ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2778 by tim, Fri May 26 17:56:36 2006 UTC vs.
Revision 2779 by tim, Fri May 26 18:25:41 2006 UTC

# Line 846 | Line 846 | can obtain
846   \]
847   Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848   can obtain
849 < \begin{eqnarray}
849 > \begin{eqnarray*}
850   \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
851                                     &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 <                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24\\
853 <                                   &   & \mbox{} + \ldots )
854 < \end{eqnarrary}
852 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
853 > \end{eqnarray*}
854   Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
855   error of Spring splitting is proportional to $h^3$. The same
856   procedure can be applied to general splitting,  of the form
# Line 859 | Line 858 | Careful choice of coefficient $a_1 ,\ldot , b_m$ will
858   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
859   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
860   \end{equation}
861 < Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
861 > Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
862   order method. Yoshida proposed an elegant way to compose higher
863   order methods based on symmetric splitting. Given a symmetric second
864   order base method $ \varphi _h^{(2)} $, a fourth-order symmetric

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines