ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2697 by tim, Fri Apr 7 05:03:54 2006 UTC vs.
Revision 2698 by tim, Fri Apr 7 22:05:48 2006 UTC

# Line 212 | Line 212 | q_i }}} \right) = 0}
212   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 < q_i }}} \right) = 0}
216 < \label{introEquation:conserveHalmitonian}
217 < \end{equation}
218 <
219 < When studying Hamiltonian system, it is more convenient to use
220 < notation
221 < \begin{equation}
222 < r = r(q,p)^T
223 < \end{equation}
224 < and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225 < \begin{equation}
226 < J = \left( {\begin{array}{*{20}c}
227 <   0 & I  \\
228 <   { - I} & 0  \\
229 < \end{array}} \right)
230 < \label{introEquation:canonicalMatrix}
231 < \end{equation}
232 < where $I$ is a $n \times n$ identity matrix and $J$ is a
233 < skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
234 < can be rewritten as,
235 < \begin{equation}
236 < \frac{d}{{dt}}r = J\nabla _r H(r)
237 < \label{introEquation:compactHamiltonian}
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
217  
218   \section{\label{introSection:statisticalMechanics}Statistical
# Line 324 | Line 302 | classical mechanics. According to Liouville's theorem,
302   is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303   the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304   Canonical transformation is an example of symplectomorphism in
305 < classical mechanics. According to Liouville's theorem, the
328 < Hamiltonian \emph{flow} or \emph{symplectomorphism} generated by the
329 < Hamiltonian vector filed preserves the volume form on the phase
330 < space, which is the basis of classical statistical mechanics.
305 > classical mechanics.
306  
307 < \subsection{\label{introSection:exactFlow}The Exact Flow of ODE}
307 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
308  
309 < \subsection{\label{introSection:hamiltonianSplitting}Hamiltonian Splitting}
309 > For a ordinary differential system defined as
310 > \begin{equation}
311 > \dot x = f(x)
312 > \end{equation}
313 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
314 > \begin{equation}
315 > f(r) = J\nabla _x H(r)
316 > \end{equation}
317 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318 > matrix
319 > \begin{equation}
320 > J = \left( {\begin{array}{*{20}c}
321 >   0 & I  \\
322 >   { - I} & 0  \\
323 > \end{array}} \right)
324 > \label{introEquation:canonicalMatrix}
325 > \end{equation}
326 > where $I$ is an identity matrix. Using this notation, Hamiltonian
327 > system can be rewritten as,
328 > \begin{equation}
329 > \frac{d}{{dt}}x = J\nabla _x H(x)
330 > \label{introEquation:compactHamiltonian}
331 > \end{equation}In this case, $f$ is
332 > called a \emph{Hamiltonian vector field}.
333 >
334 > Another generalization of Hamiltonian dynamics is Poisson Dynamics,
335 > \begin{equation}
336 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
337 > \end{equation}
338 > The most obvious change being that matrix $J$ now depends on $x$.
339 > The free rigid body is an example of Poisson system (actually a
340 > Lie-Poisson system) with Hamiltonian function of angular kinetic
341 > energy.
342 > \begin{equation}
343 > J(\pi ) = \left( {\begin{array}{*{20}c}
344 >   0 & {\pi _3 } & { - \pi _2 }  \\
345 >   { - \pi _3 } & 0 & {\pi _1 }  \\
346 >   {\pi _2 } & { - \pi _1 } & 0  \\
347 > \end{array}} \right)
348 > \end{equation}
349 >
350 > \begin{equation}
351 > H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 > }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 > \end{equation}
354 >
355 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
356 > Let $x(t)$ be the exact solution of the ODE system,
357 > \begin{equation}
358 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
359 > \end{equation}
360 > The exact flow(solution) $\varphi_\tau$ is defined by
361 > \[
362 > x(t+\tau) =\varphi_\tau(x(t))
363 > \]
364 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365 > space to itself. In most cases, it is not easy to find the exact
366 > flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 > which is usually called integrator. The order of an integrator
368 > $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 > order $p$,
370 > \begin{equation}
371 > \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
372 > \end{equation}
373  
374 + The hidden geometric properties of ODE and its flow play important
375 + roles in numerical studies. The flow of a Hamiltonian vector field
376 + on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
377 + the flow of Hamiltonian vector field, $\varphi$ is a
378 + \emph{symplectic} flow if it satisfies,
379 + \begin{equation}
380 + d \varphi^T J d \varphi = J.
381 + \end{equation}
382 + According to Liouville's theorem, the symplectic volume is invariant
383 + under a Hamiltonian flow, which is the basis for classical
384 + statistical mechanics. As to the Poisson system,
385 + \begin{equation}
386 + d\varphi ^T Jd\varphi  = J \circ \varphi
387 + \end{equation}
388 + is the property must be preserved by the integrator. It is possible
389 + to construct a \emph{volume-preserving} flow for a source free($
390 + \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
391 + 1$. Changing the variables $y = h(x)$ in a
392 + ODE\ref{introEquation:ODE} will result in a new system,
393 + \[
394 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
395 + \]
396 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
397 + In other words, the flow of this vector field is reversible if and
398 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 + designing any numerical methods, one should always try to preserve
400 + the structural properties of the original ODE and its flow.
401 +
402 + \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
403 +
404   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
405  
406   As a special discipline of molecular modeling, Molecular dynamics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines