ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2790 by tim, Mon Jun 5 21:11:51 2006 UTC vs.
Revision 2796 by tim, Tue Jun 6 02:05:07 2006 UTC

# Line 861 | Line 861 | Careful choice of coefficient $a_1 \ldot b_m$ will lea
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866   order methods based on symmetric splitting\cite{Yoshida1990}. Given
867   a symmetric second order base method $ \varphi _h^{(2)} $, a
# Line 1256 | Line 1256 | the equations of motion,
1256   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258   the equations of motion,
1259 \[
1260 \begin{array}{c}
1261 \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 \end{array}
1266 \]
1259  
1260 + \begin{eqnarray}
1261 + \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 + \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 + \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 + \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1265 + \end{eqnarray}
1266 +
1267   In general, there are two ways to satisfy the holonomic constraints.
1268   We can use constraint force provided by lagrange multiplier on the
1269   normal manifold to keep the motion on constraint space. Or we can
# Line 1657 | Line 1656 | m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}}
1656   \]
1657   , we obtain
1658   \begin{eqnarray*}
1659 < m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1659 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1660   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1661   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1662 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1663 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1664 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1665 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1666 < %
1667 < & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1662 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1663 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1664 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1665 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1666 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1667 > \end{eqnarray*}
1668 > \begin{eqnarray*}
1669 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1670   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1671   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1672 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1673 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1674 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1675 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1676 < (\omega _\alpha  t)} \right\}}
1672 > t)\dot x(t - \tau )d} \tau }  \\
1673 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1674 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1675 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1676 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1677   \end{eqnarray*}
1678   Introducing a \emph{dynamic friction kernel}
1679   \begin{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines