ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2699 by tim, Mon Apr 10 05:35:55 2006 UTC vs.
Revision 2719 by tim, Tue Apr 18 22:38:19 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 117 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 221 | Line 221 | Statistical Mechanics concepts presented in this disse
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228  
229 + Mathematically, phase space is the space which represents all
230 + possible states. Each possible state of the system corresponds to
231 + one unique point in the phase space. For mechanical systems, the
232 + phase space usually consists of all possible values of position and
233 + momentum variables. Consider a dynamic system in a cartesian space,
234 + where each of the $6f$ coordinates and momenta is assigned to one of
235 + $6f$ mutually orthogonal axes, the phase space of this system is a
236 + $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 + \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 + momenta is a phase space vector.
239 +
240 + A microscopic state or microstate of a classical system is
241 + specification of the complete phase space vector of a system at any
242 + instant in time. An ensemble is defined as a collection of systems
243 + sharing one or more macroscopic characteristics but each being in a
244 + unique microstate. The complete ensemble is specified by giving all
245 + systems or microstates consistent with the common macroscopic
246 + characteristics of the ensemble. Although the state of each
247 + individual system in the ensemble could be precisely described at
248 + any instance in time by a suitable phase space vector, when using
249 + ensembles for statistical purposes, there is no need to maintain
250 + distinctions between individual systems, since the numbers of
251 + systems at any time in the different states which correspond to
252 + different regions of the phase space are more interesting. Moreover,
253 + in the point of view of statistical mechanics, one would prefer to
254 + use ensembles containing a large enough population of separate
255 + members so that the numbers of systems in such different states can
256 + be regarded as changing continuously as we traverse different
257 + regions of the phase space. The condition of an ensemble at any time
258 + can be regarded as appropriately specified by the density $\rho$
259 + with which representative points are distributed over the phase
260 + space. The density of distribution for an ensemble with $f$ degrees
261 + of freedom is defined as,
262 + \begin{equation}
263 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 + \label{introEquation:densityDistribution}
265 + \end{equation}
266 + Governed by the principles of mechanics, the phase points change
267 + their value which would change the density at any time at phase
268 + space. Hence, the density of distribution is also to be taken as a
269 + function of the time.
270 +
271 + The number of systems $\delta N$ at time $t$ can be determined by,
272 + \begin{equation}
273 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 + \label{introEquation:deltaN}
275 + \end{equation}
276 + Assuming a large enough population of systems are exploited, we can
277 + sufficiently approximate $\delta N$ without introducing
278 + discontinuity when we go from one region in the phase space to
279 + another. By integrating over the whole phase space,
280 + \begin{equation}
281 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 + \label{introEquation:totalNumberSystem}
283 + \end{equation}
284 + gives us an expression for the total number of the systems. Hence,
285 + the probability per unit in the phase space can be obtained by,
286 + \begin{equation}
287 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 + \label{introEquation:unitProbability}
290 + \end{equation}
291 + With the help of Equation(\ref{introEquation:unitProbability}) and
292 + the knowledge of the system, it is possible to calculate the average
293 + value of any desired quantity which depends on the coordinates and
294 + momenta of the system. Even when the dynamics of the real system is
295 + complex, or stochastic, or even discontinuous, the average
296 + properties of the ensemble of possibilities as a whole may still
297 + remain well defined. For a classical system in thermal equilibrium
298 + with its environment, the ensemble average of a mechanical quantity,
299 + $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 + phase space of the system,
301 + \begin{equation}
302 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 + \label{introEquation:ensembelAverage}
306 + \end{equation}
307 +
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 + \end{equation}
320 + A canonical ensemble(NVT)is an ensemble of systems, each of which
321 + can share its energy with a large heat reservoir. The distribution
322 + of the total energy amongst the possible dynamical states is given
323 + by the partition function,
324 + \begin{equation}
325 + \Omega (N,V,T) = e^{ - \beta A}
326 + \label{introEquation:NVTPartition}
327 + \end{equation}
328 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 + TS$. Since most experiment are carried out under constant pressure
330 + condition, isothermal-isobaric ensemble(NPT) play a very important
331 + role in molecular simulation. The isothermal-isobaric ensemble allow
332 + the system to exchange energy with a heat bath of temperature $T$
333 + and to change the volume as well. Its partition function is given as
334 + \begin{equation}
335 + \Delta (N,P,T) =  - e^{\beta G}.
336 + \label{introEquation:NPTPartition}
337 + \end{equation}
338 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 +
340 + \subsection{\label{introSection:liouville}Liouville's theorem}
341 +
342 + The Liouville's theorem is the foundation on which statistical
343 + mechanics rests. It describes the time evolution of phase space
344 + distribution function. In order to calculate the rate of change of
345 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 + consider the two faces perpendicular to the $q_1$ axis, which are
347 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 + leaving the opposite face is given by the expression,
349 + \begin{equation}
350 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 + \ldots \delta p_f .
354 + \end{equation}
355 + Summing all over the phase space, we obtain
356 + \begin{equation}
357 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 + \end{equation}
364 + Differentiating the equations of motion in Hamiltonian formalism
365 + (\ref{introEquation:motionHamiltonianCoordinate},
366 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 + \begin{equation}
368 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 + \end{equation}
371 + which cancels the first terms of the right hand side. Furthermore,
372 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 + p_f $ in both sides, we can write out Liouville's theorem in a
374 + simple form,
375 + \begin{equation}
376 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 + \label{introEquation:liouvilleTheorem}
380 + \end{equation}
381 +
382 + Liouville's theorem states that the distribution function is
383 + constant along any trajectory in phase space. In classical
384 + statistical mechanics, since the number of particles in the system
385 + is huge, we may be able to believe the system is stationary,
386 + \begin{equation}
387 + \frac{{\partial \rho }}{{\partial t}} = 0.
388 + \label{introEquation:stationary}
389 + \end{equation}
390 + In such stationary system, the density of distribution $\rho$ can be
391 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 + distribution,
393 + \begin{equation}
394 + \rho  \propto e^{ - \beta H}
395 + \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 239 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice\cite{Frenkel1996}.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494   A variety of numerical integrators were proposed to simulate the
# Line 336 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
339 The free rigid body is an example of Poisson system (actually a
340 Lie-Poisson system) with Hamiltonian function of angular kinetic
341 energy.
342 \begin{equation}
343 J(\pi ) = \left( {\begin{array}{*{20}c}
344   0 & {\pi _3 } & { - \pi _2 }  \\
345   { - \pi _3 } & 0 & {\pi _1 }  \\
346   {\pi _2 } & { - \pi _1 } & 0  \\
347 \end{array}} \right)
348 \end{equation}
573  
574 < \begin{equation}
351 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 < \end{equation}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
355 \subsection{\label{introSection:geometricProperties}Geometric Properties}
576   Let $x(t)$ be the exact solution of the ODE system,
577   \begin{equation}
578   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 362 | Line 582 | space to itself. In most cases, it is not easy to find
582   x(t+\tau) =\varphi_\tau(x(t))
583   \]
584   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
585 > space to itself. The flow has the continuous group property,
586   \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611   \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615   The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
617 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < '\varphi^T J '\varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
# Line 383 | Line 627 | symplectomorphism. As to the Poisson system,
627   field on a symplectic manifold can be shown to be a
628   symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < '\varphi ^T J '\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632 < is the property must be preserved by the integrator. It is possible
633 < to construct a \emph{volume-preserving} flow for a source free($
634 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
635 < 1$. Changing the variables $y = h(x)$ in a
636 < ODE\ref{introEquation:ODE} will result in a new system,
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641   \[
642   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643   \]
644   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645   In other words, the flow of this vector field is reversible if and
646 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 < designing any numerical methods, one should always try to preserve
400 < the structural properties of the original ODE and its flow.
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 + A \emph{first integral}, or conserved quantity of a general
649 + differential function is a function $ G:R^{2d}  \to R^d $ which is
650 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 + \[
652 + \frac{{dG(x(t))}}{{dt}} = 0.
653 + \]
654 + Using chain rule, one may obtain,
655 + \[
656 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 + \]
658 + which is the condition for conserving \emph{first integral}. For a
659 + canonical Hamiltonian system, the time evolution of an arbitrary
660 + smooth function $G$ is given by,
661 + \begin{equation}
662 + \begin{array}{c}
663 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 + \end{array}
666 + \label{introEquation:firstIntegral1}
667 + \end{equation}
668 + Using poisson bracket notion, Equation
669 + \ref{introEquation:firstIntegral1} can be rewritten as
670 + \[
671 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 + \]
673 + Therefore, the sufficient condition for $G$ to be the \emph{first
674 + integral} of a Hamiltonian system is
675 + \[
676 + \left\{ {G,H} \right\} = 0.
677 + \]
678 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 + 0$.
681 +
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687   A lot of well established and very effective numerical methods have
688   been successful precisely because of their symplecticities even
# Line 414 | Line 698 | and difficult to use\cite{}. In dissipative systems, v
698   \end{enumerate}
699  
700   Generating function tends to lead to methods which are cumbersome
701 < and difficult to use\cite{}. In dissipative systems, variational
702 < methods can capture the decay of energy accurately\cite{}. Since
703 < their geometrically unstable nature against non-Hamiltonian
704 < perturbations, ordinary implicit Runge-Kutta methods are not
705 < suitable for Hamiltonian system. Recently, various high-order
706 < explicit Runge--Kutta methods have been developed to overcome this
707 < instability \cite{}. However, due to computational penalty involved
708 < in implementing the Runge-Kutta methods, they do not attract too
709 < much attention from Molecular Dynamics community. Instead, splitting
710 < have been widely accepted since they exploit natural decompositions
711 < of the system\cite{Tuckerman92}. The main idea behind splitting
712 < methods is to decompose the discrete $\varphi_h$ as a composition of
713 < simpler flows,
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717   \begin{equation}
718   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719   \varphi _{h_n }
720   \label{introEquation:FlowDecomposition}
721   \end{equation}
722   where each of the sub-flow is chosen such that each represent a
723 < simpler integration of the system. Let $\phi$ and $\psi$ both be
724 < symplectic maps, it is easy to show that any composition of
725 < symplectic flows yields a symplectic map,
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726 > \[
727 > H = H_1 + H_2.
728 > \]
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735   \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 < '\phi ' = \phi '^T J\phi ' = J.
747 > '\phi ' = \phi '^T J\phi ' = J,
748   \label{introEquation:SymplecticFlowComposition}
749   \end{equation}
750 < Suppose that a Hamiltonian system has a form with $H = T + V$
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752  
753 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 + introduces local errors proportional to $h^2$, while Strang
755 + splitting gives a second-order decomposition,
756 + \begin{equation}
757 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 + \end{equation}
760 + which has a local error proportional to $h^3$. Sprang splitting's
761 + popularity in molecular simulation community attribute to its
762 + symmetric property,
763 + \begin{equation}
764 + \varphi _h^{ - 1} = \varphi _{ - h}.
765 + \label{introEquation:timeReversible}
766 + \end{equation}
767  
768 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 + The classical equation for a system consisting of interacting
770 + particles can be written in Hamiltonian form,
771 + \[
772 + H = T + V
773 + \]
774 + where $T$ is the kinetic energy and $V$ is the potential energy.
775 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 + obtains the following:
777 + \begin{align}
778 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 + \label{introEquation:Lp10a} \\%
781 + %
782 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 + \label{introEquation:Lp10b}
785 + \end{align}
786 + where $F(t)$ is the force at time $t$. This integration scheme is
787 + known as \emph{velocity verlet} which is
788 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 + time-reversible(\ref{introEquation:timeReversible}) and
790 + volume-preserving (\ref{introEquation:volumePreserving}). These
791 + geometric properties attribute to its long-time stability and its
792 + popularity in the community. However, the most commonly used
793 + velocity verlet integration scheme is written as below,
794 + \begin{align}
795 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 + %
798 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 +    \label{introEquation:Lp9b}\\%
800 + %
801 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 + \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808  
809 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 +
811 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 +
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet2}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 + \[
845 + [X,Y] = XY - YX .
846 + \]
847 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 + can obtain
849 + \begin{eqnarray*}
850 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 + \ldots )
854 + \end{eqnarray*}
855 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 + error of Spring splitting is proportional to $h^3$. The same
857 + procedure can be applied to general splitting,  of the form
858 + \begin{equation}
859 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 + \end{equation}
862 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 + order method. Yoshida proposed an elegant way to compose higher
864 + order methods based on symmetric splitting. Given a symmetric second
865 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 + method can be constructed by composing,
867 + \[
868 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 + \]
871 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 + \begin{equation}
875 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 + \end{equation}
878 + , if the weights are chosen as
879 + \[
880 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 + \]
883 +
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886   As a special discipline of molecular modeling, Molecular dynamics
# Line 452 | Line 888 | dynamical information.
888   biological systems, providing structural, thermodynamic and
889   dynamical information.
890  
891 < \subsection{\label{introSec:mdInit}Initialization}
891 > One of the principal tools for modeling proteins, nucleic acids and
892 > their complexes. Stability of proteins Folding of proteins.
893 > Molecular recognition by:proteins, DNA, RNA, lipids, hormones STP,
894 > etc. Enzyme reactions Rational design of biologically active
895 > molecules (drug design) Small and large-scale conformational
896 > changes. determination and construction of 3D structures (homology,
897 > Xray diffraction, NMR) Dynamic processes such as ion transport in
898 > biological systems.
899  
900 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
900 > Macroscopic properties are related to microscopic behavior.
901  
902 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
902 > Time dependent (and independent) microscopic behavior of a molecule
903 > can be calculated by molecular dynamics simulations.
904  
905 < A rigid body is a body in which the distance between any two given
462 < points of a rigid body remains constant regardless of external
463 < forces exerted on it. A rigid body therefore conserves its shape
464 < during its motion.
905 > \subsection{\label{introSec:mdInit}Initialization}
906  
907 < Applications of dynamics of rigid bodies.
907 > \subsection{\label{introSec:forceEvaluation}Force Evaluation}
908  
909 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
909 > \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
910  
911 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
911 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
912  
913 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
913 > Rigid bodies are frequently involved in the modeling of different
914 > areas, from engineering, physics, to chemistry. For example,
915 > missiles and vehicle are usually modeled by rigid bodies.  The
916 > movement of the objects in 3D gaming engine or other physics
917 > simulator is governed by the rigid body dynamics. In molecular
918 > simulation, rigid body is used to simplify the model in
919 > protein-protein docking study{\cite{Gray03}}.
920  
921 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
921 > It is very important to develop stable and efficient methods to
922 > integrate the equations of motion of orientational degrees of
923 > freedom. Euler angles are the nature choice to describe the
924 > rotational degrees of freedom. However, due to its singularity, the
925 > numerical integration of corresponding equations of motion is very
926 > inefficient and inaccurate. Although an alternative integrator using
927 > different sets of Euler angles can overcome this difficulty\cite{},
928 > the computational penalty and the lost of angular momentum
929 > conservation still remain. A singularity free representation
930 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
931 > this approach suffer from the nonseparable Hamiltonian resulted from
932 > quaternion representation, which prevents the symplectic algorithm
933 > to be utilized. Another different approach is to apply holonomic
934 > constraints to the atoms belonging to the rigid body. Each atom
935 > moves independently under the normal forces deriving from potential
936 > energy and constraint forces which are used to guarantee the
937 > rigidness. However, due to their iterative nature, SHAKE and Rattle
938 > algorithm converge very slowly when the number of constraint
939 > increases.
940  
941 < \section{\label{introSection:correlationFunctions}Correlation Functions}
941 > The break through in geometric literature suggests that, in order to
942 > develop a long-term integration scheme, one should preserve the
943 > symplectic structure of the flow. Introducing conjugate momentum to
944 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
945 > symplectic integrator, RSHAKE, was proposed to evolve the
946 > Hamiltonian system in a constraint manifold by iteratively
947 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
948 > method using quaternion representation was developed by Omelyan.
949 > However, both of these methods are iterative and inefficient. In
950 > this section, we will present a symplectic Lie-Poisson integrator
951 > for rigid body developed by Dullweber and his
952 > coworkers\cite{Dullweber1997} in depth.
953  
954 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
954 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
955 > The motion of the rigid body is Hamiltonian with the Hamiltonian
956 > function
957 > \begin{equation}
958 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
959 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
960 > \label{introEquation:RBHamiltonian}
961 > \end{equation}
962 > Here, $q$ and $Q$  are the position and rotation matrix for the
963 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
964 > $J$, a diagonal matrix, is defined by
965 > \[
966 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
967 > \]
968 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
969 > constrained Hamiltonian equation subjects to a holonomic constraint,
970 > \begin{equation}
971 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
972 > \end{equation}
973 > which is used to ensure rotation matrix's orthogonality.
974 > Differentiating \ref{introEquation:orthogonalConstraint} and using
975 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
976 > \begin{equation}
977 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
978 > \label{introEquation:RBFirstOrderConstraint}
979 > \end{equation}
980  
981 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
981 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
982 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
983 > the equations of motion,
984 > \[
985 > \begin{array}{c}
986 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
987 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
988 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
989 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
990 > \end{array}
991 > \]
992  
993 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
993 > In general, there are two ways to satisfy the holonomic constraints.
994 > We can use constraint force provided by lagrange multiplier on the
995 > normal manifold to keep the motion on constraint space. Or we can
996 > simply evolve the system in constraint manifold. The two method are
997 > proved to be equivalent. The holonomic constraint and equations of
998 > motions define a constraint manifold for rigid body
999 > \[
1000 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1001 > \right\}.
1002 > \]
1003  
1004 + Unfortunately, this constraint manifold is not the cotangent bundle
1005 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1006 + transformation, the cotangent space and the phase space are
1007 + diffeomorphic. Introducing
1008 + \[
1009 + \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1010 + \]
1011 + the mechanical system subject to a holonomic constraint manifold $M$
1012 + can be re-formulated as a Hamiltonian system on the cotangent space
1013 + \[
1014 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1015 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1016 + \]
1017 +
1018 + For a body fixed vector $X_i$ with respect to the center of mass of
1019 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1020 + given as
1021   \begin{equation}
1022 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
486 < \label{introEquation:bathGLE}
1022 > X_i^{lab} = Q X_i + q.
1023   \end{equation}
1024 < where $H_B$ is harmonic bath Hamiltonian,
1024 > Therefore, potential energy $V(q,Q)$ is defined by
1025   \[
1026 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
491 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1026 > V(q,Q) = V(Q X_0 + q).
1027   \]
1028 < and $\Delta U$ is bilinear system-bath coupling,
1028 > Hence, the force and torque are given by
1029   \[
1030 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1030 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1031   \]
1032 < Completing the square,
1032 > and
1033   \[
1034 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
500 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
501 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
502 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
503 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1034 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1035   \]
1036 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1036 > respectively.
1037 >
1038 > As a common choice to describe the rotation dynamics of the rigid
1039 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1040 > rewrite the equations of motion,
1041 > \begin{equation}
1042 > \begin{array}{l}
1043 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1044 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1045 > \end{array}
1046 > \label{introEqaution:RBMotionPI}
1047 > \end{equation}
1048 > , as well as holonomic constraints,
1049   \[
1050 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1051 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1052 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1053 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1050 > \begin{array}{l}
1051 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1052 > Q^T Q = 1 \\
1053 > \end{array}
1054 > \]
1055 >
1056 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1057 > so(3)^ \star$, the hat-map isomorphism,
1058 > \begin{equation}
1059 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1060 > {\begin{array}{*{20}c}
1061 >   0 & { - v_3 } & {v_2 }  \\
1062 >   {v_3 } & 0 & { - v_1 }  \\
1063 >   { - v_2 } & {v_1 } & 0  \\
1064 > \end{array}} \right),
1065 > \label{introEquation:hatmapIsomorphism}
1066 > \end{equation}
1067 > will let us associate the matrix products with traditional vector
1068 > operations
1069 > \[
1070 > \hat vu = v \times u
1071   \]
1072 < where
1072 >
1073 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1074 > matrix,
1075 > \begin{equation}
1076 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1077 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1078 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1079 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1080 > \end{equation}
1081 > Since $\Lambda$ is symmetric, the last term of Equation
1082 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1083 > multiplier $\Lambda$ is absent from the equations of motion. This
1084 > unique property eliminate the requirement of iterations which can
1085 > not be avoided in other methods\cite{}.
1086 >
1087 > Applying hat-map isomorphism, we obtain the equation of motion for
1088 > angular momentum on body frame
1089 > \begin{equation}
1090 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1091 > F_i (r,Q)} \right) \times X_i }.
1092 > \label{introEquation:bodyAngularMotion}
1093 > \end{equation}
1094 > In the same manner, the equation of motion for rotation matrix is
1095 > given by
1096   \[
1097 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
515 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1097 > \dot Q = Qskew(I^{ - 1} \pi )
1098   \]
517 Since the first two terms of the new Hamiltonian depend only on the
518 system coordinates, we can get the equations of motion for
519 Generalized Langevin Dynamics by Hamilton's equations
520 \ref{introEquation:motionHamiltonianCoordinate,
521 introEquation:motionHamiltonianMomentum},
522 \begin{align}
523 \dot p &=  - \frac{{\partial H}}{{\partial x}}
524       &= m\ddot x
525       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
526 \label{introEq:Lp5}
527 \end{align}
528 , and
529 \begin{align}
530 \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
531                &= m\ddot x_\alpha
532                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
533 \end{align}
1099  
1100 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1100 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1101 > Lie-Poisson Integrator for Free Rigid Body}
1102  
1103 + If there is not external forces exerted on the rigid body, the only
1104 + contribution to the rotational is from the kinetic potential (the
1105 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1106 + rigid body is an example of Lie-Poisson system with Hamiltonian
1107 + function
1108 + \begin{equation}
1109 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1110 + \label{introEquation:rotationalKineticRB}
1111 + \end{equation}
1112 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1113 + Lie-Poisson structure matrix,
1114 + \begin{equation}
1115 + J(\pi ) = \left( {\begin{array}{*{20}c}
1116 +   0 & {\pi _3 } & { - \pi _2 }  \\
1117 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1118 +   {\pi _2 } & { - \pi _1 } & 0  \\
1119 + \end{array}} \right)
1120 + \end{equation}
1121 + Thus, the dynamics of free rigid body is governed by
1122 + \begin{equation}
1123 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1124 + \end{equation}
1125 +
1126 + One may notice that each $T_i^r$ in Equation
1127 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1128 + instance, the equations of motion due to $T_1^r$ are given by
1129 + \begin{equation}
1130 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1131 + \label{introEqaution:RBMotionSingleTerm}
1132 + \end{equation}
1133 + where
1134 + \[ R_1  = \left( {\begin{array}{*{20}c}
1135 +   0 & 0 & 0  \\
1136 +   0 & 0 & {\pi _1 }  \\
1137 +   0 & { - \pi _1 } & 0  \\
1138 + \end{array}} \right).
1139 + \]
1140 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1141   \[
1142 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1142 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1143 > Q(0)e^{\Delta tR_1 }
1144   \]
1145 <
1145 > with
1146   \[
1147 < L(x + y) = L(x) + L(y)
1147 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1148 >   0 & 0 & 0  \\
1149 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1150 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1151 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1152   \]
1153 <
1153 > To reduce the cost of computing expensive functions in $e^{\Delta
1154 > tR_1 }$, we can use Cayley transformation,
1155   \[
1156 < L(ax) = aL(x)
1156 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1157 > )
1158   \]
1159  
1160 + The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1161 + manner.
1162 +
1163 + In order to construct a second-order symplectic method, we split the
1164 + angular kinetic Hamiltonian function can into five terms
1165   \[
1166 < L(\dot x) = pL(x) - px(0)
1166 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1167 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1168 > (\pi _1 )
1169 > \].
1170 > Concatenating flows corresponding to these five terms, we can obtain
1171 > an symplectic integrator,
1172 > \[
1173 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1174 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1175 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1176 > _1 }.
1177   \]
1178  
1179 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1180 + $F(\pi )$ and $G(\pi )$ is defined by
1181   \[
1182 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1182 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1183 > )
1184   \]
1185 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1186 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1187 + conserved quantity in Poisson system. We can easily verify that the
1188 + norm of the angular momentum, $\parallel \pi
1189 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1190 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1191 + then by the chain rule
1192 + \[
1193 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1194 + }}{2})\pi
1195 + \]
1196 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1197 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1198 + Lie-Poisson integrator is found to be extremely efficient and stable
1199 + which can be explained by the fact the small angle approximation is
1200 + used and the norm of the angular momentum is conserved.
1201  
1202 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1203 + Splitting for Rigid Body}
1204 +
1205 + The Hamiltonian of rigid body can be separated in terms of kinetic
1206 + energy and potential energy,
1207   \[
1208 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1208 > H = T(p,\pi ) + V(q,Q)
1209   \]
1210 + The equations of motion corresponding to potential energy and
1211 + kinetic energy are listed in the below table,
1212 + \begin{center}
1213 + \begin{tabular}{|l|l|}
1214 +  \hline
1215 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1216 +  Potential & Kinetic \\
1217 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1218 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1219 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1220 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1221 +  \hline
1222 + \end{tabular}
1223 + \end{center}
1224 + A second-order symplectic method is now obtained by the composition
1225 + of the flow maps,
1226 + \[
1227 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1228 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1229 + \]
1230 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1231 + sub-flows which corresponding to force and torque respectively,
1232 + \[
1233 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1234 + _{\Delta t/2,\tau }.
1235 + \]
1236 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1237 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1238 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1239  
1240 < Some relatively important transformation,
1240 > Furthermore, kinetic potential can be separated to translational
1241 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1242 > \begin{equation}
1243 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1244 > \end{equation}
1245 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1246 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1247 > corresponding flow maps are given by
1248   \[
1249 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1249 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1250 > _{\Delta t,T^r }.
1251   \]
1252 + Finally, we obtain the overall symplectic flow maps for free moving
1253 + rigid body
1254 + \begin{equation}
1255 + \begin{array}{c}
1256 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1257 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1258 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1259 + \end{array}
1260 + \label{introEquation:overallRBFlowMaps}
1261 + \end{equation}
1262  
1263 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1264 + As an alternative to newtonian dynamics, Langevin dynamics, which
1265 + mimics a simple heat bath with stochastic and dissipative forces,
1266 + has been applied in a variety of studies. This section will review
1267 + the theory of Langevin dynamics simulation. A brief derivation of
1268 + generalized Langevin equation will be given first. Follow that, we
1269 + will discuss the physical meaning of the terms appearing in the
1270 + equation as well as the calculation of friction tensor from
1271 + hydrodynamics theory.
1272 +
1273 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1274 +
1275 + Harmonic bath model, in which an effective set of harmonic
1276 + oscillators are used to mimic the effect of a linearly responding
1277 + environment, has been widely used in quantum chemistry and
1278 + statistical mechanics. One of the successful applications of
1279 + Harmonic bath model is the derivation of Deriving Generalized
1280 + Langevin Dynamics. Lets consider a system, in which the degree of
1281 + freedom $x$ is assumed to couple to the bath linearly, giving a
1282 + Hamiltonian of the form
1283 + \begin{equation}
1284 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1285 + \label{introEquation:bathGLE}.
1286 + \end{equation}
1287 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1288 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1289   \[
1290 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1290 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1291 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1292 > \right\}}
1293   \]
1294 + where the index $\alpha$ runs over all the bath degrees of freedom,
1295 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1296 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1297 + coupling,
1298 + \[
1299 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1300 + \]
1301 + where $g_\alpha$ are the coupling constants between the bath and the
1302 + coordinate $x$. Introducing
1303 + \[
1304 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1305 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1306 + \] and combining the last two terms in Equation
1307 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1308 + Hamiltonian as
1309 + \[
1310 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1311 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1312 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1313 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1314 + \]
1315 + Since the first two terms of the new Hamiltonian depend only on the
1316 + system coordinates, we can get the equations of motion for
1317 + Generalized Langevin Dynamics by Hamilton's equations
1318 + \ref{introEquation:motionHamiltonianCoordinate,
1319 + introEquation:motionHamiltonianMomentum},
1320 + \begin{equation}
1321 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1322 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1323 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1324 + \label{introEquation:coorMotionGLE}
1325 + \end{equation}
1326 + and
1327 + \begin{equation}
1328 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1329 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1330 + \label{introEquation:bathMotionGLE}
1331 + \end{equation}
1332  
1333 + In order to derive an equation for $x$, the dynamics of the bath
1334 + variables $x_\alpha$ must be solved exactly first. As an integral
1335 + transform which is particularly useful in solving linear ordinary
1336 + differential equations, Laplace transform is the appropriate tool to
1337 + solve this problem. The basic idea is to transform the difficult
1338 + differential equations into simple algebra problems which can be
1339 + solved easily. Then applying inverse Laplace transform, also known
1340 + as the Bromwich integral, we can retrieve the solutions of the
1341 + original problems.
1342 +
1343 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1344 + transform of f(t) is a new function defined as
1345   \[
1346 < L(1) = \frac{1}{p}
1346 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1347   \]
1348 + where  $p$ is real and  $L$ is called the Laplace Transform
1349 + Operator. Below are some important properties of Laplace transform
1350 + \begin{equation}
1351 + \begin{array}{c}
1352 + L(x + y) = L(x) + L(y) \\
1353 + L(ax) = aL(x) \\
1354 + L(\dot x) = pL(x) - px(0) \\
1355 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1356 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1357 + \end{array}
1358 + \end{equation}
1359  
1360 < First, the bath coordinates,
1360 > Applying Laplace transform to the bath coordinates, we obtain
1361   \[
1362 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1363 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1364 < }}L(x)
1362 > \begin{array}{c}
1363 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1364 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1365 > \end{array}
1366   \]
1367 + By the same way, the system coordinates become
1368   \[
1369 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1370 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1369 > \begin{array}{c}
1370 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1371 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1372 > \end{array}
1373   \]
584 Then, the system coordinates,
585 \begin{align}
586 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
587 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
588 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
589 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
590 }}\omega _\alpha ^2 L(x)} \right\}}
591 %
592 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
593 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
594 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
595 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
596 \end{align}
597 Then, the inverse transform,
1374  
1375 + With the help of some relatively important inverse Laplace
1376 + transformations:
1377 + \[
1378 + \begin{array}{c}
1379 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1380 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1381 + L(1) = \frac{1}{p} \\
1382 + \end{array}
1383 + \]
1384 + , we obtain
1385   \begin{align}
1386   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1387   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 615 | Line 1401 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1401   (\omega _\alpha  t)} \right\}}
1402   \end{align}
1403  
1404 + Introducing a \emph{dynamic friction kernel}
1405   \begin{equation}
619 m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
620 (t)\dot x(t - \tau )d\tau }  + R(t)
621 \label{introEuqation:GeneralizedLangevinDynamics}
622 \end{equation}
623 %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
624 %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
625 \[
1406   \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1407   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1408 < \]
1409 < For an infinite harmonic bath, we can use the spectral density and
1410 < an integral over frequencies.
1411 <
632 < \[
1408 > \label{introEquation:dynamicFrictionKernelDefinition}
1409 > \end{equation}
1410 > and \emph{a random force}
1411 > \begin{equation}
1412   R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1413   - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1414   \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1415 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1416 < \]
1417 < The random forces depend only on initial conditions.
1415 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1416 > \label{introEquation:randomForceDefinition}
1417 > \end{equation}
1418 > the equation of motion can be rewritten as
1419 > \begin{equation}
1420 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1421 > (t)\dot x(t - \tau )d\tau }  + R(t)
1422 > \label{introEuqation:GeneralizedLangevinDynamics}
1423 > \end{equation}
1424 > which is known as the \emph{generalized Langevin equation}.
1425 >
1426 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1427  
1428 + One may notice that $R(t)$ depends only on initial conditions, which
1429 + implies it is completely deterministic within the context of a
1430 + harmonic bath. However, it is easy to verify that $R(t)$ is totally
1431 + uncorrelated to $x$ and $\dot x$,
1432 + \[
1433 + \begin{array}{l}
1434 + \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1435 + \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1436 + \end{array}
1437 + \]
1438 + This property is what we expect from a truly random process. As long
1439 + as the model, which is gaussian distribution in general, chosen for
1440 + $R(t)$ is a truly random process, the stochastic nature of the GLE
1441 + still remains.
1442 +
1443 + %dynamic friction kernel
1444 + The convolution integral
1445 + \[
1446 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1447 + \]
1448 + depends on the entire history of the evolution of $x$, which implies
1449 + that the bath retains memory of previous motions. In other words,
1450 + the bath requires a finite time to respond to change in the motion
1451 + of the system. For a sluggish bath which responds slowly to changes
1452 + in the system coordinate, we may regard $\xi(t)$ as a constant
1453 + $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1454 + \[
1455 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1456 + \]
1457 + and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1458 + \[
1459 + m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1460 + \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1461 + \]
1462 + which can be used to describe dynamic caging effect. The other
1463 + extreme is the bath that responds infinitely quickly to motions in
1464 + the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1465 + time:
1466 + \[
1467 + \xi (t) = 2\xi _0 \delta (t)
1468 + \]
1469 + Hence, the convolution integral becomes
1470 + \[
1471 + \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1472 + {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1473 + \]
1474 + and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1475 + \begin{equation}
1476 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1477 + x(t) + R(t) \label{introEquation:LangevinEquation}
1478 + \end{equation}
1479 + which is known as the Langevin equation. The static friction
1480 + coefficient $\xi _0$ can either be calculated from spectral density
1481 + or be determined by Stokes' law for regular shaped particles.A
1482 + briefly review on calculating friction tensor for arbitrary shaped
1483 + particles is given in section \ref{introSection:frictionTensor}.
1484 +
1485   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1486 < So we can define a new set of coordinates,
1486 >
1487 > Defining a new set of coordinates,
1488   \[
1489   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1490   ^2 }}x(0)
1491 < \]
1492 < This makes
1491 > \],
1492 > we can rewrite $R(T)$ as
1493   \[
1494 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1494 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1495   \]
1496   And since the $q$ coordinates are harmonic oscillators,
1497   \[
1498 < \begin{array}{l}
1498 > \begin{array}{c}
1499 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1500   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1501   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1502 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1503 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1504 +  = kT\xi (t) \\
1505   \end{array}
1506   \]
1507 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1508 + \begin{equation}
1509 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1510 + \label{introEquation:secondFluctuationDissipation}.
1511 + \end{equation}
1512 + In effect, it acts as a constraint on the possible ways in which one
1513 + can model the random force and friction kernel.
1514  
1515 < \begin{align}
1516 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1517 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1518 < (t)q_\beta  (0)} \right\rangle } }
1519 < %
1520 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1521 < \right\rangle \cos (\omega _\alpha  t)}
1522 < %
1523 < &= kT\xi (t)
1524 < \end{align}
1515 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1516 > Theoretically, the friction kernel can be determined using velocity
1517 > autocorrelation function. However, this approach become impractical
1518 > when the system become more and more complicate. Instead, various
1519 > approaches based on hydrodynamics have been developed to calculate
1520 > the friction coefficients. The friction effect is isotropic in
1521 > Equation, \zeta can be taken as a scalar. In general, friction
1522 > tensor \Xi is a $6\times 6$ matrix given by
1523 > \[
1524 > \Xi  = \left( {\begin{array}{*{20}c}
1525 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1526 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1527 > \end{array}} \right).
1528 > \]
1529 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1530 > tensor and rotational resistance (friction) tensor respectively,
1531 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1532 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1533 > particle moves in a fluid, it may experience friction force or
1534 > torque along the opposite direction of the velocity or angular
1535 > velocity,
1536 > \[
1537 > \left( \begin{array}{l}
1538 > F_R  \\
1539 > \tau _R  \\
1540 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1541 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1542 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1543 > \end{array}} \right)\left( \begin{array}{l}
1544 > v \\
1545 > w \\
1546 > \end{array} \right)
1547 > \]
1548 > where $F_r$ is the friction force and $\tau _R$ is the friction
1549 > toque.
1550  
1551 + \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1552 +
1553 + For a spherical particle, the translational and rotational friction
1554 + constant can be calculated from Stoke's law,
1555 + \[
1556 + \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1557 +   {6\pi \eta R} & 0 & 0  \\
1558 +   0 & {6\pi \eta R} & 0  \\
1559 +   0 & 0 & {6\pi \eta R}  \\
1560 + \end{array}} \right)
1561 + \]
1562 + and
1563 + \[
1564 + \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1565 +   {8\pi \eta R^3 } & 0 & 0  \\
1566 +   0 & {8\pi \eta R^3 } & 0  \\
1567 +   0 & 0 & {8\pi \eta R^3 }  \\
1568 + \end{array}} \right)
1569 + \]
1570 + where $\eta$ is the viscosity of the solvent and $R$ is the
1571 + hydrodynamics radius.
1572 +
1573 + Other non-spherical shape, such as cylinder and ellipsoid
1574 + \textit{etc}, are widely used as reference for developing new
1575 + hydrodynamics theory, because their properties can be calculated
1576 + exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1577 + also called a triaxial ellipsoid, which is given in Cartesian
1578 + coordinates by
1579 + \[
1580 + \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1581 + }} = 1
1582 + \]
1583 + where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1584 + due to the complexity of the elliptic integral, only the ellipsoid
1585 + with the restriction of two axes having to be equal, \textit{i.e.}
1586 + prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1587 + exactly. Introducing an elliptic integral parameter $S$ for prolate,
1588 + \[
1589 + S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1590 + } }}{b},
1591 + \]
1592 + and oblate,
1593 + \[
1594 + S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1595 + }}{a}
1596 + \],
1597 + one can write down the translational and rotational resistance
1598 + tensors
1599 + \[
1600 + \begin{array}{l}
1601 + \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1602 + \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1603 + \end{array},
1604 + \]
1605 + and
1606 + \[
1607 + \begin{array}{l}
1608 + \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1609 + \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1610 + \end{array}.
1611 + \]
1612 +
1613 + \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1614 +
1615 + Unlike spherical and other regular shaped molecules, there is not
1616 + analytical solution for friction tensor of any arbitrary shaped
1617 + rigid molecules. The ellipsoid of revolution model and general
1618 + triaxial ellipsoid model have been used to approximate the
1619 + hydrodynamic properties of rigid bodies. However, since the mapping
1620 + from all possible ellipsoidal space, $r$-space, to all possible
1621 + combination of rotational diffusion coefficients, $D$-space is not
1622 + unique\cite{Wegener79} as well as the intrinsic coupling between
1623 + translational and rotational motion of rigid body\cite{}, general
1624 + ellipsoid is not always suitable for modeling arbitrarily shaped
1625 + rigid molecule. A number of studies have been devoted to determine
1626 + the friction tensor for irregularly shaped rigid bodies using more
1627 + advanced method\cite{} where the molecule of interest was modeled by
1628 + combinations of spheres(beads)\cite{} and the hydrodynamics
1629 + properties of the molecule can be calculated using the hydrodynamic
1630 + interaction tensor. Let us consider a rigid assembly of $N$ beads
1631 + immersed in a continuous medium. Due to hydrodynamics interaction,
1632 + the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1633 + unperturbed velocity $v_i$,
1634 + \[
1635 + v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1636 + \]
1637 + where $F_i$ is the frictional force, and $T_{ij}$ is the
1638 + hydrodynamic interaction tensor. The friction force of $i$th bead is
1639 + proportional to its ``net'' velocity
1640   \begin{equation}
1641 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1642 < \label{introEquation:secondFluctuationDissipation}
1641 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1642 > \label{introEquation:tensorExpression}
1643   \end{equation}
1644 + This equation is the basis for deriving the hydrodynamic tensor. In
1645 + 1930, Oseen and Burgers gave a simple solution to Equation
1646 + \ref{introEquation:tensorExpression}
1647 + \begin{equation}
1648 + T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1649 + R_{ij}^T }}{{R_{ij}^2 }}} \right).
1650 + \label{introEquation:oseenTensor}
1651 + \end{equation}
1652 + Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1653 + A second order expression for element of different size was
1654 + introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1655 + la Torre and Bloomfield,
1656 + \begin{equation}
1657 + T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1658 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1659 + _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1660 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1661 + \label{introEquation:RPTensorNonOverlapped}
1662 + \end{equation}
1663 + Both of the Equation \ref{introEquation:oseenTensor} and Equation
1664 + \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1665 + \ge \sigma _i  + \sigma _j$. An alternative expression for
1666 + overlapping beads with the same radius, $\sigma$, is given by
1667 + \begin{equation}
1668 + T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1669 + \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1670 + \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1671 + \label{introEquation:RPTensorOverlapped}
1672 + \end{equation}
1673  
1674 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1674 > To calculate the resistance tensor at an arbitrary origin $O$, we
1675 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1676 > $B_{ij}$ blocks
1677 > \begin{equation}
1678 > B = \left( {\begin{array}{*{20}c}
1679 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1680 >    \vdots  &  \ddots  &  \vdots   \\
1681 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1682 > \end{array}} \right),
1683 > \end{equation}
1684 > where $B_{ij}$ is given by
1685 > \[
1686 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1687 > )T_{ij}
1688 > \]
1689 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1690 > $B$, we obtain
1691  
1692 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1693 < \subsection{\label{introSection:analyticalApproach}Analytical
1694 < Approach}
1692 > \[
1693 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1694 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1695 >    \vdots  &  \ddots  &  \vdots   \\
1696 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1697 > \end{array}} \right)
1698 > \]
1699 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1700 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1701 > \[
1702 > U_i  = \left( {\begin{array}{*{20}c}
1703 >   0 & { - z_i } & {y_i }  \\
1704 >   {z_i } & 0 & { - x_i }  \\
1705 >   { - y_i } & {x_i } & 0  \\
1706 > \end{array}} \right)
1707 > \]
1708 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1709 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1710 > arbitrary origin $O$ can be written as
1711 > \begin{equation}
1712 > \begin{array}{l}
1713 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1714 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1715 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1716 > \end{array}
1717 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1718 > \end{equation}
1719  
1720 < \subsection{\label{introSection:approximationApproach}Approximation
1721 < Approach}
1720 > The resistance tensor depends on the origin to which they refer. The
1721 > proper location for applying friction force is the center of
1722 > resistance (reaction), at which the trace of rotational resistance
1723 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1724 > resistance is defined as an unique point of the rigid body at which
1725 > the translation-rotation coupling tensor are symmetric,
1726 > \begin{equation}
1727 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1728 > \label{introEquation:definitionCR}
1729 > \end{equation}
1730 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1731 > we can easily find out that the translational resistance tensor is
1732 > origin independent, while the rotational resistance tensor and
1733 > translation-rotation coupling resistance tensor depend on the
1734 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1735 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1736 > obtain the resistance tensor at $P$ by
1737 > \begin{equation}
1738 > \begin{array}{l}
1739 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1740 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1741 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1742 > \end{array}
1743 > \label{introEquation:resistanceTensorTransformation}
1744 > \end{equation}
1745 > where
1746 > \[
1747 > U_{OP}  = \left( {\begin{array}{*{20}c}
1748 >   0 & { - z_{OP} } & {y_{OP} }  \\
1749 >   {z_i } & 0 & { - x_{OP} }  \\
1750 >   { - y_{OP} } & {x_{OP} } & 0  \\
1751 > \end{array}} \right)
1752 > \]
1753 > Using Equations \ref{introEquation:definitionCR} and
1754 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1755 > the position of center of resistance,
1756 > \[
1757 > \left( \begin{array}{l}
1758 > x_{OR}  \\
1759 > y_{OR}  \\
1760 > z_{OR}  \\
1761 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1762 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1763 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1764 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1765 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1766 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1767 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1768 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1769 > \end{array} \right).
1770 > \]
1771 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1772 > joining center of resistance $R$ and origin $O$.
1773  
1774 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
684 < Body}
1774 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines