentum to
1098 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1098 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1099   symplectic integrator, RSHAKE, was proposed to evolve the
1100   Hamiltonian system in a constraint manifold by iteratively
1101 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1101 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1102   method using quaternion representation was developed by Omelyan.
1103   However, both of these methods are iterative and inefficient. In
1104   this section, we will present a symplectic Lie-Poisson integrator
# Line 1136 | Line 1304 | To reduce the cost of computing expensive functions in
1304     0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1305   \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1306   \]
1307 < To reduce the cost of computing expensive functions in e^{\Delta
1308 < tR_1 }, we can use Cayley transformation,
1307 > To reduce the cost of computing expensive functions in $e^{\Delta
1308 > tR_1 }$, we can use Cayley transformation,
1309   \[
1310   e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1311   )
1312   \]
1313 <
1146 < The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1313 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1314   manner.
1315  
1316   In order to construct a second-order symplectic method, we split the
# Line 1213 | Line 1380 | Moreover, \varphi _{\Delta t/2,V} can be divided into
1380   \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1381   _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1382   \]
1383 < Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1384 < which corresponding to force and torque respectively,
1383 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1384 > sub-flows which corresponding to force and torque respectively,
1385   \[
1386   \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1387   _{\Delta t/2,\tau }.
1388   \]
1389   Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1390   $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1391 < order inside \varphi _{\Delta t/2,V} does not matter.
1391 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1392  
1393   Furthermore, kinetic potential can be separated to translational
1394   kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
# Line 1247 | Line 1414 | rigid body
1414   \end{equation}
1415  
1416   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1417 <
1418 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1419 <
1420 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1417 > As an alternative to newtonian dynamics, Langevin dynamics, which
1418 > mimics a simple heat bath with stochastic and dissipative forces,
1419 > has been applied in a variety of studies. This section will review
1420 > the theory of Langevin dynamics simulation. A brief derivation of
1421 > generalized Langevin equation will be given first. Follow that, we
1422 > will discuss the physical meaning of the terms appearing in the
1423 > equation as well as the calculation of friction tensor from
1424 > hydrodynamics theory.
1425  
1426 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1427 +
1428 + Harmonic bath model, in which an effective set of harmonic
1429 + oscillators are used to mimic the effect of a linearly responding
1430 + environment, has been widely used in quantum chemistry and
1431 + statistical mechanics. One of the successful applications of
1432 + Harmonic bath model is the derivation of Deriving Generalized
1433 + Langevin Dynamics. Lets consider a system, in which the degree of
1434 + freedom $x$ is assumed to couple to the bath linearly, giving a
1435 + Hamiltonian of the form
1436   \begin{equation}
1437   H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1438 < \label{introEquation:bathGLE}
1438 > \label{introEquation:bathGLE}.
1439   \end{equation}
1440 < where $H_B$ is harmonic bath Hamiltonian,
1440 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1441 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1442   \[
1443 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1444 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1443 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1444 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1445 > \right\}}
1446   \]
1447 < and $\Delta U$ is bilinear system-bath coupling,
1447 > where the index $\alpha$ runs over all the bath degrees of freedom,
1448 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1449 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1450 > coupling,
1451   \[
1452   \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1453   \]
1454 < Completing the square,
1454 > where $g_\alpha$ are the coupling constants between the bath and the
1455 > coordinate $x$. Introducing
1456   \[
1457 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1458 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1459 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1460 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1461 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1275 < \]
1276 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1457 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1458 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1459 > \] and combining the last two terms in Equation
1460 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1461 > Hamiltonian as
1462   \[
1463   H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1464   {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1465   w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1466   w_\alpha ^2 }}x} \right)^2 } \right\}}
1467   \]
1283 where
1284 \[
1285 W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1286 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1287 \]
1468   Since the first two terms of the new Hamiltonian depend only on the
1469   system coordinates, we can get the equations of motion for
1470   Generalized Langevin Dynamics by Hamilton's equations
1471   \ref{introEquation:motionHamiltonianCoordinate,
1472   introEquation:motionHamiltonianMomentum},
1473 < \begin{align}
1474 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1475 <       &= m\ddot x
1476 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1477 < \label{introEquation:Lp5}
1478 < \end{align}
1479 < , and
1480 < \begin{align}
1481 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1482 <                &= m\ddot x_\alpha
1483 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1484 < \end{align}
1473 > \begin{equation}
1474 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1475 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1476 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1477 > \label{introEquation:coorMotionGLE}
1478 > \end{equation}
1479 > and
1480 > \begin{equation}
1481 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1482 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1483 > \label{introEquation:bathMotionGLE}
1484 > \end{equation}
1485  
1486 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1486 > In order to derive an equation for $x$, the dynamics of the bath
1487 > variables $x_\alpha$ must be solved exactly first. As an integral
1488 > transform which is particularly useful in solving linear ordinary
1489 > differential equations, Laplace transform is the appropriate tool to
1490 > solve this problem. The basic idea is to transform the difficult
1491 > differential equations into simple algebra problems which can be
1492 > solved easily. Then applying inverse Laplace transform, also known
1493 > as the Bromwich integral, we can retrieve the solutions of the
1494 > original problems.
1495  
1496 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1497 + transform of f(t) is a new function defined as
1498   \[
1499 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1499 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1500   \]
1501 + where  $p$ is real and  $L$ is called the Laplace Transform
1502 + Operator. Below are some important properties of Laplace transform
1503 + \begin{equation}
1504 + \begin{array}{c}
1505 + L(x + y) = L(x) + L(y) \\
1506 + L(ax) = aL(x) \\
1507 + L(\dot x) = pL(x) - px(0) \\
1508 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1509 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1510 + \end{array}
1511 + \end{equation}
1512  
1513 + Applying Laplace transform to the bath coordinates, we obtain
1514   \[
1515 < L(x + y) = L(x) + L(y)
1515 > \begin{array}{c}
1516 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1517 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1518 > \end{array}
1519   \]
1520 <
1520 > By the same way, the system coordinates become
1521   \[
1522 < L(ax) = aL(x)
1522 > \begin{array}{c}
1523 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1524 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1525 > \end{array}
1526   \]
1527  
1528 + With the help of some relatively important inverse Laplace
1529 + transformations:
1530   \[
1531 < L(\dot x) = pL(x) - px(0)
1531 > \begin{array}{c}
1532 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1533 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1534 > L(1) = \frac{1}{p} \\
1535 > \end{array}
1536   \]
1537 <
1324 < \[
1325 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1326 < \]
1327 <
1328 < \[
1329 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1330 < \]
1331 <
1332 < Some relatively important transformation,
1333 < \[
1334 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1335 < \]
1336 <
1337 < \[
1338 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1339 < \]
1340 <
1341 < \[
1342 < L(1) = \frac{1}{p}
1343 < \]
1344 <
1345 < First, the bath coordinates,
1346 < \[
1347 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1348 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1349 < }}L(x)
1350 < \]
1351 < \[
1352 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1353 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1354 < \]
1355 < Then, the system coordinates,
1537 > , we obtain
1538   \begin{align}
1357 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1358 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1359 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1360 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1361 }}\omega _\alpha ^2 L(x)} \right\}}
1362 %
1363 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1364 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1365 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1366 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1367 \end{align}
1368 Then, the inverse transform,
1369
1370 \begin{align}
1539   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1540   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1541   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
# Line 1386 | Line 1554 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1554   (\omega _\alpha  t)} \right\}}
1555   \end{align}
1556  
1557 + Introducing a \emph{dynamic friction kernel}
1558   \begin{equation}
1390 m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1391 (t)\dot x(t - \tau )d\tau }  + R(t)
1392 \label{introEuqation:GeneralizedLangevinDynamics}
1393 \end{equation}
1394 %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1395 %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1396 \[
1559   \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1560   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1561 < \]
1562 < For an infinite harmonic bath, we can use the spectral density and
1563 < an integral over frequencies.
1564 <
1403 < \[
1561 > \label{introEquation:dynamicFrictionKernelDefinition}
1562 > \end{equation}
1563 > and \emph{a random force}
1564 > \begin{equation}
1565   R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1566   - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1567   \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1568 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1568 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1569 > \label{introEquation:randomForceDefinition}
1570 > \end{equation}
1571 > the equation of motion can be rewritten as
1572 > \begin{equation}
1573 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1574 > (t)\dot x(t - \tau )d\tau }  + R(t)
1575 > \label{introEuqation:GeneralizedLangevinDynamics}
1576 > \end{equation}
1577 > which is known as the \emph{generalized Langevin equation}.
1578 >
1579 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1580 >
1581 > One may notice that $R(t)$ depends only on initial conditions, which
1582 > implies it is completely deterministic within the context of a
1583 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1584 > uncorrelated to $x$ and $\dot x$,
1585 > \[
1586 > \begin{array}{l}
1587 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1588 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1589 > \end{array}
1590   \]
1591 < The random forces depend only on initial conditions.
1591 > This property is what we expect from a truly random process. As long
1592 > as the model, which is gaussian distribution in general, chosen for
1593 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1594 > still remains.
1595  
1596 + %dynamic friction kernel
1597 + The convolution integral
1598 + \[
1599 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1600 + \]
1601 + depends on the entire history of the evolution of $x$, which implies
1602 + that the bath retains memory of previous motions. In other words,
1603 + the bath requires a finite time to respond to change in the motion
1604 + of the system. For a sluggish bath which responds slowly to changes
1605 + in the system coordinate, we may regard $\xi(t)$ as a constant
1606 + $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1607 + \[
1608 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1609 + \]
1610 + and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1611 + \[
1612 + m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1613 + \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1614 + \]
1615 + which can be used to describe dynamic caging effect. The other
1616 + extreme is the bath that responds infinitely quickly to motions in
1617 + the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1618 + time:
1619 + \[
1620 + \xi (t) = 2\xi _0 \delta (t)
1621 + \]
1622 + Hence, the convolution integral becomes
1623 + \[
1624 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1625 + {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1626 + \]
1627 + and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1628 + \begin{equation}
1629 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1630 + x(t) + R(t) \label{introEquation:LangevinEquation}
1631 + \end{equation}
1632 + which is known as the Langevin equation. The static friction
1633 + coefficient $\xi _0$ can either be calculated from spectral density
1634 + or be determined by Stokes' law for regular shaped particles.A
1635 + briefly review on calculating friction tensor for arbitrary shaped
1636 + particles is given in Sec.~\ref{introSection:frictionTensor}.
1637 +
1638   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1639 < So we can define a new set of coordinates,
1639 >
1640 > Defining a new set of coordinates,
1641   \[
1642   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1643   ^2 }}x(0)
1644 < \]
1645 < This makes
1644 > \],
1645 > we can rewrite $R(T)$ as
1646   \[
1647 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1647 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1648   \]
1649   And since the $q$ coordinates are harmonic oscillators,
1650   \[
1651 < \begin{array}{l}
1651 > \begin{array}{c}
1652 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1653   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1654   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1655 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1656 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1657 +  = kT\xi (t) \\
1658   \end{array}
1659   \]
1660 <
1429 < \begin{align}
1430 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1431 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1432 < (t)q_\beta  (0)} \right\rangle } }
1433 < %
1434 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1435 < \right\rangle \cos (\omega _\alpha  t)}
1436 < %
1437 < &= kT\xi (t)
1438 < \end{align}
1439 <
1660 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1661   \begin{equation}
1662   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1663 < \label{introEquation:secondFluctuationDissipation}
1663 > \label{introEquation:secondFluctuationDissipation}.
1664   \end{equation}
1665 + In effect, it acts as a constraint on the possible ways in which one
1666 + can model the random force and friction kernel.
1667  
1445 \section{\label{introSection:hydroynamics}Hydrodynamics}
1446
1668   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1669 < \subsection{\label{introSection:analyticalApproach}Analytical
1670 < Approach}
1669 > Theoretically, the friction kernel can be determined using velocity
1670 > autocorrelation function. However, this approach become impractical
1671 > when the system become more and more complicate. Instead, various
1672 > approaches based on hydrodynamics have been developed to calculate
1673 > the friction coefficients. The friction effect is isotropic in
1674 > Equation, \zeta can be taken as a scalar. In general, friction
1675 > tensor \Xi is a $6\times 6$ matrix given by
1676 > \[
1677 > \Xi  = \left( {\begin{array}{*{20}c}
1678 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1679 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1680 > \end{array}} \right).
1681 > \]
1682 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1683 > tensor and rotational resistance (friction) tensor respectively,
1684 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1685 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1686 > particle moves in a fluid, it may experience friction force or
1687 > torque along the opposite direction of the velocity or angular
1688 > velocity,
1689 > \[
1690 > \left( \begin{array}{l}
1691 > F_R  \\
1692 > \tau _R  \\
1693 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1694 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1695 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1696 > \end{array}} \right)\left( \begin{array}{l}
1697 > v \\
1698 > w \\
1699 > \end{array} \right)
1700 > \]
1701 > where $F_r$ is the friction force and $\tau _R$ is the friction
1702 > toque.
1703  
1704 < \subsection{\label{introSection:approximationApproach}Approximation
1452 < Approach}
1704 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1705  
1706 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1707 < Body}
1706 > For a spherical particle, the translational and rotational friction
1707 > constant can be calculated from Stoke's law,
1708 > \[
1709 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1710 >   {6\pi \eta R} & 0 & 0  \\
1711 >   0 & {6\pi \eta R} & 0  \\
1712 >   0 & 0 & {6\pi \eta R}  \\
1713 > \end{array}} \right)
1714 > \]
1715 > and
1716 > \[
1717 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1718 >   {8\pi \eta R^3 } & 0 & 0  \\
1719 >   0 & {8\pi \eta R^3 } & 0  \\
1720 >   0 & 0 & {8\pi \eta R^3 }  \\
1721 > \end{array}} \right)
1722 > \]
1723 > where $\eta$ is the viscosity of the solvent and $R$ is the
1724 > hydrodynamics radius.
1725  
1726 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1726 > Other non-spherical shape, such as cylinder and ellipsoid
1727 > \textit{etc}, are widely used as reference for developing new
1728 > hydrodynamics theory, because their properties can be calculated
1729 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1730 > also called a triaxial ellipsoid, which is given in Cartesian
1731 > coordinates by
1732 > \[
1733 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1734 > }} = 1
1735 > \]
1736 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1737 > due to the complexity of the elliptic integral, only the ellipsoid
1738 > with the restriction of two axes having to be equal, \textit{i.e.}
1739 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1740 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1741 > \[
1742 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1743 > } }}{b},
1744 > \]
1745 > and oblate,
1746 > \[
1747 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1748 > }}{a}
1749 > \],
1750 > one can write down the translational and rotational resistance
1751 > tensors
1752 > \[
1753 > \begin{array}{l}
1754 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1755 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1756 > \end{array},
1757 > \]
1758 > and
1759 > \[
1760 > \begin{array}{l}
1761 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1762 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1763 > \end{array}.
1764 > \]
1765 >
1766 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1767 >
1768 > Unlike spherical and other regular shaped molecules, there is not
1769 > analytical solution for friction tensor of any arbitrary shaped
1770 > rigid molecules. The ellipsoid of revolution model and general
1771 > triaxial ellipsoid model have been used to approximate the
1772 > hydrodynamic properties of rigid bodies. However, since the mapping
1773 > from all possible ellipsoidal space, $r$-space, to all possible
1774 > combination of rotational diffusion coefficients, $D$-space is not
1775 > unique\cite{Wegener79} as well as the intrinsic coupling between
1776 > translational and rotational motion of rigid body\cite{}, general
1777 > ellipsoid is not always suitable for modeling arbitrarily shaped
1778 > rigid molecule. A number of studies have been devoted to determine
1779 > the friction tensor for irregularly shaped rigid bodies using more
1780 > advanced method\cite{} where the molecule of interest was modeled by
1781 > combinations of spheres(beads)\cite{} and the hydrodynamics
1782 > properties of the molecule can be calculated using the hydrodynamic
1783 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1784 > immersed in a continuous medium. Due to hydrodynamics interaction,
1785 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1786 > unperturbed velocity $v_i$,
1787 > \[
1788 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1789 > \]
1790 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1791 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1792 > proportional to its ``net'' velocity
1793 > \begin{equation}
1794 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1795 > \label{introEquation:tensorExpression}
1796 > \end{equation}
1797 > This equation is the basis for deriving the hydrodynamic tensor. In
1798 > 1930, Oseen and Burgers gave a simple solution to Equation
1799 > \ref{introEquation:tensorExpression}
1800 > \begin{equation}
1801 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1802 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1803 > \label{introEquation:oseenTensor}
1804 > \end{equation}
1805 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1806 > A second order expression for element of different size was
1807 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1808 > la Torre and Bloomfield,
1809 > \begin{equation}
1810 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1811 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1812 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1813 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1814 > \label{introEquation:RPTensorNonOverlapped}
1815 > \end{equation}
1816 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1817 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1818 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1819 > overlapping beads with the same radius, $\sigma$, is given by
1820 > \begin{equation}
1821 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1822 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1823 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1824 > \label{introEquation:RPTensorOverlapped}
1825 > \end{equation}
1826 >
1827 > To calculate the resistance tensor at an arbitrary origin $O$, we
1828 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1829 > $B_{ij}$ blocks
1830 > \begin{equation}
1831 > B = \left( {\begin{array}{*{20}c}
1832 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1833 >    \vdots  &  \ddots  &  \vdots   \\
1834 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1835 > \end{array}} \right),
1836 > \end{equation}
1837 > where $B_{ij}$ is given by
1838 > \[
1839 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1840 > )T_{ij}
1841 > \]
1842 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1843 > $B$, we obtain
1844 >
1845 > \[
1846 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1847 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1848 >    \vdots  &  \ddots  &  \vdots   \\
1849 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1850 > \end{array}} \right)
1851 > \]
1852 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1853 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1854 > \[
1855 > U_i  = \left( {\begin{array}{*{20}c}
1856 >   0 & { - z_i } & {y_i }  \\
1857 >   {z_i } & 0 & { - x_i }  \\
1858 >   { - y_i } & {x_i } & 0  \\
1859 > \end{array}} \right)
1860 > \]
1861 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1862 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1863 > arbitrary origin $O$ can be written as
1864 > \begin{equation}
1865 > \begin{array}{l}
1866 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1867 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1868 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1869 > \end{array}
1870 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1871 > \end{equation}
1872 >
1873 > The resistance tensor depends on the origin to which they refer. The
1874 > proper location for applying friction force is the center of
1875 > resistance (reaction), at which the trace of rotational resistance
1876 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1877 > resistance is defined as an unique point of the rigid body at which
1878 > the translation-rotation coupling tensor are symmetric,
1879 > \begin{equation}
1880 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1881 > \label{introEquation:definitionCR}
1882 > \end{equation}
1883 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1884 > we can easily find out that the translational resistance tensor is
1885 > origin independent, while the rotational resistance tensor and
1886 > translation-rotation coupling resistance tensor depend on the
1887 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1888 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1889 > obtain the resistance tensor at $P$ by
1890 > \begin{equation}
1891 > \begin{array}{l}
1892 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1893 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1894 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1895 > \end{array}
1896 > \label{introEquation:resistanceTensorTransformation}
1897 > \end{equation}
1898 > where
1899 > \[
1900 > U_{OP}  = \left( {\begin{array}{*{20}c}
1901 >   0 & { - z_{OP} } & {y_{OP} }  \\
1902 >   {z_i } & 0 & { - x_{OP} }  \\
1903 >   { - y_{OP} } & {x_{OP} } & 0  \\
1904 > \end{array}} \right)
1905 > \]
1906 > Using Equations \ref{introEquation:definitionCR} and
1907 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1908 > the position of center of resistance,
1909 > \[
1910 > \left( \begin{array}{l}
1911 > x_{OR}  \\
1912 > y_{OR}  \\
1913 > z_{OR}  \\
1914 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1915 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1916 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1917 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1918 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1919 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1920 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1921 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1922 > \end{array} \right).
1923 > \]
1924 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1925 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines