ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2696 by tim, Thu Apr 6 22:06:50 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:classicalMechanics}Classical Mechanics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
6 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
6 > Closely related to Classical Mechanics, Molecular Dynamics
7 > simulations are carried out by integrating the equations of motion
8 > for a given system of particles. There are three fundamental ideas
9 > behind classical mechanics. Firstly, One can determine the state of
10 > a mechanical system at any time of interest; Secondly, all the
11 > mechanical properties of the system at that time can be determined
12 > by combining the knowledge of the properties of the system with the
13 > specification of this state; Finally, the specification of the state
14 > when further combine with the laws of mechanics will also be
15 > sufficient to predict the future behavior of the system.
16  
17 < \section{\label{introSection:statisticalMechanics}Statistical Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_ij = -F_ji
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + N \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = N
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, Energy
67 + \begin{equation}E = T + V \label{introEquation:energyConservation}
68 + \end{equation}
69 + is conserved. All of these conserved quantities are
70 + important factors to determine the quality of numerical integration
71 + scheme for rigid body \cite{Dullweber1997}.
72 +
73 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 +
75 + Newtonian Mechanics suffers from two important limitations: it
76 + describes their motion in special cartesian coordinate systems.
77 + Another limitation of Newtonian mechanics becomes obvious when we
78 + try to describe systems with large numbers of particles. It becomes
79 + very difficult to predict the properties of the system by carrying
80 + out calculations involving the each individual interaction between
81 + all the particles, even if we know all of the details of the
82 + interaction. In order to overcome some of the practical difficulties
83 + which arise in attempts to apply Newton's equation to complex
84 + system, alternative procedures may be developed.
85 +
86 + \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 + Principle}
88 +
89 + Hamilton introduced the dynamical principle upon which it is
90 + possible to base all of mechanics and, indeed, most of classical
91 + physics. Hamilton's Principle may be stated as follow,
92 +
93 + The actual trajectory, along which a dynamical system may move from
94 + one point to another within a specified time, is derived by finding
95 + the path which minimizes the time integral of the difference between
96 + the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 + \begin{equation}
98 + \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 + \label{introEquation:halmitonianPrinciple1}
100 + \end{equation}
101 +
102 + For simple mechanical systems, where the forces acting on the
103 + different part are derivable from a potential and the velocities are
104 + small compared with that of light, the Lagrangian function $L$ can
105 + be define as the difference between the kinetic energy of the system
106 + and its potential energy,
107 + \begin{equation}
108 + L \equiv K - U = L(q_i ,\dot q_i ) ,
109 + \label{introEquation:lagrangianDef}
110 + \end{equation}
111 + then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 + \begin{equation}
113 + \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 + \label{introEquation:halmitonianPrinciple2}
115 + \end{equation}
116 +
117 + \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 + Equations of Motion in Lagrangian Mechanics}
119 +
120 + for a holonomic system of $f$ degrees of freedom, the equations of
121 + motion in the Lagrangian form is
122 + \begin{equation}
123 + \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 + \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 + \label{introEquation:eqMotionLagrangian}
126 + \end{equation}
127 + where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 + generalized velocity.
129 +
130 + \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 +
132 + Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 + introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 + classical mechanics. If the potential energy of a system is
135 + independent of generalized velocities, the generalized momenta can
136 + be defined as
137 + \begin{equation}
138 + p_i = \frac{\partial L}{\partial \dot q_i}
139 + \label{introEquation:generalizedMomenta}
140 + \end{equation}
141 + The Lagrange equations of motion are then expressed by
142 + \begin{equation}
143 + p_i  = \frac{{\partial L}}{{\partial q_i }}
144 + \label{introEquation:generalizedMomentaDot}
145 + \end{equation}
146 +
147 + With the help of the generalized momenta, we may now define a new
148 + quantity $H$ by the equation
149 + \begin{equation}
150 + H = \sum\limits_k {p_k \dot q_k }  - L ,
151 + \label{introEquation:hamiltonianDefByLagrangian}
152 + \end{equation}
153 + where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
154 + $L$ is the Lagrangian function for the system.
155 +
156 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 + one can obtain
158 + \begin{equation}
159 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
160 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
161 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
162 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 + \end{equation}
164 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
165 + second and fourth terms in the parentheses cancel. Therefore,
166 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 + \begin{equation}
168 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
169 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
170 + \label{introEquation:diffHamiltonian2}
171 + \end{equation}
172 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 + find
174 + \begin{equation}
175 + \frac{{\partial H}}{{\partial p_k }} = q_k
176 + \label{introEquation:motionHamiltonianCoordinate}
177 + \end{equation}
178 + \begin{equation}
179 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
180 + \label{introEquation:motionHamiltonianMomentum}
181 + \end{equation}
182 + and
183 + \begin{equation}
184 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
185 + t}}
186 + \label{introEquation:motionHamiltonianTime}
187 + \end{equation}
188 +
189 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 + equation of motion. Due to their symmetrical formula, they are also
192 + known as the canonical equations of motions \cite{Goldstein01}.
193 +
194 + An important difference between Lagrangian approach and the
195 + Hamiltonian approach is that the Lagrangian is considered to be a
196 + function of the generalized velocities $\dot q_i$ and the
197 + generalized coordinates $q_i$, while the Hamiltonian is considered
198 + to be a function of the generalized momenta $p_i$ and the conjugate
199 + generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 + appropriate for application to statistical mechanics and quantum
201 + mechanics, since it treats the coordinate and its time derivative as
202 + independent variables and it only works with 1st-order differential
203 + equations\cite{Marion90}.
204 +
205 + In Newtonian Mechanics, a system described by conservative forces
206 + conserves the total energy \ref{introEquation:energyConservation}.
207 + It follows that Hamilton's equations of motion conserve the total
208 + Hamiltonian.
209 + \begin{equation}
210 + \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 + H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 + }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 + H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 + \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 + q_i }}} \right) = 0}
216 + \label{introEquation:conserveHalmitonian}
217 + \end{equation}
218 +
219 + When studying Hamiltonian system, it is more convenient to use
220 + notation
221 + \begin{equation}
222 + r = r(q,p)^T
223 + \end{equation}
224 + and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225 + \begin{equation}
226 + J = \left( {\begin{array}{*{20}c}
227 +   0 & I  \\
228 +   { - I} & 0  \\
229 + \end{array}} \right)
230 + \label{introEquation:canonicalMatrix}
231 + \end{equation}
232 + where $I$ is a $n \times n$ identity matrix and $J$ is a
233 + skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
234 + can be rewritten as,
235 + \begin{equation}
236 + \frac{d}{{dt}}r = J\nabla _r H(r)
237 + \label{introEquation:compactHamiltonian}
238 + \end{equation}
239 +
240 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
241 +
242 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
243 + A \emph{manifold} is an abstract mathematical space. It locally
244 + looks like Euclidean space, but when viewed globally, it may have
245 + more complicate structure. A good example of manifold is the surface
246 + of Earth. It seems to be flat locally, but it is round if viewed as
247 + a whole. A \emph{differentiable manifold} (also known as
248 + \emph{smooth manifold}) is a manifold with an open cover in which
249 + the covering neighborhoods are all smoothly isomorphic to one
250 + another. In other words,it is possible to apply calculus on
251 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
252 + defined as a pair $(M, \omega)$ consisting of a \emph{differentiable
253 + manifold} $M$ and a close, non-degenerated, bilinear symplectic
254 + form, $\omega$. One of the motivation to study \emph{symplectic
255 + manifold} in Hamiltonian Mechanics is that a symplectic manifold can
256 + represent all possible configurations of the system and the phase
257 + space of the system can be described by it's cotangent bundle. Every
258 + symplectic manifold is even dimensional. For instance, in Hamilton
259 + equations, coordinate and momentum always appear in pairs.
260 +
261 + A \emph{symplectomorphism} is also known as a \emph{canonical
262 + transformation}.
263 +
264 + Any real-valued differentiable function H on a symplectic manifold
265 + can serve as an energy function or Hamiltonian. Associated to any
266 + Hamiltonian is a Hamiltonian vector field; the integral curves of
267 + the Hamiltonian vector field are solutions to the Hamilton-Jacobi
268 + equations. The Hamiltonian vector field defines a flow on the
269 + symplectic manifold, called a Hamiltonian flow or symplectomorphism.
270 + By Liouville's theorem, Hamiltonian flows preserve the volume form
271 + on the phase space.
272 +
273 + \subsection{\label{Construction of Symplectic Methods}}
274 +
275 + \section{\label{introSection:statisticalMechanics}Statistical
276 + Mechanics}
277 +
278 + The thermodynamic behaviors and properties of Molecular Dynamics
279 + simulation are governed by the principle of Statistical Mechanics.
280 + The following section will give a brief introduction to some of the
281 + Statistical Mechanics concepts presented in this dissertation.
282 +
283 + \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
284 +
285 + \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
286 +
287 + Various thermodynamic properties can be calculated from Molecular
288 + Dynamics simulation. By comparing experimental values with the
289 + calculated properties, one can determine the accuracy of the
290 + simulation and the quality of the underlying model. However, both of
291 + experiment and computer simulation are usually performed during a
292 + certain time interval and the measurements are averaged over a
293 + period of them which is different from the average behavior of
294 + many-body system in Statistical Mechanics. Fortunately, Ergodic
295 + Hypothesis is proposed to make a connection between time average and
296 + ensemble average. It states that time average and average over the
297 + statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
298 + \begin{equation}
299 + \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
300 + \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
301 + {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
302 + \end{equation}
303 + where $\langle A \rangle_t$ is an equilibrium value of a physical
304 + quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
305 + function. If an observation is averaged over a sufficiently long
306 + time (longer than relaxation time), all accessible microstates in
307 + phase space are assumed to be equally probed, giving a properly
308 + weighted statistical average. This allows the researcher freedom of
309 + choice when deciding how best to measure a given observable. In case
310 + an ensemble averaged approach sounds most reasonable, the Monte
311 + Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
312 + system lends itself to a time averaging approach, the Molecular
313 + Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
314 + will be the best choice\cite{Frenkel1996}.
315 +
316   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
317  
318 + As a special discipline of molecular modeling, Molecular dynamics
319 + has proven to be a powerful tool for studying the functions of
320 + biological systems, providing structural, thermodynamic and
321 + dynamical information.
322 +
323 + \subsection{\label{introSec:mdInit}Initialization}
324 +
325 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
326 +
327 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
328 +
329 + A rigid body is a body in which the distance between any two given
330 + points of a rigid body remains constant regardless of external
331 + forces exerted on it. A rigid body therefore conserves its shape
332 + during its motion.
333 +
334 + Applications of dynamics of rigid bodies.
335 +
336 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
337 +
338 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
339 +
340 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
341 +
342 + %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
343 +
344 + \section{\label{introSection:correlationFunctions}Correlation Functions}
345 +
346   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
347  
348 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
349 +
350 + \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
351 +
352 + \begin{equation}
353 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
354 + \label{introEquation:bathGLE}
355 + \end{equation}
356 + where $H_B$ is harmonic bath Hamiltonian,
357 + \[
358 + H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
359 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
360 + \]
361 + and $\Delta U$ is bilinear system-bath coupling,
362 + \[
363 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
364 + \]
365 + Completing the square,
366 + \[
367 + H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
368 + {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
369 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
370 + w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
371 + 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
372 + \]
373 + and putting it back into Eq.~\ref{introEquation:bathGLE},
374 + \[
375 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
376 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
377 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
378 + w_\alpha ^2 }}x} \right)^2 } \right\}}
379 + \]
380 + where
381 + \[
382 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
383 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
384 + \]
385 + Since the first two terms of the new Hamiltonian depend only on the
386 + system coordinates, we can get the equations of motion for
387 + Generalized Langevin Dynamics by Hamilton's equations
388 + \ref{introEquation:motionHamiltonianCoordinate,
389 + introEquation:motionHamiltonianMomentum},
390 + \begin{align}
391 + \dot p &=  - \frac{{\partial H}}{{\partial x}}
392 +       &= m\ddot x
393 +       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
394 + \label{introEq:Lp5}
395 + \end{align}
396 + , and
397 + \begin{align}
398 + \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
399 +                &= m\ddot x_\alpha
400 +                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
401 + \end{align}
402 +
403 + \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
404 +
405 + \[
406 + L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
407 + \]
408 +
409 + \[
410 + L(x + y) = L(x) + L(y)
411 + \]
412 +
413 + \[
414 + L(ax) = aL(x)
415 + \]
416 +
417 + \[
418 + L(\dot x) = pL(x) - px(0)
419 + \]
420 +
421 + \[
422 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
423 + \]
424 +
425 + \[
426 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
427 + \]
428 +
429 + Some relatively important transformation,
430 + \[
431 + L(\cos at) = \frac{p}{{p^2  + a^2 }}
432 + \]
433 +
434 + \[
435 + L(\sin at) = \frac{a}{{p^2  + a^2 }}
436 + \]
437 +
438 + \[
439 + L(1) = \frac{1}{p}
440 + \]
441 +
442 + First, the bath coordinates,
443 + \[
444 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
445 + _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
446 + }}L(x)
447 + \]
448 + \[
449 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
450 + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
451 + \]
452 + Then, the system coordinates,
453 + \begin{align}
454 + mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
455 + \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
456 + }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
457 + (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
458 + }}\omega _\alpha ^2 L(x)} \right\}}
459 + %
460 + &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
461 + \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
462 + - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
463 + - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
464 + \end{align}
465 + Then, the inverse transform,
466 +
467 + \begin{align}
468 + m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
469 + \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
470 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
471 + _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
472 + - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
473 + (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
474 + _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
475 + %
476 + &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
477 + {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
478 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
479 + t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
480 + {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
481 + \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
482 + \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
483 + (\omega _\alpha  t)} \right\}}
484 + \end{align}
485 +
486 + \begin{equation}
487 + m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
488 + (t)\dot x(t - \tau )d\tau }  + R(t)
489 + \label{introEuqation:GeneralizedLangevinDynamics}
490 + \end{equation}
491 + %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
492 + %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
493 + \[
494 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
495 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
496 + \]
497 + For an infinite harmonic bath, we can use the spectral density and
498 + an integral over frequencies.
499 +
500 + \[
501 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
502 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
503 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
504 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
505 + \]
506 + The random forces depend only on initial conditions.
507 +
508 + \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
509 + So we can define a new set of coordinates,
510 + \[
511 + q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
512 + ^2 }}x(0)
513 + \]
514 + This makes
515 + \[
516 + R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
517 + \]
518 + And since the $q$ coordinates are harmonic oscillators,
519 + \[
520 + \begin{array}{l}
521 + \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
522 + \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
523 + \end{array}
524 + \]
525 +
526 + \begin{align}
527 + \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
528 + {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
529 + (t)q_\beta  (0)} \right\rangle } }
530 + %
531 + &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
532 + \right\rangle \cos (\omega _\alpha  t)}
533 + %
534 + &= kT\xi (t)
535 + \end{align}
536 +
537 + \begin{equation}
538 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
539 + \label{introEquation:secondFluctuationDissipation}
540 + \end{equation}
541 +
542   \section{\label{introSection:hydroynamics}Hydrodynamics}
543  
544 < \section{\label{introSection:correlationFunctions}Correlation Functions}
544 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
545 > \subsection{\label{introSection:analyticalApproach}Analytical
546 > Approach}
547 >
548 > \subsection{\label{introSection:approximationApproach}Approximation
549 > Approach}
550 >
551 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
552 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines