ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2719 by tim, Tue Apr 18 22:38:19 2006 UTC vs.
Revision 2725 by tim, Fri Apr 21 05:45:14 2006 UTC

# Line 882 | Line 882 | _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
882   \]
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885
886 As a special discipline of molecular modeling, Molecular dynamics
887 has proven to be a powerful tool for studying the functions of
888 biological systems, providing structural, thermodynamic and
889 dynamical information.
885  
886 < One of the principal tools for modeling proteins, nucleic acids and
887 < their complexes. Stability of proteins Folding of proteins.
888 < Molecular recognition by:proteins, DNA, RNA, lipids, hormones STP,
889 < etc. Enzyme reactions Rational design of biologically active
890 < molecules (drug design) Small and large-scale conformational
891 < changes. determination and construction of 3D structures (homology,
892 < Xray diffraction, NMR) Dynamic processes such as ion transport in
893 < biological systems.
894 <
895 < Macroscopic properties are related to microscopic behavior.
896 <
897 < Time dependent (and independent) microscopic behavior of a molecule
898 < can be calculated by molecular dynamics simulations.
899 <
905 < \subsection{\label{introSec:mdInit}Initialization}
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
917 > provides the theoretical tools for trajectory analysis.
918  
919 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
919 > \subsection{\label{introSec:initialSystemSettings}Initialization}
920 >
921 > \subsubsection{Preliminary preparation}
922 >
923 > When selecting the starting structure of a molecule for molecular
924 > simulation, one may retrieve its Cartesian coordinates from public
925 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
926 > thousands of crystal structures of molecules are discovered every
927 > year, many more remain unknown due to the difficulties of
928 > purification and crystallization. Even for the molecule with known
929 > structure, some important information is missing. For example, the
930 > missing hydrogen atom which acts as donor in hydrogen bonding must
931 > be added. Moreover, in order to include electrostatic interaction,
932 > one may need to specify the partial charges for individual atoms.
933 > Under some circumstances, we may even need to prepare the system in
934 > a special setup. For instance, when studying transport phenomenon in
935 > membrane system, we may prepare the lipids in bilayer structure
936 > instead of placing lipids randomly in solvent, since we are not
937 > interested in self-aggregation and it takes a long time to happen.
938 >
939 > \subsubsection{Minimization}
940 >
941 > It is quite possible that some of molecules in the system from
942 > preliminary preparation may be overlapped with each other. This
943 > close proximity leads to high potential energy which consequently
944 > jeopardizes any molecular dynamics simulations. To remove these
945 > steric overlaps, one typically performs energy minimization to find
946 > a more reasonable conformation. Several energy minimization methods
947 > have been developed to exploit the energy surface and to locate the
948 > local minimum. While converging slowly near the minimum, steepest
949 > descent method is extremely robust when systems are far from
950 > harmonic. Thus, it is often used to refine structure from
951 > crystallographic data. Relied on the gradient or hessian, advanced
952 > methods like conjugate gradient and Newton-Raphson converge rapidly
953 > to a local minimum, while become unstable if the energy surface is
954 > far from quadratic. Another factor must be taken into account, when
955 > choosing energy minimization method, is the size of the system.
956 > Steepest descent and conjugate gradient can deal with models of any
957 > size. Because of the limit of computation power to calculate hessian
958 > matrix and insufficient storage capacity to store them, most
959 > Newton-Raphson methods can not be used with very large models.
960  
961 + \subsubsection{Heating}
962 +
963 + Typically, Heating is performed by assigning random velocities
964 + according to a Gaussian distribution for a temperature. Beginning at
965 + a lower temperature and gradually increasing the temperature by
966 + assigning greater random velocities, we end up with setting the
967 + temperature of the system to a final temperature at which the
968 + simulation will be conducted. In heating phase, we should also keep
969 + the system from drifting or rotating as a whole. Equivalently, the
970 + net linear momentum and angular momentum of the system should be
971 + shifted to zero.
972 +
973 + \subsubsection{Equilibration}
974 +
975 + The purpose of equilibration is to allow the system to evolve
976 + spontaneously for a period of time and reach equilibrium. The
977 + procedure is continued until various statistical properties, such as
978 + temperature, pressure, energy, volume and other structural
979 + properties \textit{etc}, become independent of time. Strictly
980 + speaking, minimization and heating are not necessary, provided the
981 + equilibration process is long enough. However, these steps can serve
982 + as a means to arrive at an equilibrated structure in an effective
983 + way.
984 +
985 + \subsection{\label{introSection:production}Production}
986 +
987 + Production run is the most important steps of the simulation, in
988 + which the equilibrated structure is used as a starting point and the
989 + motions of the molecules are collected for later analysis. In order
990 + to capture the macroscopic properties of the system, the molecular
991 + dynamics simulation must be performed in correct and efficient way.
992 +
993 + The most expensive part of a molecular dynamics simulation is the
994 + calculation of non-bonded forces, such as van der Waals force and
995 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
996 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
997 + which making large simulations prohibitive in the absence of any
998 + computation saving techniques.
999 +
1000 + A natural approach to avoid system size issue is to represent the
1001 + bulk behavior by a finite number of the particles. However, this
1002 + approach will suffer from the surface effect. To offset this,
1003 + \textit{Periodic boundary condition} is developed to simulate bulk
1004 + properties with a relatively small number of particles. In this
1005 + method, the simulation box is replicated throughout space to form an
1006 + infinite lattice. During the simulation, when a particle moves in
1007 + the primary cell, its image in other cells move in exactly the same
1008 + direction with exactly the same orientation. Thus, as a particle
1009 + leaves the primary cell, one of its images will enter through the
1010 + opposite face.
1011 + %\begin{figure}
1012 + %\centering
1013 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1014 + %\caption[An illustration of periodic boundary conditions]{A 2-D
1015 + %illustration of periodic boundary conditions. As one particle leaves
1016 + %the right of the simulation box, an image of it enters the left.}
1017 + %\label{introFig:pbc}
1018 + %\end{figure}
1019 +
1020 + %cutoff and minimum image convention
1021 + Another important technique to improve the efficiency of force
1022 + evaluation is to apply cutoff where particles farther than a
1023 + predetermined distance, are not included in the calculation
1024 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1025 + discontinuity in the potential energy curve
1026 + (Fig.~\ref{introFig:shiftPot}). Fortunately, one can shift the
1027 + potential to ensure the potential curve go smoothly to zero at the
1028 + cutoff radius. Cutoff strategy works pretty well for Lennard-Jones
1029 + interaction because of its short range nature. However, simply
1030 + truncating the electrostatic interaction with the use of cutoff has
1031 + been shown to lead to severe artifacts in simulations. Ewald
1032 + summation, in which the slowly conditionally convergent Coulomb
1033 + potential is transformed into direct and reciprocal sums with rapid
1034 + and absolute convergence, has proved to minimize the periodicity
1035 + artifacts in liquid simulations. Taking the advantages of the fast
1036 + Fourier transform (FFT) for calculating discrete Fourier transforms,
1037 + the particle mesh-based methods are accelerated from $O(N^{3/2})$ to
1038 + $O(N logN)$. An alternative approach is \emph{fast multipole
1039 + method}, which treats Coulombic interaction exactly at short range,
1040 + and approximate the potential at long range through multipolar
1041 + expansion. In spite of their wide acceptances at the molecular
1042 + simulation community, these two methods are hard to be implemented
1043 + correctly and efficiently. Instead, we use a damped and
1044 + charge-neutralized Coulomb potential method developed by Wolf and
1045 + his coworkers. The shifted Coulomb potential for particle $i$ and
1046 + particle $j$ at distance $r_{rj}$ is given by:
1047 + \begin{equation}
1048 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1049 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1050 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1051 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1052 + \end{equation}
1053 + where $\alpha$ is the convergence parameter. Due to the lack of
1054 + inherent periodicity and rapid convergence,this method is extremely
1055 + efficient and easy to implement.
1056 + %\begin{figure}
1057 + %\centering
1058 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1059 + %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1060 + %\label{introFigure:shiftedCoulomb}
1061 + %\end{figure}
1062 +
1063 + %multiple time step
1064 +
1065 + \subsection{\label{introSection:Analysis} Analysis}
1066 +
1067 + Recently, advanced visualization technique are widely applied to
1068 + monitor the motions of molecules. Although the dynamics of the
1069 + system can be described qualitatively from animation, quantitative
1070 + trajectory analysis are more appreciable. According to the
1071 + principles of Statistical Mechanics,
1072 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1073 + thermodynamics properties, analyze fluctuations of structural
1074 + parameters, and investigate time-dependent processes of the molecule
1075 + from the trajectories.
1076 +
1077 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1078 +
1079 + Thermodynamics properties, which can be expressed in terms of some
1080 + function of the coordinates and momenta of all particles in the
1081 + system, can be directly computed from molecular dynamics. The usual
1082 + way to measure the pressure is based on virial theorem of Clausius
1083 + which states that the virial is equal to $-3Nk_BT$. For a system
1084 + with forces between particles, the total virial, $W$, contains the
1085 + contribution from external pressure and interaction between the
1086 + particles:
1087 + \[
1088 + W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1089 + f_{ij} } } \right\rangle
1090 + \]
1091 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1092 + distance $r_{ij}$. Thus, the expression for the pressure is given
1093 + by:
1094 + \begin{equation}
1095 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1096 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1097 + \end{equation}
1098 +
1099 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1100 +
1101 + Structural Properties of a simple fluid can be described by a set of
1102 + distribution functions. Among these functions,\emph{pair
1103 + distribution function}, also known as \emph{radial distribution
1104 + function}, is of most fundamental importance to liquid-state theory.
1105 + Pair distribution function can be gathered by Fourier transforming
1106 + raw data from a series of neutron diffraction experiments and
1107 + integrating over the surface factor \cite{Powles73}. The experiment
1108 + result can serve as a criterion to justify the correctness of the
1109 + theory. Moreover, various equilibrium thermodynamic and structural
1110 + properties can also be expressed in terms of radial distribution
1111 + function \cite{allen87:csl}.
1112 +
1113 + A pair distribution functions $g(r)$ gives the probability that a
1114 + particle $i$ will be located at a distance $r$ from a another
1115 + particle $j$ in the system
1116 + \[
1117 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1118 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1119 + \]
1120 + Note that the delta function can be replaced by a histogram in
1121 + computer simulation. Figure
1122 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1123 + distribution function for the liquid argon system. The occurrence of
1124 + several peaks in the plot of $g(r)$ suggests that it is more likely
1125 + to find particles at certain radial values than at others. This is a
1126 + result of the attractive interaction at such distances. Because of
1127 + the strong repulsive forces at short distance, the probability of
1128 + locating particles at distances less than about 2.5{\AA} from each
1129 + other is essentially zero.
1130 +
1131 + %\begin{figure}
1132 + %\centering
1133 + %\includegraphics[width=\linewidth]{pdf.eps}
1134 + %\caption[Pair distribution function for the liquid argon
1135 + %]{Pair distribution function for the liquid argon}
1136 + %\label{introFigure:pairDistributionFunction}
1137 + %\end{figure}
1138 +
1139 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1140 + Properties}
1141 +
1142 + Time-dependent properties are usually calculated using \emph{time
1143 + correlation function}, which correlates random variables $A$ and $B$
1144 + at two different time
1145 + \begin{equation}
1146 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1147 + \label{introEquation:timeCorrelationFunction}
1148 + \end{equation}
1149 + If $A$ and $B$ refer to same variable, this kind of correlation
1150 + function is called \emph{auto correlation function}. One example of
1151 + auto correlation function is velocity auto-correlation function
1152 + which is directly related to transport properties of molecular
1153 + liquids:
1154 + \[
1155 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1156 + \right\rangle } dt
1157 + \]
1158 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1159 + function which is averaging over time origins and over all the
1160 + atoms, dipole autocorrelation are calculated for the entire system.
1161 + The dipole autocorrelation function is given by:
1162 + \[
1163 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1164 + \right\rangle
1165 + \]
1166 + Here $u_{tot}$ is the net dipole of the entire system and is given
1167 + by
1168 + \[
1169 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1170 + \]
1171 + In principle, many time correlation functions can be related with
1172 + Fourier transforms of the infrared, Raman, and inelastic neutron
1173 + scattering spectra of molecular liquids. In practice, one can
1174 + extract the IR spectrum from the intensity of dipole fluctuation at
1175 + each frequency using the following relationship:
1176 + \[
1177 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1178 + i2\pi vt} dt}
1179 + \]
1180 +
1181   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1182  
1183   Rigid bodies are frequently involved in the modeling of different
# Line 1156 | Line 1426 | e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1
1426   e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1427   )
1428   \]
1429 <
1160 < The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1429 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1430   manner.
1431  
1432   In order to construct a second-order symplectic method, we split the
# Line 1480 | Line 1749 | particles is given in section \ref{introSection:fricti
1749   coefficient $\xi _0$ can either be calculated from spectral density
1750   or be determined by Stokes' law for regular shaped particles.A
1751   briefly review on calculating friction tensor for arbitrary shaped
1752 < particles is given in section \ref{introSection:frictionTensor}.
1752 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1753  
1754   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1755  
# Line 1770 | Line 2039 | joining center of resistance $R$ and origin $O$.
2039   \]
2040   where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2041   joining center of resistance $R$ and origin $O$.
1773
1774 %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines