ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2789 by tim, Mon Jun 5 21:00:46 2006 UTC vs.
Revision 2796 by tim, Tue Jun 6 02:05:07 2006 UTC

# Line 861 | Line 861 | Careful choice of coefficient $a_1 \ldot b_m$ will lea
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866   order methods based on symmetric splitting\cite{Yoshida1990}. Given
867   a symmetric second order base method $ \varphi _h^{(2)} $, a
# Line 1256 | Line 1256 | the equations of motion,
1256   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258   the equations of motion,
1259 < \[
1260 < \begin{array}{c}
1261 < \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 < \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 < \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 < \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 < \end{array}
1266 < \]
1259 >
1260 > \begin{eqnarray}
1261 > \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1265 > \end{eqnarray}
1266  
1267   In general, there are two ways to satisfy the holonomic constraints.
1268   We can use constraint force provided by lagrange multiplier on the
# Line 1657 | Line 1656 | m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}}
1656   \]
1657   , we obtain
1658   \begin{eqnarray*}
1659 < m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1659 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1660   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1661   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1662 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1663 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1664 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1665 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1666 < %
1667 < & = & \mbox{} - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1662 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1663 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1664 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1665 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1666 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1667 > \end{eqnarray*}
1668 > \begin{eqnarray*}
1669 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1670   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1671   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1672 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1673 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1674 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1675 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1676 < (\omega _\alpha  t)} \right\}}
1672 > t)\dot x(t - \tau )d} \tau }  \\
1673 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1674 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1675 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1676 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1677   \end{eqnarray*}
1677
1678   Introducing a \emph{dynamic friction kernel}
1679   \begin{equation}
1680   \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
# Line 2027 | Line 2027 | the position of center of resistance,
2027   Using Equations \ref{introEquation:definitionCR} and
2028   \ref{introEquation:resistanceTensorTransformation}, one can locate
2029   the position of center of resistance,
2030 \[
2031 \left( \begin{array}{l}
2032 x_{OR}  \\
2033 y_{OR}  \\
2034 z_{OR}  \\
2035 \end{array} \right) = \left( {\begin{array}{*{20}c}
2036   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2037   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2038   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2039 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2040 (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2041 (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2042 (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2043 \end{array} \right).
2044 \]
2045
2046
2030   \begin{eqnarray*}
2031   \left( \begin{array}{l}
2032   x_{OR}  \\

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines