ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2793 by tim, Mon Jun 5 21:24:52 2006 UTC vs.
Revision 2801 by tim, Tue Jun 6 14:56:36 2006 UTC

# Line 861 | Line 861 | Careful choice of coefficient $a_1 \ldot b_m$ will lea
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866   order methods based on symmetric splitting\cite{Yoshida1990}. Given
867   a symmetric second order base method $ \varphi _h^{(2)} $, a
# Line 914 | Line 914 | initialization of a simulation. Sec.~\ref{introSec:pro
914   \end{enumerate}
915   These three individual steps will be covered in the following
916   sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
917 < initialization of a simulation. Sec.~\ref{introSec:production} will
918 < discusses issues in production run. Sec.~\ref{introSection:Analysis}
919 < provides the theoretical tools for trajectory analysis.
917 > initialization of a simulation. Sec.~\ref{introSection:production}
918 > will discusses issues in production run.
919 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
920 > trajectory analysis.
921  
922   \subsection{\label{introSec:initialSystemSettings}Initialization}
923  
# Line 1256 | Line 1257 | the equations of motion,
1257   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1258   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1259   the equations of motion,
1259 \[
1260 \begin{array}{c}
1261 \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 \end{array}
1266 \]
1260  
1261 + \begin{eqnarray}
1262 + \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1263 + \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1264 + \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1265 + \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1266 + \end{eqnarray}
1267 +
1268   In general, there are two ways to satisfy the holonomic constraints.
1269   We can use constraint force provided by lagrange multiplier on the
1270   normal manifold to keep the motion on constraint space. Or we can
# Line 1344 | Line 1344 | operations
1344   \[
1345   \hat vu = v \times u
1346   \]
1347
1347   Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1348   matrix,
1349   \begin{equation}
1350 < (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1350 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ {\bullet  ^T}
1351   ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1352   - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1353   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
# Line 1377 | Line 1376 | first term of \ref{ introEquation:bodyAngularMotion}).
1376  
1377   If there is not external forces exerted on the rigid body, the only
1378   contribution to the rotational is from the kinetic potential (the
1379 < first term of \ref{ introEquation:bodyAngularMotion}). The free
1380 < rigid body is an example of Lie-Poisson system with Hamiltonian
1382 < function
1379 > first term of \ref{introEquation:bodyAngularMotion}). The free rigid
1380 > body is an example of Lie-Poisson system with Hamiltonian function
1381   \begin{equation}
1382   T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1383   \label{introEquation:rotationalKineticRB}
# Line 1656 | Line 1654 | transformations:
1654   \end{array}
1655   \]
1656   , we obtain
1657 < \[
1658 < m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1657 > \begin{eqnarray*}
1658 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1659   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1660   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1661 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1662 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1663 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1664 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1665 < \]
1666 < \[
1667 < m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1661 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1662 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1663 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1664 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1665 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1666 > \end{eqnarray*}
1667 > \begin{eqnarray*}
1668 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1669   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1670   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1671 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1672 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1673 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1674 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1675 < (\omega _\alpha  t)} \right\}}
1676 < \]
1678 <
1671 > t)\dot x(t - \tau )d} \tau }  \\
1672 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1673 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1674 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1675 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1676 > \end{eqnarray*}
1677   Introducing a \emph{dynamic friction kernel}
1678   \begin{equation}
1679   \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
# Line 2013 | Line 2011 | obtain the resistance tensor at $P$ by
2011   \begin{array}{l}
2012   \Xi _P^{tt}  = \Xi _O^{tt}  \\
2013   \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2014 < \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2014 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{{tr} ^{^T }}  \\
2015   \end{array}
2016   \label{introEquation:resistanceTensorTransformation}
2017   \end{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines