ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2703 by tim, Wed Apr 12 04:13:16 2006 UTC vs.
Revision 2721 by tim, Thu Apr 20 03:42:21 2006 UTC

# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 571 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
574 The free rigid body is an example of Poisson system (actually a
575 Lie-Poisson system) with Hamiltonian function of angular kinetic
576 energy.
577 \begin{equation}
578 J(\pi ) = \left( {\begin{array}{*{20}c}
579   0 & {\pi _3 } & { - \pi _2 }  \\
580   { - \pi _3 } & 0 & {\pi _1 }  \\
581   {\pi _2 } & { - \pi _1 } & 0  \\
582 \end{array}} \right)
583 \end{equation}
573  
585 \begin{equation}
586 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 \end{equation}
589
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576   Let $x(t)$ be the exact solution of the ODE system,
# Line 661 | Line 645 | When designing any numerical methods, one should alway
645   In other words, the flow of this vector field is reversible if and
646   only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 < When designing any numerical methods, one should always try to
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 > \[
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653 > \]
654 > Using chain rule, one may obtain,
655 > \[
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 > \]
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670 > \[
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 > \]
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675 > \[
676 > \left\{ {G,H} \right\} = 0.
677 > \]
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681 >
682 >
683 > When designing any numerical methods, one should always try to
684   preserve the structural properties of the original ODE and its flow.
685  
686   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
# Line 736 | Line 755 | _{1,h/2} ,
755   splitting gives a second-order decomposition,
756   \begin{equation}
757   \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 < _{1,h/2} ,
740 < \label{introEqaution:secondOrderSplitting}
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759   \end{equation}
760   which has a local error proportional to $h^3$. Sprang splitting's
761   popularity in molecular simulation community attribute to its
# Line 804 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 865 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
902 <
903 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
904 <
905 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
906 <
907 < A rigid body is a body in which the distance between any two given
908 < points of a rigid body remains constant regardless of external
909 < forces exerted on it. A rigid body therefore conserves its shape
910 < during its motion.
911 <
912 < Applications of dynamics of rigid bodies.
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920  
921 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922  
923 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
923 > \subsubsection{Preliminary preparation}
924  
925 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940  
941 < \section{\label{introSection:correlationFunctions}Correlation Functions}
941 > \subsubsection{Minimization}
942  
943 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962  
963 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
963 > \subsubsection{Heating}
964  
965 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986  
987 < \begin{equation}
901 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
902 < \label{introEquation:bathGLE}
903 < \end{equation}
904 < where $H_B$ is harmonic bath Hamiltonian,
905 < \[
906 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
907 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
908 < \]
909 < and $\Delta U$ is bilinear system-bath coupling,
910 < \[
911 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
912 < \]
913 < Completing the square,
914 < \[
915 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
916 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
917 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
918 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
919 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
920 < \]
921 < and putting it back into Eq.~\ref{introEquation:bathGLE},
922 < \[
923 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
924 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
925 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
926 < w_\alpha ^2 }}x} \right)^2 } \right\}}
927 < \]
928 < where
929 < \[
930 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
931 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
932 < \]
933 < Since the first two terms of the new Hamiltonian depend only on the
934 < system coordinates, we can get the equations of motion for
935 < Generalized Langevin Dynamics by Hamilton's equations
936 < \ref{introEquation:motionHamiltonianCoordinate,
937 < introEquation:motionHamiltonianMomentum},
938 < \begin{align}
939 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
940 <       &= m\ddot x
941 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
942 < \label{introEquation:Lp5}
943 < \end{align}
944 < , and
945 < \begin{align}
946 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
947 <                &= m\ddot x_\alpha
948 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
949 < \end{align}
987 > \subsection{\label{introSection:production}Production}
988  
989 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
989 > \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990  
991 < \[
992 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
955 < \]
991 > \subsubsection{\label{introSection:integrationSchemes} Integration
992 > Schemes}
993  
994 < \[
958 < L(x + y) = L(x) + L(y)
959 < \]
994 > \subsection{\label{introSection:Analysis} Analysis}
995  
996 < \[
997 < L(ax) = aL(x)
998 < \]
996 > Recently, advanced visualization technique are widely applied to
997 > monitor the motions of molecules. Although the dynamics of the
998 > system can be described qualitatively from animation, quantitative
999 > trajectory analysis are more appreciable. According to the
1000 > principles of Statistical Mechanics,
1001 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1002 > thermodynamics properties, analyze fluctuations of structural
1003 > parameters, and investigate time-dependent processes of the molecule
1004 > from the trajectories.
1005  
1006 < \[
966 < L(\dot x) = pL(x) - px(0)
967 < \]
1006 > \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1007  
1008 < \[
970 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
971 < \]
1008 > \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1009  
1010 + Structural Properties of a simple fluid can be described by a set of
1011 + distribution functions. Among these functions,\emph{pair
1012 + distribution function}, also known as \emph{radial distribution
1013 + function}, are of most fundamental importance to liquid-state
1014 + theory. Pair distribution function can be gathered by Fourier
1015 + transforming raw data from a series of neutron diffraction
1016 + experiments and integrating over the surface factor \cite{Powles73}.
1017 + The experiment result can serve as a criterion to justify the
1018 + correctness of the theory. Moreover, various equilibrium
1019 + thermodynamic and structural properties can also be expressed in
1020 + terms of radial distribution function \cite{allen87:csl}.
1021 +
1022 + A pair distribution functions $g(r)$ gives the probability that a
1023 + particle $i$ will be located at a distance $r$ from a another
1024 + particle $j$ in the system
1025   \[
1026 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1026 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1027 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1028   \]
1029 + Note that the delta function can be replaced by a histogram in
1030 + computer simulation. Figure
1031 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1032 + distribution function for the liquid argon system. The occurrence of
1033 + several peaks in the plot of $g(r)$ suggests that it is more likely
1034 + to find particles at certain radial values than at others. This is a
1035 + result of the attractive interaction at such distances. Because of
1036 + the strong repulsive forces at short distance, the probability of
1037 + locating particles at distances less than about 2.5{\AA} from each
1038 + other is essentially zero.
1039  
1040 < Some relatively important transformation,
1041 < \[
1042 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1040 > %\begin{figure}
1041 > %\centering
1042 > %\includegraphics[width=\linewidth]{pdf.eps}
1043 > %\caption[Pair distribution function for the liquid argon
1044 > %]{Pair distribution function for the liquid argon}
1045 > %\label{introFigure:pairDistributionFunction}
1046 > %\end{figure}
1047 >
1048 > \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1049 > Properties}
1050 >
1051 > Time-dependent properties are usually calculated using \emph{time
1052 > correlation function}, which correlates random variables $A$ and $B$
1053 > at two different time
1054 > \begin{equation}
1055 > C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1056 > \label{introEquation:timeCorrelationFunction}
1057 > \end{equation}
1058 > If $A$ and $B$ refer to same variable, this kind of correlation
1059 > function is called \emph{auto correlation function}. One example of
1060 > auto correlation function is velocity auto-correlation function
1061 > which is directly related to transport properties of molecular
1062 > liquids. Another example is the calculation of the IR spectrum
1063 > through a Fourier transform of the dipole autocorrelation function.
1064 >
1065 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1066 >
1067 > Rigid bodies are frequently involved in the modeling of different
1068 > areas, from engineering, physics, to chemistry. For example,
1069 > missiles and vehicle are usually modeled by rigid bodies.  The
1070 > movement of the objects in 3D gaming engine or other physics
1071 > simulator is governed by the rigid body dynamics. In molecular
1072 > simulation, rigid body is used to simplify the model in
1073 > protein-protein docking study{\cite{Gray03}}.
1074 >
1075 > It is very important to develop stable and efficient methods to
1076 > integrate the equations of motion of orientational degrees of
1077 > freedom. Euler angles are the nature choice to describe the
1078 > rotational degrees of freedom. However, due to its singularity, the
1079 > numerical integration of corresponding equations of motion is very
1080 > inefficient and inaccurate. Although an alternative integrator using
1081 > different sets of Euler angles can overcome this difficulty\cite{},
1082 > the computational penalty and the lost of angular momentum
1083 > conservation still remain. A singularity free representation
1084 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
1085 > this approach suffer from the nonseparable Hamiltonian resulted from
1086 > quaternion representation, which prevents the symplectic algorithm
1087 > to be utilized. Another different approach is to apply holonomic
1088 > constraints to the atoms belonging to the rigid body. Each atom
1089 > moves independently under the normal forces deriving from potential
1090 > energy and constraint forces which are used to guarantee the
1091 > rigidness. However, due to their iterative nature, SHAKE and Rattle
1092 > algorithm converge very slowly when the number of constraint
1093 > increases.
1094 >
1095 > The break through in geometric literature suggests that, in order to
1096 > develop a long-term integration scheme, one should preserve the
1097 > symplectic structure of the flow. Introducing conjugate momentum to
1098 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1099 > symplectic integrator, RSHAKE, was proposed to evolve the
1100 > Hamiltonian system in a constraint manifold by iteratively
1101 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1102 > method using quaternion representation was developed by Omelyan.
1103 > However, both of these methods are iterative and inefficient. In
1104 > this section, we will present a symplectic Lie-Poisson integrator
1105 > for rigid body developed by Dullweber and his
1106 > coworkers\cite{Dullweber1997} in depth.
1107 >
1108 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1109 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1110 > function
1111 > \begin{equation}
1112 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1113 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1114 > \label{introEquation:RBHamiltonian}
1115 > \end{equation}
1116 > Here, $q$ and $Q$  are the position and rotation matrix for the
1117 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1118 > $J$, a diagonal matrix, is defined by
1119 > \[
1120 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1121   \]
1122 + where $I_{ii}$ is the diagonal element of the inertia tensor. This
1123 + constrained Hamiltonian equation subjects to a holonomic constraint,
1124 + \begin{equation}
1125 + Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1126 + \end{equation}
1127 + which is used to ensure rotation matrix's orthogonality.
1128 + Differentiating \ref{introEquation:orthogonalConstraint} and using
1129 + Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1130 + \begin{equation}
1131 + Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1132 + \label{introEquation:RBFirstOrderConstraint}
1133 + \end{equation}
1134  
1135 + Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1136 + \ref{introEquation:motionHamiltonianMomentum}), one can write down
1137 + the equations of motion,
1138   \[
1139 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1139 > \begin{array}{c}
1140 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1141 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1142 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1143 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1144 > \end{array}
1145   \]
1146  
1147 + In general, there are two ways to satisfy the holonomic constraints.
1148 + We can use constraint force provided by lagrange multiplier on the
1149 + normal manifold to keep the motion on constraint space. Or we can
1150 + simply evolve the system in constraint manifold. The two method are
1151 + proved to be equivalent. The holonomic constraint and equations of
1152 + motions define a constraint manifold for rigid body
1153   \[
1154 < L(1) = \frac{1}{p}
1154 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1155 > \right\}.
1156   \]
1157  
1158 < First, the bath coordinates,
1158 > Unfortunately, this constraint manifold is not the cotangent bundle
1159 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1160 > transformation, the cotangent space and the phase space are
1161 > diffeomorphic. Introducing
1162   \[
1163 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
993 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
994 < }}L(x)
1163 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1164   \]
1165 + the mechanical system subject to a holonomic constraint manifold $M$
1166 + can be re-formulated as a Hamiltonian system on the cotangent space
1167   \[
1168 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1169 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1168 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1169 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1170   \]
1000 Then, the system coordinates,
1001 \begin{align}
1002 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1003 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1004 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1005 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1006 }}\omega _\alpha ^2 L(x)} \right\}}
1007 %
1008 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1009 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1010 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1011 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1012 \end{align}
1013 Then, the inverse transform,
1171  
1172 + For a body fixed vector $X_i$ with respect to the center of mass of
1173 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1174 + given as
1175 + \begin{equation}
1176 + X_i^{lab} = Q X_i + q.
1177 + \end{equation}
1178 + Therefore, potential energy $V(q,Q)$ is defined by
1179 + \[
1180 + V(q,Q) = V(Q X_0 + q).
1181 + \]
1182 + Hence, the force and torque are given by
1183 + \[
1184 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1185 + \]
1186 + and
1187 + \[
1188 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1189 + \]
1190 + respectively.
1191 +
1192 + As a common choice to describe the rotation dynamics of the rigid
1193 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1194 + rewrite the equations of motion,
1195 + \begin{equation}
1196 + \begin{array}{l}
1197 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1198 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1199 + \end{array}
1200 + \label{introEqaution:RBMotionPI}
1201 + \end{equation}
1202 + , as well as holonomic constraints,
1203 + \[
1204 + \begin{array}{l}
1205 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1206 + Q^T Q = 1 \\
1207 + \end{array}
1208 + \]
1209 +
1210 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1211 + so(3)^ \star$, the hat-map isomorphism,
1212 + \begin{equation}
1213 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1214 + {\begin{array}{*{20}c}
1215 +   0 & { - v_3 } & {v_2 }  \\
1216 +   {v_3 } & 0 & { - v_1 }  \\
1217 +   { - v_2 } & {v_1 } & 0  \\
1218 + \end{array}} \right),
1219 + \label{introEquation:hatmapIsomorphism}
1220 + \end{equation}
1221 + will let us associate the matrix products with traditional vector
1222 + operations
1223 + \[
1224 + \hat vu = v \times u
1225 + \]
1226 +
1227 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1228 + matrix,
1229 + \begin{equation}
1230 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1231 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1232 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1233 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1234 + \end{equation}
1235 + Since $\Lambda$ is symmetric, the last term of Equation
1236 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1237 + multiplier $\Lambda$ is absent from the equations of motion. This
1238 + unique property eliminate the requirement of iterations which can
1239 + not be avoided in other methods\cite{}.
1240 +
1241 + Applying hat-map isomorphism, we obtain the equation of motion for
1242 + angular momentum on body frame
1243 + \begin{equation}
1244 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1245 + F_i (r,Q)} \right) \times X_i }.
1246 + \label{introEquation:bodyAngularMotion}
1247 + \end{equation}
1248 + In the same manner, the equation of motion for rotation matrix is
1249 + given by
1250 + \[
1251 + \dot Q = Qskew(I^{ - 1} \pi )
1252 + \]
1253 +
1254 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1255 + Lie-Poisson Integrator for Free Rigid Body}
1256 +
1257 + If there is not external forces exerted on the rigid body, the only
1258 + contribution to the rotational is from the kinetic potential (the
1259 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1260 + rigid body is an example of Lie-Poisson system with Hamiltonian
1261 + function
1262 + \begin{equation}
1263 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1264 + \label{introEquation:rotationalKineticRB}
1265 + \end{equation}
1266 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1267 + Lie-Poisson structure matrix,
1268 + \begin{equation}
1269 + J(\pi ) = \left( {\begin{array}{*{20}c}
1270 +   0 & {\pi _3 } & { - \pi _2 }  \\
1271 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1272 +   {\pi _2 } & { - \pi _1 } & 0  \\
1273 + \end{array}} \right)
1274 + \end{equation}
1275 + Thus, the dynamics of free rigid body is governed by
1276 + \begin{equation}
1277 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1278 + \end{equation}
1279 +
1280 + One may notice that each $T_i^r$ in Equation
1281 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1282 + instance, the equations of motion due to $T_1^r$ are given by
1283 + \begin{equation}
1284 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1285 + \label{introEqaution:RBMotionSingleTerm}
1286 + \end{equation}
1287 + where
1288 + \[ R_1  = \left( {\begin{array}{*{20}c}
1289 +   0 & 0 & 0  \\
1290 +   0 & 0 & {\pi _1 }  \\
1291 +   0 & { - \pi _1 } & 0  \\
1292 + \end{array}} \right).
1293 + \]
1294 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1295 + \[
1296 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1297 + Q(0)e^{\Delta tR_1 }
1298 + \]
1299 + with
1300 + \[
1301 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1302 +   0 & 0 & 0  \\
1303 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1304 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1305 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1306 + \]
1307 + To reduce the cost of computing expensive functions in $e^{\Delta
1308 + tR_1 }$, we can use Cayley transformation,
1309 + \[
1310 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1311 + )
1312 + \]
1313 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1314 + manner.
1315 +
1316 + In order to construct a second-order symplectic method, we split the
1317 + angular kinetic Hamiltonian function can into five terms
1318 + \[
1319 + T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1320 + ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1321 + (\pi _1 )
1322 + \].
1323 + Concatenating flows corresponding to these five terms, we can obtain
1324 + an symplectic integrator,
1325 + \[
1326 + \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1327 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1328 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1329 + _1 }.
1330 + \]
1331 +
1332 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1333 + $F(\pi )$ and $G(\pi )$ is defined by
1334 + \[
1335 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1336 + )
1337 + \]
1338 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1339 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1340 + conserved quantity in Poisson system. We can easily verify that the
1341 + norm of the angular momentum, $\parallel \pi
1342 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1343 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1344 + then by the chain rule
1345 + \[
1346 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1347 + }}{2})\pi
1348 + \]
1349 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1350 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1351 + Lie-Poisson integrator is found to be extremely efficient and stable
1352 + which can be explained by the fact the small angle approximation is
1353 + used and the norm of the angular momentum is conserved.
1354 +
1355 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1356 + Splitting for Rigid Body}
1357 +
1358 + The Hamiltonian of rigid body can be separated in terms of kinetic
1359 + energy and potential energy,
1360 + \[
1361 + H = T(p,\pi ) + V(q,Q)
1362 + \]
1363 + The equations of motion corresponding to potential energy and
1364 + kinetic energy are listed in the below table,
1365 + \begin{center}
1366 + \begin{tabular}{|l|l|}
1367 +  \hline
1368 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1369 +  Potential & Kinetic \\
1370 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1371 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1372 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1373 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1374 +  \hline
1375 + \end{tabular}
1376 + \end{center}
1377 + A second-order symplectic method is now obtained by the composition
1378 + of the flow maps,
1379 + \[
1380 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1381 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1382 + \]
1383 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1384 + sub-flows which corresponding to force and torque respectively,
1385 + \[
1386 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1387 + _{\Delta t/2,\tau }.
1388 + \]
1389 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1390 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1391 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1392 +
1393 + Furthermore, kinetic potential can be separated to translational
1394 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1395 + \begin{equation}
1396 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1397 + \end{equation}
1398 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1399 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1400 + corresponding flow maps are given by
1401 + \[
1402 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1403 + _{\Delta t,T^r }.
1404 + \]
1405 + Finally, we obtain the overall symplectic flow maps for free moving
1406 + rigid body
1407 + \begin{equation}
1408 + \begin{array}{c}
1409 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1410 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1411 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1412 + \end{array}
1413 + \label{introEquation:overallRBFlowMaps}
1414 + \end{equation}
1415 +
1416 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1417 + As an alternative to newtonian dynamics, Langevin dynamics, which
1418 + mimics a simple heat bath with stochastic and dissipative forces,
1419 + has been applied in a variety of studies. This section will review
1420 + the theory of Langevin dynamics simulation. A brief derivation of
1421 + generalized Langevin equation will be given first. Follow that, we
1422 + will discuss the physical meaning of the terms appearing in the
1423 + equation as well as the calculation of friction tensor from
1424 + hydrodynamics theory.
1425 +
1426 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1427 +
1428 + Harmonic bath model, in which an effective set of harmonic
1429 + oscillators are used to mimic the effect of a linearly responding
1430 + environment, has been widely used in quantum chemistry and
1431 + statistical mechanics. One of the successful applications of
1432 + Harmonic bath model is the derivation of Deriving Generalized
1433 + Langevin Dynamics. Lets consider a system, in which the degree of
1434 + freedom $x$ is assumed to couple to the bath linearly, giving a
1435 + Hamiltonian of the form
1436 + \begin{equation}
1437 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1438 + \label{introEquation:bathGLE}.
1439 + \end{equation}
1440 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1441 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1442 + \[
1443 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1444 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1445 + \right\}}
1446 + \]
1447 + where the index $\alpha$ runs over all the bath degrees of freedom,
1448 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1449 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1450 + coupling,
1451 + \[
1452 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1453 + \]
1454 + where $g_\alpha$ are the coupling constants between the bath and the
1455 + coordinate $x$. Introducing
1456 + \[
1457 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1458 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1459 + \] and combining the last two terms in Equation
1460 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1461 + Hamiltonian as
1462 + \[
1463 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1464 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1465 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1466 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1467 + \]
1468 + Since the first two terms of the new Hamiltonian depend only on the
1469 + system coordinates, we can get the equations of motion for
1470 + Generalized Langevin Dynamics by Hamilton's equations
1471 + \ref{introEquation:motionHamiltonianCoordinate,
1472 + introEquation:motionHamiltonianMomentum},
1473 + \begin{equation}
1474 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1475 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1476 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1477 + \label{introEquation:coorMotionGLE}
1478 + \end{equation}
1479 + and
1480 + \begin{equation}
1481 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1482 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1483 + \label{introEquation:bathMotionGLE}
1484 + \end{equation}
1485 +
1486 + In order to derive an equation for $x$, the dynamics of the bath
1487 + variables $x_\alpha$ must be solved exactly first. As an integral
1488 + transform which is particularly useful in solving linear ordinary
1489 + differential equations, Laplace transform is the appropriate tool to
1490 + solve this problem. The basic idea is to transform the difficult
1491 + differential equations into simple algebra problems which can be
1492 + solved easily. Then applying inverse Laplace transform, also known
1493 + as the Bromwich integral, we can retrieve the solutions of the
1494 + original problems.
1495 +
1496 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1497 + transform of f(t) is a new function defined as
1498 + \[
1499 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1500 + \]
1501 + where  $p$ is real and  $L$ is called the Laplace Transform
1502 + Operator. Below are some important properties of Laplace transform
1503 + \begin{equation}
1504 + \begin{array}{c}
1505 + L(x + y) = L(x) + L(y) \\
1506 + L(ax) = aL(x) \\
1507 + L(\dot x) = pL(x) - px(0) \\
1508 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1509 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1510 + \end{array}
1511 + \end{equation}
1512 +
1513 + Applying Laplace transform to the bath coordinates, we obtain
1514 + \[
1515 + \begin{array}{c}
1516 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1517 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1518 + \end{array}
1519 + \]
1520 + By the same way, the system coordinates become
1521 + \[
1522 + \begin{array}{c}
1523 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1524 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1525 + \end{array}
1526 + \]
1527 +
1528 + With the help of some relatively important inverse Laplace
1529 + transformations:
1530 + \[
1531 + \begin{array}{c}
1532 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1533 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1534 + L(1) = \frac{1}{p} \\
1535 + \end{array}
1536 + \]
1537 + , we obtain
1538   \begin{align}
1539   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1540   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 1031 | Line 1554 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1554   (\omega _\alpha  t)} \right\}}
1555   \end{align}
1556  
1557 + Introducing a \emph{dynamic friction kernel}
1558   \begin{equation}
1559 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1560 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1561 + \label{introEquation:dynamicFrictionKernelDefinition}
1562 + \end{equation}
1563 + and \emph{a random force}
1564 + \begin{equation}
1565 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1566 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1567 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1568 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1569 + \label{introEquation:randomForceDefinition}
1570 + \end{equation}
1571 + the equation of motion can be rewritten as
1572 + \begin{equation}
1573   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1574   (t)\dot x(t - \tau )d\tau }  + R(t)
1575   \label{introEuqation:GeneralizedLangevinDynamics}
1576   \end{equation}
1577 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1578 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1577 > which is known as the \emph{generalized Langevin equation}.
1578 >
1579 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1580 >
1581 > One may notice that $R(t)$ depends only on initial conditions, which
1582 > implies it is completely deterministic within the context of a
1583 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1584 > uncorrelated to $x$ and $\dot x$,
1585   \[
1586 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1587 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1586 > \begin{array}{l}
1587 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1588 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1589 > \end{array}
1590   \]
1591 < For an infinite harmonic bath, we can use the spectral density and
1592 < an integral over frequencies.
1591 > This property is what we expect from a truly random process. As long
1592 > as the model, which is gaussian distribution in general, chosen for
1593 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1594 > still remains.
1595  
1596 + %dynamic friction kernel
1597 + The convolution integral
1598   \[
1599 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1050 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1051 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1052 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1599 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1600   \]
1601 < The random forces depend only on initial conditions.
1601 > depends on the entire history of the evolution of $x$, which implies
1602 > that the bath retains memory of previous motions. In other words,
1603 > the bath requires a finite time to respond to change in the motion
1604 > of the system. For a sluggish bath which responds slowly to changes
1605 > in the system coordinate, we may regard $\xi(t)$ as a constant
1606 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1607 > \[
1608 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1609 > \]
1610 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1611 > \[
1612 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1613 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1614 > \]
1615 > which can be used to describe dynamic caging effect. The other
1616 > extreme is the bath that responds infinitely quickly to motions in
1617 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1618 > time:
1619 > \[
1620 > \xi (t) = 2\xi _0 \delta (t)
1621 > \]
1622 > Hence, the convolution integral becomes
1623 > \[
1624 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1625 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1626 > \]
1627 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1628 > \begin{equation}
1629 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1630 > x(t) + R(t) \label{introEquation:LangevinEquation}
1631 > \end{equation}
1632 > which is known as the Langevin equation. The static friction
1633 > coefficient $\xi _0$ can either be calculated from spectral density
1634 > or be determined by Stokes' law for regular shaped particles.A
1635 > briefly review on calculating friction tensor for arbitrary shaped
1636 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1637  
1638   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1639 < So we can define a new set of coordinates,
1639 >
1640 > Defining a new set of coordinates,
1641   \[
1642   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1643   ^2 }}x(0)
1644 < \]
1645 < This makes
1644 > \],
1645 > we can rewrite $R(T)$ as
1646   \[
1647 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1647 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1648   \]
1649   And since the $q$ coordinates are harmonic oscillators,
1650   \[
1651 < \begin{array}{l}
1651 > \begin{array}{c}
1652 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1653   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1654   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1655 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1656 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1657 +  = kT\xi (t) \\
1658   \end{array}
1659   \]
1660 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1661 + \begin{equation}
1662 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1663 + \label{introEquation:secondFluctuationDissipation}.
1664 + \end{equation}
1665 + In effect, it acts as a constraint on the possible ways in which one
1666 + can model the random force and friction kernel.
1667  
1668 < \begin{align}
1669 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1670 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1671 < (t)q_\beta  (0)} \right\rangle } }
1672 < %
1673 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1674 < \right\rangle \cos (\omega _\alpha  t)}
1675 < %
1676 < &= kT\xi (t)
1677 < \end{align}
1668 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1669 > Theoretically, the friction kernel can be determined using velocity
1670 > autocorrelation function. However, this approach become impractical
1671 > when the system become more and more complicate. Instead, various
1672 > approaches based on hydrodynamics have been developed to calculate
1673 > the friction coefficients. The friction effect is isotropic in
1674 > Equation, \zeta can be taken as a scalar. In general, friction
1675 > tensor \Xi is a $6\times 6$ matrix given by
1676 > \[
1677 > \Xi  = \left( {\begin{array}{*{20}c}
1678 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1679 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1680 > \end{array}} \right).
1681 > \]
1682 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1683 > tensor and rotational resistance (friction) tensor respectively,
1684 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1685 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1686 > particle moves in a fluid, it may experience friction force or
1687 > torque along the opposite direction of the velocity or angular
1688 > velocity,
1689 > \[
1690 > \left( \begin{array}{l}
1691 > F_R  \\
1692 > \tau _R  \\
1693 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1694 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1695 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1696 > \end{array}} \right)\left( \begin{array}{l}
1697 > v \\
1698 > w \\
1699 > \end{array} \right)
1700 > \]
1701 > where $F_r$ is the friction force and $\tau _R$ is the friction
1702 > toque.
1703  
1704 + \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1705 +
1706 + For a spherical particle, the translational and rotational friction
1707 + constant can be calculated from Stoke's law,
1708 + \[
1709 + \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1710 +   {6\pi \eta R} & 0 & 0  \\
1711 +   0 & {6\pi \eta R} & 0  \\
1712 +   0 & 0 & {6\pi \eta R}  \\
1713 + \end{array}} \right)
1714 + \]
1715 + and
1716 + \[
1717 + \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1718 +   {8\pi \eta R^3 } & 0 & 0  \\
1719 +   0 & {8\pi \eta R^3 } & 0  \\
1720 +   0 & 0 & {8\pi \eta R^3 }  \\
1721 + \end{array}} \right)
1722 + \]
1723 + where $\eta$ is the viscosity of the solvent and $R$ is the
1724 + hydrodynamics radius.
1725 +
1726 + Other non-spherical shape, such as cylinder and ellipsoid
1727 + \textit{etc}, are widely used as reference for developing new
1728 + hydrodynamics theory, because their properties can be calculated
1729 + exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1730 + also called a triaxial ellipsoid, which is given in Cartesian
1731 + coordinates by
1732 + \[
1733 + \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1734 + }} = 1
1735 + \]
1736 + where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1737 + due to the complexity of the elliptic integral, only the ellipsoid
1738 + with the restriction of two axes having to be equal, \textit{i.e.}
1739 + prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1740 + exactly. Introducing an elliptic integral parameter $S$ for prolate,
1741 + \[
1742 + S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1743 + } }}{b},
1744 + \]
1745 + and oblate,
1746 + \[
1747 + S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1748 + }}{a}
1749 + \],
1750 + one can write down the translational and rotational resistance
1751 + tensors
1752 + \[
1753 + \begin{array}{l}
1754 + \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1755 + \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1756 + \end{array},
1757 + \]
1758 + and
1759 + \[
1760 + \begin{array}{l}
1761 + \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1762 + \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1763 + \end{array}.
1764 + \]
1765 +
1766 + \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1767 +
1768 + Unlike spherical and other regular shaped molecules, there is not
1769 + analytical solution for friction tensor of any arbitrary shaped
1770 + rigid molecules. The ellipsoid of revolution model and general
1771 + triaxial ellipsoid model have been used to approximate the
1772 + hydrodynamic properties of rigid bodies. However, since the mapping
1773 + from all possible ellipsoidal space, $r$-space, to all possible
1774 + combination of rotational diffusion coefficients, $D$-space is not
1775 + unique\cite{Wegener79} as well as the intrinsic coupling between
1776 + translational and rotational motion of rigid body\cite{}, general
1777 + ellipsoid is not always suitable for modeling arbitrarily shaped
1778 + rigid molecule. A number of studies have been devoted to determine
1779 + the friction tensor for irregularly shaped rigid bodies using more
1780 + advanced method\cite{} where the molecule of interest was modeled by
1781 + combinations of spheres(beads)\cite{} and the hydrodynamics
1782 + properties of the molecule can be calculated using the hydrodynamic
1783 + interaction tensor. Let us consider a rigid assembly of $N$ beads
1784 + immersed in a continuous medium. Due to hydrodynamics interaction,
1785 + the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1786 + unperturbed velocity $v_i$,
1787 + \[
1788 + v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1789 + \]
1790 + where $F_i$ is the frictional force, and $T_{ij}$ is the
1791 + hydrodynamic interaction tensor. The friction force of $i$th bead is
1792 + proportional to its ``net'' velocity
1793   \begin{equation}
1794 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1795 < \label{introEquation:secondFluctuationDissipation}
1794 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1795 > \label{introEquation:tensorExpression}
1796   \end{equation}
1797 + This equation is the basis for deriving the hydrodynamic tensor. In
1798 + 1930, Oseen and Burgers gave a simple solution to Equation
1799 + \ref{introEquation:tensorExpression}
1800 + \begin{equation}
1801 + T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1802 + R_{ij}^T }}{{R_{ij}^2 }}} \right).
1803 + \label{introEquation:oseenTensor}
1804 + \end{equation}
1805 + Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1806 + A second order expression for element of different size was
1807 + introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1808 + la Torre and Bloomfield,
1809 + \begin{equation}
1810 + T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1811 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1812 + _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1813 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1814 + \label{introEquation:RPTensorNonOverlapped}
1815 + \end{equation}
1816 + Both of the Equation \ref{introEquation:oseenTensor} and Equation
1817 + \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1818 + \ge \sigma _i  + \sigma _j$. An alternative expression for
1819 + overlapping beads with the same radius, $\sigma$, is given by
1820 + \begin{equation}
1821 + T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1822 + \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1823 + \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1824 + \label{introEquation:RPTensorOverlapped}
1825 + \end{equation}
1826  
1827 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1827 > To calculate the resistance tensor at an arbitrary origin $O$, we
1828 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1829 > $B_{ij}$ blocks
1830 > \begin{equation}
1831 > B = \left( {\begin{array}{*{20}c}
1832 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1833 >    \vdots  &  \ddots  &  \vdots   \\
1834 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1835 > \end{array}} \right),
1836 > \end{equation}
1837 > where $B_{ij}$ is given by
1838 > \[
1839 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1840 > )T_{ij}
1841 > \]
1842 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1843 > $B$, we obtain
1844  
1845 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1846 < \subsection{\label{introSection:analyticalApproach}Analytical
1847 < Approach}
1845 > \[
1846 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1847 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1848 >    \vdots  &  \ddots  &  \vdots   \\
1849 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1850 > \end{array}} \right)
1851 > \]
1852 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1853 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1854 > \[
1855 > U_i  = \left( {\begin{array}{*{20}c}
1856 >   0 & { - z_i } & {y_i }  \\
1857 >   {z_i } & 0 & { - x_i }  \\
1858 >   { - y_i } & {x_i } & 0  \\
1859 > \end{array}} \right)
1860 > \]
1861 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1862 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1863 > arbitrary origin $O$ can be written as
1864 > \begin{equation}
1865 > \begin{array}{l}
1866 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1867 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1868 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1869 > \end{array}
1870 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1871 > \end{equation}
1872  
1873 < \subsection{\label{introSection:approximationApproach}Approximation
1874 < Approach}
1875 <
1876 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1877 < Body}
1873 > The resistance tensor depends on the origin to which they refer. The
1874 > proper location for applying friction force is the center of
1875 > resistance (reaction), at which the trace of rotational resistance
1876 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1877 > resistance is defined as an unique point of the rigid body at which
1878 > the translation-rotation coupling tensor are symmetric,
1879 > \begin{equation}
1880 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1881 > \label{introEquation:definitionCR}
1882 > \end{equation}
1883 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1884 > we can easily find out that the translational resistance tensor is
1885 > origin independent, while the rotational resistance tensor and
1886 > translation-rotation coupling resistance tensor depend on the
1887 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1888 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1889 > obtain the resistance tensor at $P$ by
1890 > \begin{equation}
1891 > \begin{array}{l}
1892 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1893 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1894 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1895 > \end{array}
1896 > \label{introEquation:resistanceTensorTransformation}
1897 > \end{equation}
1898 > where
1899 > \[
1900 > U_{OP}  = \left( {\begin{array}{*{20}c}
1901 >   0 & { - z_{OP} } & {y_{OP} }  \\
1902 >   {z_i } & 0 & { - x_{OP} }  \\
1903 >   { - y_{OP} } & {x_{OP} } & 0  \\
1904 > \end{array}} \right)
1905 > \]
1906 > Using Equations \ref{introEquation:definitionCR} and
1907 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1908 > the position of center of resistance,
1909 > \[
1910 > \left( \begin{array}{l}
1911 > x_{OR}  \\
1912 > y_{OR}  \\
1913 > z_{OR}  \\
1914 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1915 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1916 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1917 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1918 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1919 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1920 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1921 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1922 > \end{array} \right).
1923 > \]
1924 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1925 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines