--- trunk/tengDissertation/Introduction.tex 2006/06/21 16:28:25 2872 +++ trunk/tengDissertation/Introduction.tex 2006/06/21 16:43:07 2874 @@ -1110,7 +1110,7 @@ g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\s particle $j$ in the system \[ g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j -\ne i} {\delta (r - r_{ij} )} } } \right\rangle = \fract{\rho +\ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho (r)}{\rho}. \] Note that the delta function can be replaced by a histogram in @@ -1568,7 +1568,7 @@ coordinates ($x_ \apha$) and the system coordinate ($x \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x} \] where $g_\alpha$ are the coupling constants between the bath -coordinates ($x_ \apha$) and the system coordinate ($x$). +coordinates ($x_ \alpha$) and the system coordinate ($x$). Introducing \[ W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2