ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2698 by tim, Fri Apr 7 22:05:48 2006 UTC vs.
Revision 2905 by tim, Wed Jun 28 19:09:25 2006 UTC

# Line 6 | Line 6 | behind classical mechanics. Firstly, One can determine
6   Closely related to Classical Mechanics, Molecular Dynamics
7   simulations are carried out by integrating the equations of motion
8   for a given system of particles. There are three fundamental ideas
9 < behind classical mechanics. Firstly, One can determine the state of
9 > behind classical mechanics. Firstly, one can determine the state of
10   a mechanical system at any time of interest; Secondly, all the
11   mechanical properties of the system at that time can be determined
12   by combining the knowledge of the properties of the system with the
# Line 17 | Line 17 | Newton¡¯s first law defines a class of inertial frames
17   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18   The discovery of Newton's three laws of mechanics which govern the
19   motion of particles is the foundation of the classical mechanics.
20 < Newton¡¯s first law defines a class of inertial frames. Inertial
20 > Newton's first law defines a class of inertial frames. Inertial
21   frames are reference frames where a particle not interacting with
22   other bodies will move with constant speed in the same direction.
23 < With respect to inertial frames Newton¡¯s second law has the form
23 > With respect to inertial frames, Newton's second law has the form
24   \begin{equation}
25 < F = \frac {dp}{dt} = \frac {mv}{dt}
25 > F = \frac {dp}{dt} = \frac {mdv}{dt}
26   \label{introEquation:newtonSecondLaw}
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 < Newton¡¯s third law states that
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 > Newton's third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}.
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37
37   Conservation laws of Newtonian Mechanics play very important roles
38   in solving mechanics problems. The linear momentum of a particle is
39   conserved if it is free or it experiences no force. The second
# Line 46 | Line 45 | N \equiv r \times F \label{introEquation:torqueDefinit
45   \end{equation}
46   The torque $\tau$ with respect to the same origin is defined to be
47   \begin{equation}
48 < N \equiv r \times F \label{introEquation:torqueDefinition}
48 > \tau \equiv r \times F \label{introEquation:torqueDefinition}
49   \end{equation}
50   Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
51   \[
# Line 59 | Line 58 | thus,
58   \]
59   thus,
60   \begin{equation}
61 < \dot L = r \times \dot p = N
61 > \dot L = r \times \dot p = \tau
62   \end{equation}
63   If there are no external torques acting on a body, the angular
64   momentum of it is conserved. The last conservation theorem state
65 < that if all forces are conservative, Energy
66 < \begin{equation}E = T + V \label{introEquation:energyConservation}
65 > that if all forces are conservative, energy is conserved,
66 > \begin{equation}E = T + V. \label{introEquation:energyConservation}
67   \end{equation}
68 < is conserved. All of these conserved quantities are
69 < important factors to determine the quality of numerical integration
70 < scheme for rigid body \cite{Dullweber1997}.
68 > All of these conserved quantities are important factors to determine
69 > the quality of numerical integration schemes for rigid bodies
70 > \cite{Dullweber1997}.
71  
72   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
73  
74 < Newtonian Mechanics suffers from two important limitations: it
75 < describes their motion in special cartesian coordinate systems.
76 < Another limitation of Newtonian mechanics becomes obvious when we
77 < try to describe systems with large numbers of particles. It becomes
78 < very difficult to predict the properties of the system by carrying
79 < out calculations involving the each individual interaction between
80 < all the particles, even if we know all of the details of the
82 < interaction. In order to overcome some of the practical difficulties
83 < which arise in attempts to apply Newton's equation to complex
84 < system, alternative procedures may be developed.
74 > Newtonian Mechanics suffers from a important limitation: motions can
75 > only be described in cartesian coordinate systems which make it
76 > impossible to predict analytically the properties of the system even
77 > if we know all of the details of the interaction. In order to
78 > overcome some of the practical difficulties which arise in attempts
79 > to apply Newton's equation to complex system, approximate numerical
80 > procedures may be developed.
81  
82 < \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
83 < Principle}
82 > \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
83 > Principle}}
84  
85   Hamilton introduced the dynamical principle upon which it is
86 < possible to base all of mechanics and, indeed, most of classical
87 < physics. Hamilton's Principle may be stated as follow,
88 <
89 < The actual trajectory, along which a dynamical system may move from
90 < one point to another within a specified time, is derived by finding
91 < the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
86 > possible to base all of mechanics and most of classical physics.
87 > Hamilton's Principle may be stated as follows: the actual
88 > trajectory, along which a dynamical system may move from one point
89 > to another within a specified time, is derived by finding the path
90 > which minimizes the time integral of the difference between the
91 > kinetic $K$, and potential energies $U$,
92   \begin{equation}
93 < \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
93 > \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
94   \label{introEquation:halmitonianPrinciple1}
95   \end{equation}
101
96   For simple mechanical systems, where the forces acting on the
97 < different part are derivable from a potential and the velocities are
98 < small compared with that of light, the Lagrangian function $L$ can
99 < be define as the difference between the kinetic energy of the system
106 < and its potential energy,
97 > different parts are derivable from a potential, the Lagrangian
98 > function $L$ can be defined as the difference between the kinetic
99 > energy of the system and its potential energy,
100   \begin{equation}
101 < L \equiv K - U = L(q_i ,\dot q_i ) ,
101 > L \equiv K - U = L(q_i ,\dot q_i ).
102   \label{introEquation:lagrangianDef}
103   \end{equation}
104 < then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
104 > Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
105   \begin{equation}
106 < \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
106 > \delta \int_{t_1 }^{t_2 } {L dt = 0} .
107   \label{introEquation:halmitonianPrinciple2}
108   \end{equation}
109  
110 < \subsubsection{\label{introSection:equationOfMotionLagrangian}The
111 < Equations of Motion in Lagrangian Mechanics}
110 > \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
111 > Equations of Motion in Lagrangian Mechanics}}
112  
113 < for a holonomic system of $f$ degrees of freedom, the equations of
114 < motion in the Lagrangian form is
113 > For a system of $f$ degrees of freedom, the equations of motion in
114 > the Lagrangian form is
115   \begin{equation}
116   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
117   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
# Line 132 | Line 125 | independent of generalized velocities, the generalized
125   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
126   introduced by William Rowan Hamilton in 1833 as a re-formulation of
127   classical mechanics. If the potential energy of a system is
128 < independent of generalized velocities, the generalized momenta can
136 < be defined as
128 > independent of velocities, the momenta can be defined as
129   \begin{equation}
130   p_i = \frac{\partial L}{\partial \dot q_i}
131   \label{introEquation:generalizedMomenta}
# Line 143 | Line 135 | p_i  = \frac{{\partial L}}{{\partial q_i }}
135   p_i  = \frac{{\partial L}}{{\partial q_i }}
136   \label{introEquation:generalizedMomentaDot}
137   \end{equation}
146
138   With the help of the generalized momenta, we may now define a new
139   quantity $H$ by the equation
140   \begin{equation}
# Line 151 | Line 142 | $L$ is the Lagrangian function for the system.
142   \label{introEquation:hamiltonianDefByLagrangian}
143   \end{equation}
144   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
145 < $L$ is the Lagrangian function for the system.
146 <
156 < Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 < one can obtain
145 > $L$ is the Lagrangian function for the system. Differentiating
146 > Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
147   \begin{equation}
148   dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
149   \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
150   L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
151 < L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
151 > L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
152   \end{equation}
153 < Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
154 < second and fourth terms in the parentheses cancel. Therefore,
153 > Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
154 > and fourth terms in the parentheses cancel. Therefore,
155   Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
156   \begin{equation}
157   dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
158 < \right)}  - \frac{{\partial L}}{{\partial t}}dt
158 > \right)}  - \frac{{\partial L}}{{\partial t}}dt .
159   \label{introEquation:diffHamiltonian2}
160   \end{equation}
161   By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
162   find
163   \begin{equation}
164 < \frac{{\partial H}}{{\partial p_k }} = q_k
164 > \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
165   \label{introEquation:motionHamiltonianCoordinate}
166   \end{equation}
167   \begin{equation}
168 < \frac{{\partial H}}{{\partial q_k }} =  - p_k
168 > \frac{{\partial H}}{{\partial q_k }} =  - \dot {p_k}
169   \label{introEquation:motionHamiltonianMomentum}
170   \end{equation}
171   and
# Line 185 | Line 174 | t}}
174   t}}
175   \label{introEquation:motionHamiltonianTime}
176   \end{equation}
177 <
189 < Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
177 > where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
178   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
179   equation of motion. Due to their symmetrical formula, they are also
180 < known as the canonical equations of motions \cite{Goldstein01}.
180 > known as the canonical equations of motions \cite{Goldstein2001}.
181  
182   An important difference between Lagrangian approach and the
183   Hamiltonian approach is that the Lagrangian is considered to be a
184 < function of the generalized velocities $\dot q_i$ and the
185 < generalized coordinates $q_i$, while the Hamiltonian is considered
186 < to be a function of the generalized momenta $p_i$ and the conjugate
187 < generalized coordinate $q_i$. Hamiltonian Mechanics is more
188 < appropriate for application to statistical mechanics and quantum
189 < mechanics, since it treats the coordinate and its time derivative as
190 < independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
204 <
184 > function of the generalized velocities $\dot q_i$ and coordinates
185 > $q_i$, while the Hamiltonian is considered to be a function of the
186 > generalized momenta $p_i$ and the conjugate coordinates $q_i$.
187 > Hamiltonian Mechanics is more appropriate for application to
188 > statistical mechanics and quantum mechanics, since it treats the
189 > coordinate and its time derivative as independent variables and it
190 > only works with 1st-order differential equations\cite{Marion1990}.
191   In Newtonian Mechanics, a system described by conservative forces
192 < conserves the total energy \ref{introEquation:energyConservation}.
193 < It follows that Hamilton's equations of motion conserve the total
194 < Hamiltonian.
192 > conserves the total energy
193 > (Eq.~\ref{introEquation:energyConservation}). It follows that
194 > Hamilton's equations of motion conserve the total Hamiltonian
195   \begin{equation}
196   \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
197   H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
198   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
199   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
200   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
201 < q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
201 > q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
202   \end{equation}
203  
204   \section{\label{introSection:statisticalMechanics}Statistical
# Line 221 | Line 207 | Statistical Mechanics concepts presented in this disse
207   The thermodynamic behaviors and properties of Molecular Dynamics
208   simulation are governed by the principle of Statistical Mechanics.
209   The following section will give a brief introduction to some of the
210 < Statistical Mechanics concepts presented in this dissertation.
210 > Statistical Mechanics concepts and theorem presented in this
211 > dissertation.
212  
213 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
213 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
214 >
215 > Mathematically, phase space is the space which represents all
216 > possible states. Each possible state of the system corresponds to
217 > one unique point in the phase space. For mechanical systems, the
218 > phase space usually consists of all possible values of position and
219 > momentum variables. Consider a dynamic system of $f$ particles in a
220 > cartesian space, where each of the $6f$ coordinates and momenta is
221 > assigned to one of $6f$ mutually orthogonal axes, the phase space of
222 > this system is a $6f$ dimensional space. A point, $x =
223 > (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
224 > \over q} _1 , \ldots
225 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226 > \over q} _f
227 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228 > \over p} _1  \ldots
229 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230 > \over p} _f )$ , with a unique set of values of $6f$ coordinates and
231 > momenta is a phase space vector.
232 > %%%fix me
233 >
234 > In statistical mechanics, the condition of an ensemble at any time
235 > can be regarded as appropriately specified by the density $\rho$
236 > with which representative points are distributed over the phase
237 > space. The density distribution for an ensemble with $f$ degrees of
238 > freedom is defined as,
239 > \begin{equation}
240 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
241 > \label{introEquation:densityDistribution}
242 > \end{equation}
243 > Governed by the principles of mechanics, the phase points change
244 > their locations which would change the density at any time at phase
245 > space. Hence, the density distribution is also to be taken as a
246 > function of the time. The number of systems $\delta N$ at time $t$
247 > can be determined by,
248 > \begin{equation}
249 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
250 > \label{introEquation:deltaN}
251 > \end{equation}
252 > Assuming a large enough population of systems, we can sufficiently
253 > approximate $\delta N$ without introducing discontinuity when we go
254 > from one region in the phase space to another. By integrating over
255 > the whole phase space,
256 > \begin{equation}
257 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
258 > \label{introEquation:totalNumberSystem}
259 > \end{equation}
260 > gives us an expression for the total number of the systems. Hence,
261 > the probability per unit in the phase space can be obtained by,
262 > \begin{equation}
263 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
264 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
265 > \label{introEquation:unitProbability}
266 > \end{equation}
267 > With the help of Eq.~\ref{introEquation:unitProbability} and the
268 > knowledge of the system, it is possible to calculate the average
269 > value of any desired quantity which depends on the coordinates and
270 > momenta of the system. Even when the dynamics of the real system is
271 > complex, or stochastic, or even discontinuous, the average
272 > properties of the ensemble of possibilities as a whole remaining
273 > well defined. For a classical system in thermal equilibrium with its
274 > environment, the ensemble average of a mechanical quantity, $\langle
275 > A(q , p) \rangle_t$, takes the form of an integral over the phase
276 > space of the system,
277 > \begin{equation}
278 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
279 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
280 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
281 > \label{introEquation:ensembelAverage}
282 > \end{equation}
283 >
284 > There are several different types of ensembles with different
285 > statistical characteristics. As a function of macroscopic
286 > parameters, such as temperature \textit{etc}, the partition function
287 > can be used to describe the statistical properties of a system in
288 > thermodynamic equilibrium. As an ensemble of systems, each of which
289 > is known to be thermally isolated and conserve energy, the
290 > Microcanonical ensemble (NVE) has a partition function like,
291 > \begin{equation}
292 > \Omega (N,V,E) = e^{\beta TS}. \label{introEquation:NVEPartition}
293 > \end{equation}
294 > A canonical ensemble (NVT) is an ensemble of systems, each of which
295 > can share its energy with a large heat reservoir. The distribution
296 > of the total energy amongst the possible dynamical states is given
297 > by the partition function,
298 > \begin{equation}
299 > \Omega (N,V,T) = e^{ - \beta A}.
300 > \label{introEquation:NVTPartition}
301 > \end{equation}
302 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
303 > TS$. Since most experiments are carried out under constant pressure
304 > condition, the isothermal-isobaric ensemble (NPT) plays a very
305 > important role in molecular simulations. The isothermal-isobaric
306 > ensemble allow the system to exchange energy with a heat bath of
307 > temperature $T$ and to change the volume as well. Its partition
308 > function is given as
309 > \begin{equation}
310 > \Delta (N,P,T) =  - e^{\beta G}.
311 > \label{introEquation:NPTPartition}
312 > \end{equation}
313 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
314 >
315 > \subsection{\label{introSection:liouville}Liouville's theorem}
316 >
317 > Liouville's theorem is the foundation on which statistical mechanics
318 > rests. It describes the time evolution of the phase space
319 > distribution function. In order to calculate the rate of change of
320 > $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
321 > the two faces perpendicular to the $q_1$ axis, which are located at
322 > $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
323 > opposite face is given by the expression,
324 > \begin{equation}
325 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
326 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
327 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
328 > \ldots \delta p_f .
329 > \end{equation}
330 > Summing all over the phase space, we obtain
331 > \begin{equation}
332 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
333 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
334 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
335 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
336 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
337 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
338 > \end{equation}
339 > Differentiating the equations of motion in Hamiltonian formalism
340 > (\ref{introEquation:motionHamiltonianCoordinate},
341 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
342 > \begin{equation}
343 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
344 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
345 > \end{equation}
346 > which cancels the first terms of the right hand side. Furthermore,
347 > dividing $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
348 > p_f $ in both sides, we can write out Liouville's theorem in a
349 > simple form,
350 > \begin{equation}
351 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
352 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
353 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
354 > \label{introEquation:liouvilleTheorem}
355 > \end{equation}
356 > Liouville's theorem states that the distribution function is
357 > constant along any trajectory in phase space. In classical
358 > statistical mechanics, since the number of members in an ensemble is
359 > huge and constant, we can assume the local density has no reason
360 > (other than classical mechanics) to change,
361 > \begin{equation}
362 > \frac{{\partial \rho }}{{\partial t}} = 0.
363 > \label{introEquation:stationary}
364 > \end{equation}
365 > In such stationary system, the density of distribution $\rho$ can be
366 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
367 > distribution,
368 > \begin{equation}
369 > \rho  \propto e^{ - \beta H}
370 > \label{introEquation:densityAndHamiltonian}
371 > \end{equation}
372  
373 + \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
374 + Lets consider a region in the phase space,
375 + \begin{equation}
376 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
377 + \end{equation}
378 + If this region is small enough, the density $\rho$ can be regarded
379 + as uniform over the whole integral. Thus, the number of phase points
380 + inside this region is given by,
381 + \begin{equation}
382 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
383 + dp_1 } ..dp_f.
384 + \end{equation}
385 +
386 + \begin{equation}
387 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
388 + \frac{d}{{dt}}(\delta v) = 0.
389 + \end{equation}
390 + With the help of stationary assumption
391 + (\ref{introEquation:stationary}), we obtain the principle of the
392 + \emph{conservation of volume in phase space},
393 + \begin{equation}
394 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
395 + ...dq_f dp_1 } ..dp_f  = 0.
396 + \label{introEquation:volumePreserving}
397 + \end{equation}
398 +
399 + \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
400 +
401 + Liouville's theorem can be expresses in a variety of different forms
402 + which are convenient within different contexts. For any two function
403 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
404 + bracket ${F, G}$ is defined as
405 + \begin{equation}
406 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
407 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
408 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
409 + q_i }}} \right)}.
410 + \label{introEquation:poissonBracket}
411 + \end{equation}
412 + Substituting equations of motion in Hamiltonian formalism
413 + (Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
414 + Eq.~\ref{introEquation:motionHamiltonianMomentum}) into
415 + (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
416 + Liouville's theorem using Poisson bracket notion,
417 + \begin{equation}
418 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
419 + {\rho ,H} \right\}.
420 + \label{introEquation:liouvilleTheromInPoissin}
421 + \end{equation}
422 + Moreover, the Liouville operator is defined as
423 + \begin{equation}
424 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
425 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
426 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
427 + \label{introEquation:liouvilleOperator}
428 + \end{equation}
429 + In terms of Liouville operator, Liouville's equation can also be
430 + expressed as
431 + \begin{equation}
432 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
433 + \label{introEquation:liouvilleTheoremInOperator}
434 + \end{equation}
435 +
436   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
437  
438   Various thermodynamic properties can be calculated from Molecular
439   Dynamics simulation. By comparing experimental values with the
440   calculated properties, one can determine the accuracy of the
441 < simulation and the quality of the underlying model. However, both of
442 < experiment and computer simulation are usually performed during a
441 > simulation and the quality of the underlying model. However, both
442 > experiments and computer simulations are usually performed during a
443   certain time interval and the measurements are averaged over a
444   period of them which is different from the average behavior of
445 < many-body system in Statistical Mechanics. Fortunately, Ergodic
446 < Hypothesis is proposed to make a connection between time average and
447 < ensemble average. It states that time average and average over the
448 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
445 > many-body system in Statistical Mechanics. Fortunately, the Ergodic
446 > Hypothesis makes a connection between time average and the ensemble
447 > average. It states that the time average and average over the
448 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}:
449   \begin{equation}
450 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
451 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
452 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
450 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
451 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
452 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
453   \end{equation}
454 < where $\langle A \rangle_t$ is an equilibrium value of a physical
455 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
456 < function. If an observation is averaged over a sufficiently long
457 < time (longer than relaxation time), all accessible microstates in
458 < phase space are assumed to be equally probed, giving a properly
459 < weighted statistical average. This allows the researcher freedom of
460 < choice when deciding how best to measure a given observable. In case
461 < an ensemble averaged approach sounds most reasonable, the Monte
462 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
463 < system lends itself to a time averaging approach, the Molecular
464 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
465 < will be the best choice\cite{Frenkel1996}.
454 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
455 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
456 > distribution function. If an observation is averaged over a
457 > sufficiently long time (longer than relaxation time), all accessible
458 > microstates in phase space are assumed to be equally probed, giving
459 > a properly weighted statistical average. This allows the researcher
460 > freedom of choice when deciding how best to measure a given
461 > observable. In case an ensemble averaged approach sounds most
462 > reasonable, the Monte Carlo methods\cite{Metropolis1949} can be
463 > utilized. Or if the system lends itself to a time averaging
464 > approach, the Molecular Dynamics techniques in
465 > Sec.~\ref{introSection:molecularDynamics} will be the best
466 > choice\cite{Frenkel1996}.
467  
468   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
469 < A variety of numerical integrators were proposed to simulate the
470 < motions. They usually begin with an initial conditionals and move
471 < the objects in the direction governed by the differential equations.
472 < However, most of them ignore the hidden physical law contained
473 < within the equations. Since 1990, geometric integrators, which
474 < preserve various phase-flow invariants such as symplectic structure,
475 < volume and time reversal symmetry, are developed to address this
476 < issue. The velocity verlet method, which happens to be a simple
477 < example of symplectic integrator, continues to gain its popularity
478 < in molecular dynamics community. This fact can be partly explained
479 < by its geometric nature.
469 > A variety of numerical integrators have been proposed to simulate
470 > the motions of atoms in MD simulation. They usually begin with
471 > initial conditionals and move the objects in the direction governed
472 > by the differential equations. However, most of them ignore the
473 > hidden physical laws contained within the equations. Since 1990,
474 > geometric integrators, which preserve various phase-flow invariants
475 > such as symplectic structure, volume and time reversal symmetry, are
476 > developed to address this issue\cite{Dullweber1997, McLachlan1998,
477 > Leimkuhler1999}. The velocity Verlet method, which happens to be a
478 > simple example of symplectic integrator, continues to gain
479 > popularity in the molecular dynamics community. This fact can be
480 > partly explained by its geometric nature.
481  
482 < \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
483 < A \emph{manifold} is an abstract mathematical space. It locally
484 < looks like Euclidean space, but when viewed globally, it may have
485 < more complicate structure. A good example of manifold is the surface
486 < of Earth. It seems to be flat locally, but it is round if viewed as
487 < a whole. A \emph{differentiable manifold} (also known as
488 < \emph{smooth manifold}) is a manifold with an open cover in which
489 < the covering neighborhoods are all smoothly isomorphic to one
490 < another. In other words,it is possible to apply calculus on
281 < \emph{differentiable manifold}. A \emph{symplectic manifold} is
282 < defined as a pair $(M, \omega)$ which consisting of a
482 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
483 > A \emph{manifold} is an abstract mathematical space. It looks
484 > locally like Euclidean space, but when viewed globally, it may have
485 > more complicated structure. A good example of manifold is the
486 > surface of Earth. It seems to be flat locally, but it is round if
487 > viewed as a whole. A \emph{differentiable manifold} (also known as
488 > \emph{smooth manifold}) is a manifold on which it is possible to
489 > apply calculus on \emph{differentiable manifold}. A \emph{symplectic
490 > manifold} is defined as a pair $(M, \omega)$ which consists of a
491   \emph{differentiable manifold} $M$ and a close, non-degenerated,
492   bilinear symplectic form, $\omega$. A symplectic form on a vector
493   space $V$ is a function $\omega(x, y)$ which satisfies
494   $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
495   \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
496 < $\omega(x, x) = 0$. Cross product operation in vector field is an
497 < example of symplectic form.
496 > $\omega(x, x) = 0$. The cross product operation in vector field is
497 > an example of symplectic form. One of the motivations to study
498 > \emph{symplectic manifolds} in Hamiltonian Mechanics is that a
499 > symplectic manifold can represent all possible configurations of the
500 > system and the phase space of the system can be described by it's
501 > cotangent bundle. Every symplectic manifold is even dimensional. For
502 > instance, in Hamilton equations, coordinate and momentum always
503 > appear in pairs.
504  
291 One of the motivations to study \emph{symplectic manifold} in
292 Hamiltonian Mechanics is that a symplectic manifold can represent
293 all possible configurations of the system and the phase space of the
294 system can be described by it's cotangent bundle. Every symplectic
295 manifold is even dimensional. For instance, in Hamilton equations,
296 coordinate and momentum always appear in pairs.
297
298 Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
299 \[
300 f : M \rightarrow N
301 \]
302 is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303 the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304 Canonical transformation is an example of symplectomorphism in
305 classical mechanics.
306
505   \subsection{\label{introSection:ODE}Ordinary Differential Equations}
506  
507 < For a ordinary differential system defined as
507 > For an ordinary differential system defined as
508   \begin{equation}
509   \dot x = f(x)
510   \end{equation}
511 < where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
512 < \begin{equation}
513 < f(r) = J\nabla _x H(r)
316 < \end{equation}
317 < $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318 < matrix
511 > where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
512 > $f(r) = J\nabla _x H(r)$. Here, $H = H (q, p)$ is Hamiltonian
513 > function and $J$ is the skew-symmetric matrix
514   \begin{equation}
515   J = \left( {\begin{array}{*{20}c}
516     0 & I  \\
# Line 326 | Line 521 | system can be rewritten as,
521   where $I$ is an identity matrix. Using this notation, Hamiltonian
522   system can be rewritten as,
523   \begin{equation}
524 < \frac{d}{{dt}}x = J\nabla _x H(x)
524 > \frac{d}{{dt}}x = J\nabla _x H(x).
525   \label{introEquation:compactHamiltonian}
526   \end{equation}In this case, $f$ is
527 < called a \emph{Hamiltonian vector field}.
528 <
334 < Another generalization of Hamiltonian dynamics is Poisson Dynamics,
527 > called a \emph{Hamiltonian vector field}. Another generalization of
528 > Hamiltonian dynamics is Poisson Dynamics\cite{Olver1986},
529   \begin{equation}
530   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
531   \end{equation}
532   The most obvious change being that matrix $J$ now depends on $x$.
533 < The free rigid body is an example of Poisson system (actually a
534 < Lie-Poisson system) with Hamiltonian function of angular kinetic
535 < energy.
533 >
534 > \subsection{\label{introSection:exactFlow}Exact Flow}
535 >
536 > Let $x(t)$ be the exact solution of the ODE
537 > system,$\frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}$, we can
538 > define its exact flow(solution) $\varphi_\tau$
539 > \[ x(t+\tau)
540 > =\varphi_\tau(x(t))
541 > \]
542 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
543 > space to itself. The flow has the continuous group property,
544   \begin{equation}
545 < J(\pi ) = \left( {\begin{array}{*{20}c}
546 <   0 & {\pi _3 } & { - \pi _2 }  \\
345 <   { - \pi _3 } & 0 & {\pi _1 }  \\
346 <   {\pi _2 } & { - \pi _1 } & 0  \\
347 < \end{array}} \right)
545 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
546 > + \tau _2 } .
547   \end{equation}
548 <
548 > In particular,
549   \begin{equation}
550 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
550 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
551   \end{equation}
552 <
355 < \subsection{\label{introSection:geometricProperties}Geometric Properties}
356 < Let $x(t)$ be the exact solution of the ODE system,
552 > Therefore, the exact flow is self-adjoint,
553   \begin{equation}
554 < \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
554 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
555   \end{equation}
556 < The exact flow(solution) $\varphi_\tau$ is defined by
361 < \[
362 < x(t+\tau) =\varphi_\tau(x(t))
363 < \]
364 < where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
556 > The exact flow can also be written in terms of the of an operator,
557   \begin{equation}
558 < \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
558 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
559 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
560 > \label{introEquation:exponentialOperator}
561   \end{equation}
562 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
563 + Instead, we use an approximate map, $\psi_\tau$, which is usually
564 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
565 + the Taylor series of $\psi_\tau$ agree to order $p$,
566 + \begin{equation}
567 + \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
568 + \end{equation}
569  
570 < The hidden geometric properties of ODE and its flow play important
571 < roles in numerical studies. The flow of a Hamiltonian vector field
572 < on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
573 < the flow of Hamiltonian vector field, $\varphi$ is a
574 < \emph{symplectic} flow if it satisfies,
570 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
571 >
572 > The hidden geometric properties\cite{Budd1999, Marsden1998} of an
573 > ODE and its flow play important roles in numerical studies. Many of
574 > them can be found in systems which occur naturally in applications.
575 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
576 > a \emph{symplectic} flow if it satisfies,
577   \begin{equation}
578 < d \varphi^T J d \varphi = J.
578 > {\varphi '}^T J \varphi ' = J.
579   \end{equation}
580   According to Liouville's theorem, the symplectic volume is invariant
581   under a Hamiltonian flow, which is the basis for classical
582 < statistical mechanics. As to the Poisson system,
582 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
583 > field on a symplectic manifold can be shown to be a
584 > symplectomorphism. As to the Poisson system,
585   \begin{equation}
586 < d\varphi ^T Jd\varphi  = J \circ \varphi
586 > {\varphi '}^T J \varphi ' = J \circ \varphi
587   \end{equation}
588 < is the property must be preserved by the integrator. It is possible
589 < to construct a \emph{volume-preserving} flow for a source free($
590 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
591 < 1$. Changing the variables $y = h(x)$ in a
592 < ODE\ref{introEquation:ODE} will result in a new system,
588 > is the property that must be preserved by the integrator. It is
589 > possible to construct a \emph{volume-preserving} flow for a source
590 > free ODE ($ \nabla \cdot f = 0 $), if the flow satisfies $ \det
591 > d\varphi  = 1$. One can show easily that a symplectic flow will be
592 > volume-preserving. Changing the variables $y = h(x)$ in an ODE
593 > (Eq.~\ref{introEquation:ODE}) will result in a new system,
594   \[
595   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
596   \]
597   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
598   In other words, the flow of this vector field is reversible if and
599 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
600 < designing any numerical methods, one should always try to preserve
601 < the structural properties of the original ODE and its flow.
602 <
402 < \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
403 <
404 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
405 <
406 < As a special discipline of molecular modeling, Molecular dynamics
407 < has proven to be a powerful tool for studying the functions of
408 < biological systems, providing structural, thermodynamic and
409 < dynamical information.
410 <
411 < \subsection{\label{introSec:mdInit}Initialization}
412 <
413 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
414 <
415 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
416 <
417 < A rigid body is a body in which the distance between any two given
418 < points of a rigid body remains constant regardless of external
419 < forces exerted on it. A rigid body therefore conserves its shape
420 < during its motion.
421 <
422 < Applications of dynamics of rigid bodies.
423 <
424 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
425 <
426 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
427 <
428 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
429 <
430 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
431 <
432 < \section{\label{introSection:correlationFunctions}Correlation Functions}
433 <
434 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
435 <
436 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
437 <
438 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
439 <
440 < \begin{equation}
441 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
442 < \label{introEquation:bathGLE}
443 < \end{equation}
444 < where $H_B$ is harmonic bath Hamiltonian,
599 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. A
600 > \emph{first integral}, or conserved quantity of a general
601 > differential function is a function $ G:R^{2d}  \to R^d $ which is
602 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
603   \[
604 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
447 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
604 > \frac{{dG(x(t))}}{{dt}} = 0.
605   \]
606 < and $\Delta U$ is bilinear system-bath coupling,
606 > Using chain rule, one may obtain,
607   \[
608 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
608 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \dot \nabla G,
609   \]
610 < Completing the square,
610 > which is the condition for conserving \emph{first integral}. For a
611 > canonical Hamiltonian system, the time evolution of an arbitrary
612 > smooth function $G$ is given by,
613 > \begin{eqnarray}
614 > \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \notag\\
615 >                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)).
616 > \label{introEquation:firstIntegral1}
617 > \end{eqnarray}
618 > Using poisson bracket notion, Eq.~\ref{introEquation:firstIntegral1}
619 > can be rewritten as
620   \[
621 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
456 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
457 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
458 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
459 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
621 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
622   \]
623 < and putting it back into Eq.~\ref{introEquation:bathGLE},
623 > Therefore, the sufficient condition for $G$ to be the \emph{first
624 > integral} of a Hamiltonian system is $\left\{ {G,H} \right\} = 0.$
625 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
626 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
627 > 0$. When designing any numerical methods, one should always try to
628 > preserve the structural properties of the original ODE and its flow.
629 >
630 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
631 > A lot of well established and very effective numerical methods have
632 > been successful precisely because of their symplecticities even
633 > though this fact was not recognized when they were first
634 > constructed. The most famous example is the Verlet-leapfrog method
635 > in molecular dynamics. In general, symplectic integrators can be
636 > constructed using one of four different methods.
637 > \begin{enumerate}
638 > \item Generating functions
639 > \item Variational methods
640 > \item Runge-Kutta methods
641 > \item Splitting methods
642 > \end{enumerate}
643 > Generating function\cite{Channell1990} tends to lead to methods
644 > which are cumbersome and difficult to use. In dissipative systems,
645 > variational methods can capture the decay of energy
646 > accurately\cite{Kane2000}. Since their geometrically unstable nature
647 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
648 > methods are not suitable for Hamiltonian system. Recently, various
649 > high-order explicit Runge-Kutta methods \cite{Owren1992,Chen2003}
650 > have been developed to overcome this instability. However, due to
651 > computational penalty involved in implementing the Runge-Kutta
652 > methods, they have not attracted much attention from the Molecular
653 > Dynamics community. Instead, splitting methods have been widely
654 > accepted since they exploit natural decompositions of the
655 > system\cite{Tuckerman1992, McLachlan1998}.
656 >
657 > \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
658 >
659 > The main idea behind splitting methods is to decompose the discrete
660 > $\varphi_h$ as a composition of simpler flows,
661 > \begin{equation}
662 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
663 > \varphi _{h_n }
664 > \label{introEquation:FlowDecomposition}
665 > \end{equation}
666 > where each of the sub-flow is chosen such that each represent a
667 > simpler integration of the system. Suppose that a Hamiltonian system
668 > takes the form,
669   \[
670 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
464 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
465 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
466 < w_\alpha ^2 }}x} \right)^2 } \right\}}
670 > H = H_1 + H_2.
671   \]
672 < where
672 > Here, $H_1$ and $H_2$ may represent different physical processes of
673 > the system. For instance, they may relate to kinetic and potential
674 > energy respectively, which is a natural decomposition of the
675 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
676 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
677 > order expression is then given by the Lie-Trotter formula
678 > \begin{equation}
679 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
680 > \label{introEquation:firstOrderSplitting}
681 > \end{equation}
682 > where $\varphi _h$ is the result of applying the corresponding
683 > continuous $\varphi _i$ over a time $h$. By definition, as
684 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
685 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
686 > It is easy to show that any composition of symplectic flows yields a
687 > symplectic map,
688 > \begin{equation}
689 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
690 > '\phi ' = \phi '^T J\phi ' = J,
691 > \label{introEquation:SymplecticFlowComposition}
692 > \end{equation}
693 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
694 > splitting in this context automatically generates a symplectic map.
695 >
696 > The Lie-Trotter
697 > splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
698 > local errors proportional to $h^2$, while Strang splitting gives a
699 > second-order decomposition,
700 > \begin{equation}
701 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
702 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
703 > \end{equation}
704 > which has a local error proportional to $h^3$. The Sprang
705 > splitting's popularity in molecular simulation community attribute
706 > to its symmetric property,
707 > \begin{equation}
708 > \varphi _h^{ - 1} = \varphi _{ - h}.
709 > \label{introEquation:timeReversible}
710 > \end{equation}
711 >
712 > \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
713 > The classical equation for a system consisting of interacting
714 > particles can be written in Hamiltonian form,
715   \[
716 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
471 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
716 > H = T + V
717   \]
718 < Since the first two terms of the new Hamiltonian depend only on the
719 < system coordinates, we can get the equations of motion for
720 < Generalized Langevin Dynamics by Hamilton's equations
476 < \ref{introEquation:motionHamiltonianCoordinate,
477 < introEquation:motionHamiltonianMomentum},
718 > where $T$ is the kinetic energy and $V$ is the potential energy.
719 > Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
720 > obtains the following:
721   \begin{align}
722 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
723 <       &= m\ddot x
724 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
725 < \label{introEq:Lp5}
722 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
723 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
724 > \label{introEquation:Lp10a} \\%
725 > %
726 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
727 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
728 > \label{introEquation:Lp10b}
729   \end{align}
730 < , and
730 > where $F(t)$ is the force at time $t$. This integration scheme is
731 > known as \emph{velocity verlet} which is
732 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
733 > time-reversible(\ref{introEquation:timeReversible}) and
734 > volume-preserving (\ref{introEquation:volumePreserving}). These
735 > geometric properties attribute to its long-time stability and its
736 > popularity in the community. However, the most commonly used
737 > velocity verlet integration scheme is written as below,
738   \begin{align}
739 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
740 <                &= m\ddot x_\alpha
741 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
739 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
740 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
741 > %
742 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
743 >    \label{introEquation:Lp9b}\\%
744 > %
745 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
746 >    \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
747   \end{align}
748 + From the preceding splitting, one can see that the integration of
749 + the equations of motion would follow:
750 + \begin{enumerate}
751 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
752  
753 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
753 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
754  
755 < \[
494 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
495 < \]
755 > \item Evaluate the forces at the new positions, $\mathbf{q}(\Delta t)$, and use the new forces to complete the velocity move.
756  
757 < \[
758 < L(x + y) = L(x) + L(y)
759 < \]
757 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
758 > \end{enumerate}
759 > By simply switching the order of the propagators in the splitting
760 > and composing a new integrator, the \emph{position verlet}
761 > integrator, can be generated,
762 > \begin{align}
763 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
764 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
765 > \label{introEquation:positionVerlet1} \\%
766 > %
767 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
768 > q(\Delta t)} \right]. %
769 > \label{introEquation:positionVerlet2}
770 > \end{align}
771  
772 < \[
502 < L(ax) = aL(x)
503 < \]
772 > \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
773  
774 + The Baker-Campbell-Hausdorff formula can be used to determine the
775 + local error of splitting method in terms of the commutator of the
776 + operators(\ref{introEquation:exponentialOperator}) associated with
777 + the sub-flow. For operators $hX$ and $hY$ which are associated with
778 + $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
779 + \begin{equation}
780 + \exp (hX + hY) = \exp (hZ)
781 + \end{equation}
782 + where
783 + \begin{equation}
784 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
785 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
786 + \end{equation}
787 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
788   \[
789 < L(\dot x) = pL(x) - px(0)
789 > [X,Y] = XY - YX .
790   \]
791 <
791 > Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
792 > to the Sprang splitting, we can obtain
793 > \begin{eqnarray*}
794 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
795 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
796 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots
797 >                                   ).
798 > \end{eqnarray*}
799 > Since $ [X,Y] + [Y,X] = 0$ and $ [X,X] = 0$, the dominant local
800 > error of Spring splitting is proportional to $h^3$. The same
801 > procedure can be applied to a general splitting of the form
802 > \begin{equation}
803 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
804 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
805 > \end{equation}
806 > A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
807 > order methods. Yoshida proposed an elegant way to compose higher
808 > order methods based on symmetric splitting\cite{Yoshida1990}. Given
809 > a symmetric second order base method $ \varphi _h^{(2)} $, a
810 > fourth-order symmetric method can be constructed by composing,
811   \[
812 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
812 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
813 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
814   \]
815 <
815 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
816 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
817 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
818 > \begin{equation}
819 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
820 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)},
821 > \end{equation}
822 > if the weights are chosen as
823   \[
824 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
824 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
825 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
826   \]
827  
828 < Some relatively important transformation,
518 < \[
519 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
520 < \]
828 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
829  
830 + As one of the principal tools of molecular modeling, Molecular
831 + dynamics has proven to be a powerful tool for studying the functions
832 + of biological systems, providing structural, thermodynamic and
833 + dynamical information. The basic idea of molecular dynamics is that
834 + macroscopic properties are related to microscopic behavior and
835 + microscopic behavior can be calculated from the trajectories in
836 + simulations. For instance, instantaneous temperature of an
837 + Hamiltonian system of $N$ particle can be measured by
838   \[
839 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
839 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
840   \]
841 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
842 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
843 + the boltzman constant.
844  
845 < \[
846 < L(1) = \frac{1}{p}
847 < \]
848 <
849 < First, the bath coordinates,
850 < \[
851 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
852 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
853 < }}L(x)
854 < \]
855 < \[
856 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
857 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
858 < \]
859 < Then, the system coordinates,
860 < \begin{align}
861 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
862 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
544 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
545 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
546 < }}\omega _\alpha ^2 L(x)} \right\}}
547 < %
548 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
549 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
550 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
551 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
552 < \end{align}
553 < Then, the inverse transform,
845 > A typical molecular dynamics run consists of three essential steps:
846 > \begin{enumerate}
847 >  \item Initialization
848 >    \begin{enumerate}
849 >    \item Preliminary preparation
850 >    \item Minimization
851 >    \item Heating
852 >    \item Equilibration
853 >    \end{enumerate}
854 >  \item Production
855 >  \item Analysis
856 > \end{enumerate}
857 > These three individual steps will be covered in the following
858 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
859 > initialization of a simulation. Sec.~\ref{introSection:production}
860 > will discusse issues in production run.
861 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
862 > trajectory analysis.
863  
864 < \begin{align}
556 < m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
557 < \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
558 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
559 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
560 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
561 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
562 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
563 < %
564 < &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
565 < {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
566 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
567 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
568 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
569 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
570 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
571 < (\omega _\alpha  t)} \right\}}
572 < \end{align}
864 > \subsection{\label{introSec:initialSystemSettings}Initialization}
865  
866 + \subsubsection{\textbf{Preliminary preparation}}
867 +
868 + When selecting the starting structure of a molecule for molecular
869 + simulation, one may retrieve its Cartesian coordinates from public
870 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
871 + thousands of crystal structures of molecules are discovered every
872 + year, many more remain unknown due to the difficulties of
873 + purification and crystallization. Even for molecules with known
874 + structure, some important information is missing. For example, a
875 + missing hydrogen atom which acts as donor in hydrogen bonding must
876 + be added. Moreover, in order to include electrostatic interaction,
877 + one may need to specify the partial charges for individual atoms.
878 + Under some circumstances, we may even need to prepare the system in
879 + a special configuration. For instance, when studying transport
880 + phenomenon in membrane systems, we may prepare the lipids in a
881 + bilayer structure instead of placing lipids randomly in solvent,
882 + since we are not interested in the slow self-aggregation process.
883 +
884 + \subsubsection{\textbf{Minimization}}
885 +
886 + It is quite possible that some of molecules in the system from
887 + preliminary preparation may be overlapping with each other. This
888 + close proximity leads to high initial potential energy which
889 + consequently jeopardizes any molecular dynamics simulations. To
890 + remove these steric overlaps, one typically performs energy
891 + minimization to find a more reasonable conformation. Several energy
892 + minimization methods have been developed to exploit the energy
893 + surface and to locate the local minimum. While converging slowly
894 + near the minimum, steepest descent method is extremely robust when
895 + systems are strongly anharmonic. Thus, it is often used to refine
896 + structure from crystallographic data. Relied on the gradient or
897 + hessian, advanced methods like Newton-Raphson converge rapidly to a
898 + local minimum, but become unstable if the energy surface is far from
899 + quadratic. Another factor that must be taken into account, when
900 + choosing energy minimization method, is the size of the system.
901 + Steepest descent and conjugate gradient can deal with models of any
902 + size. Because of the limits on computer memory to store the hessian
903 + matrix and the computing power needed to diagonalized these
904 + matrices, most Newton-Raphson methods can not be used with very
905 + large systems.
906 +
907 + \subsubsection{\textbf{Heating}}
908 +
909 + Typically, Heating is performed by assigning random velocities
910 + according to a Maxwell-Boltzman distribution for a desired
911 + temperature. Beginning at a lower temperature and gradually
912 + increasing the temperature by assigning larger random velocities, we
913 + end up with setting the temperature of the system to a final
914 + temperature at which the simulation will be conducted. In heating
915 + phase, we should also keep the system from drifting or rotating as a
916 + whole. To do this, the net linear momentum and angular momentum of
917 + the system is shifted to zero after each resampling from the Maxwell
918 + -Boltzman distribution.
919 +
920 + \subsubsection{\textbf{Equilibration}}
921 +
922 + The purpose of equilibration is to allow the system to evolve
923 + spontaneously for a period of time and reach equilibrium. The
924 + procedure is continued until various statistical properties, such as
925 + temperature, pressure, energy, volume and other structural
926 + properties \textit{etc}, become independent of time. Strictly
927 + speaking, minimization and heating are not necessary, provided the
928 + equilibration process is long enough. However, these steps can serve
929 + as a means to arrive at an equilibrated structure in an effective
930 + way.
931 +
932 + \subsection{\label{introSection:production}Production}
933 +
934 + The production run is the most important step of the simulation, in
935 + which the equilibrated structure is used as a starting point and the
936 + motions of the molecules are collected for later analysis. In order
937 + to capture the macroscopic properties of the system, the molecular
938 + dynamics simulation must be performed by sampling correctly and
939 + efficiently from the relevant thermodynamic ensemble.
940 +
941 + The most expensive part of a molecular dynamics simulation is the
942 + calculation of non-bonded forces, such as van der Waals force and
943 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
944 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
945 + which making large simulations prohibitive in the absence of any
946 + algorithmic tricks. A natural approach to avoid system size issues
947 + is to represent the bulk behavior by a finite number of the
948 + particles. However, this approach will suffer from the surface
949 + effect at the edges of the simulation. To offset this,
950 + \textit{Periodic boundary conditions} (see Fig.~\ref{introFig:pbc})
951 + is developed to simulate bulk properties with a relatively small
952 + number of particles. In this method, the simulation box is
953 + replicated throughout space to form an infinite lattice. During the
954 + simulation, when a particle moves in the primary cell, its image in
955 + other cells move in exactly the same direction with exactly the same
956 + orientation. Thus, as a particle leaves the primary cell, one of its
957 + images will enter through the opposite face.
958 + \begin{figure}
959 + \centering
960 + \includegraphics[width=\linewidth]{pbc.eps}
961 + \caption[An illustration of periodic boundary conditions]{A 2-D
962 + illustration of periodic boundary conditions. As one particle leaves
963 + the left of the simulation box, an image of it enters the right.}
964 + \label{introFig:pbc}
965 + \end{figure}
966 +
967 + %cutoff and minimum image convention
968 + Another important technique to improve the efficiency of force
969 + evaluation is to apply spherical cutoff where particles farther than
970 + a predetermined distance are not included in the calculation
971 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
972 + discontinuity in the potential energy curve. Fortunately, one can
973 + shift simple radial potential to ensure the potential curve go
974 + smoothly to zero at the cutoff radius. The cutoff strategy works
975 + well for Lennard-Jones interaction because of its short range
976 + nature. However, simply truncating the electrostatic interaction
977 + with the use of cutoffs has been shown to lead to severe artifacts
978 + in simulations. The Ewald summation, in which the slowly decaying
979 + Coulomb potential is transformed into direct and reciprocal sums
980 + with rapid and absolute convergence, has proved to minimize the
981 + periodicity artifacts in liquid simulations. Taking the advantages
982 + of the fast Fourier transform (FFT) for calculating discrete Fourier
983 + transforms, the particle mesh-based
984 + methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
985 + $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
986 + \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
987 + which treats Coulombic interactions exactly at short range, and
988 + approximate the potential at long range through multipolar
989 + expansion. In spite of their wide acceptance at the molecular
990 + simulation community, these two methods are difficult to implement
991 + correctly and efficiently. Instead, we use a damped and
992 + charge-neutralized Coulomb potential method developed by Wolf and
993 + his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
994 + particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
995   \begin{equation}
996 < m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
997 < (t)\dot x(t - \tau )d\tau }  + R(t)
998 < \label{introEuqation:GeneralizedLangevinDynamics}
996 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
997 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
998 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
999 > r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1000   \end{equation}
1001 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1002 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1001 > where $\alpha$ is the convergence parameter. Due to the lack of
1002 > inherent periodicity and rapid convergence,this method is extremely
1003 > efficient and easy to implement.
1004 > \begin{figure}
1005 > \centering
1006 > \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1007 > \caption[An illustration of shifted Coulomb potential]{An
1008 > illustration of shifted Coulomb potential.}
1009 > \label{introFigure:shiftedCoulomb}
1010 > \end{figure}
1011 >
1012 > %multiple time step
1013 >
1014 > \subsection{\label{introSection:Analysis} Analysis}
1015 >
1016 > Recently, advanced visualization technique have become applied to
1017 > monitor the motions of molecules. Although the dynamics of the
1018 > system can be described qualitatively from animation, quantitative
1019 > trajectory analysis are more useful. According to the principles of
1020 > Statistical Mechanics in
1021 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1022 > thermodynamic properties, analyze fluctuations of structural
1023 > parameters, and investigate time-dependent processes of the molecule
1024 > from the trajectories.
1025 >
1026 > \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1027 >
1028 > Thermodynamic properties, which can be expressed in terms of some
1029 > function of the coordinates and momenta of all particles in the
1030 > system, can be directly computed from molecular dynamics. The usual
1031 > way to measure the pressure is based on virial theorem of Clausius
1032 > which states that the virial is equal to $-3Nk_BT$. For a system
1033 > with forces between particles, the total virial, $W$, contains the
1034 > contribution from external pressure and interaction between the
1035 > particles:
1036   \[
1037 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1038 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1037 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1038 > f_{ij} } } \right\rangle
1039   \]
1040 < For an infinite harmonic bath, we can use the spectral density and
1041 < an integral over frequencies.
1040 > where $f_{ij}$ is the force between particle $i$ and $j$ at a
1041 > distance $r_{ij}$. Thus, the expression for the pressure is given
1042 > by:
1043 > \begin{equation}
1044 > P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1045 > < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1046 > \end{equation}
1047  
1048 + \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1049 +
1050 + Structural Properties of a simple fluid can be described by a set of
1051 + distribution functions. Among these functions,the \emph{pair
1052 + distribution function}, also known as \emph{radial distribution
1053 + function}, is of most fundamental importance to liquid theory.
1054 + Experimentally, pair distribution function can be gathered by
1055 + Fourier transforming raw data from a series of neutron diffraction
1056 + experiments and integrating over the surface factor
1057 + \cite{Powles1973}. The experimental results can serve as a criterion
1058 + to justify the correctness of a liquid model. Moreover, various
1059 + equilibrium thermodynamic and structural properties can also be
1060 + expressed in terms of radial distribution function \cite{Allen1987}.
1061 + The pair distribution functions $g(r)$ gives the probability that a
1062 + particle $i$ will be located at a distance $r$ from a another
1063 + particle $j$ in the system
1064 + \begin{equation}
1065 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1066 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1067 + (r)}{\rho}.
1068 + \end{equation}
1069 + Note that the delta function can be replaced by a histogram in
1070 + computer simulation. Peaks in $g(r)$ represent solvent shells, and
1071 + the height of these peaks gradually decreases to 1 as the liquid of
1072 + large distance approaches the bulk density.
1073 +
1074 +
1075 + \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1076 + Properties}}
1077 +
1078 + Time-dependent properties are usually calculated using \emph{time
1079 + correlation functions}, which correlate random variables $A$ and $B$
1080 + at two different times,
1081 + \begin{equation}
1082 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1083 + \label{introEquation:timeCorrelationFunction}
1084 + \end{equation}
1085 + If $A$ and $B$ refer to same variable, this kind of correlation
1086 + function is called an \emph{autocorrelation function}. One example
1087 + of an auto correlation function is the velocity auto-correlation
1088 + function which is directly related to transport properties of
1089 + molecular liquids:
1090   \[
1091 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1092 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
591 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
592 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1091 > D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1092 > \right\rangle } dt
1093   \]
1094 < The random forces depend only on initial conditions.
1095 <
1096 < \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1097 < So we can define a new set of coordinates,
1094 > where $D$ is diffusion constant. Unlike the velocity autocorrelation
1095 > function, which is averaging over time origins and over all the
1096 > atoms, the dipole autocorrelation functions are calculated for the
1097 > entire system. The dipole autocorrelation function is given by:
1098   \[
1099 < q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1100 < ^2 }}x(0)
1099 > c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1100 > \right\rangle
1101   \]
1102 < This makes
1102 > Here $u_{tot}$ is the net dipole of the entire system and is given
1103 > by
1104   \[
1105 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1105 > u_{tot} (t) = \sum\limits_i {u_i (t)}.
1106   \]
1107 < And since the $q$ coordinates are harmonic oscillators,
1107 > In principle, many time correlation functions can be related with
1108 > Fourier transforms of the infrared, Raman, and inelastic neutron
1109 > scattering spectra of molecular liquids. In practice, one can
1110 > extract the IR spectrum from the intensity of dipole fluctuation at
1111 > each frequency using the following relationship:
1112   \[
1113 < \begin{array}{l}
1114 < \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
610 < \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
611 < \end{array}
1113 > \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1114 > i2\pi vt} dt}.
1115   \]
1116  
1117 < \begin{align}
615 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
616 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
617 < (t)q_\beta  (0)} \right\rangle } }
618 < %
619 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
620 < \right\rangle \cos (\omega _\alpha  t)}
621 < %
622 < &= kT\xi (t)
623 < \end{align}
1117 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1118  
1119 < \begin{equation}
1120 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1121 < \label{introEquation:secondFluctuationDissipation}
1122 < \end{equation}
1119 > Rigid bodies are frequently involved in the modeling of different
1120 > areas, from engineering, physics, to chemistry. For example,
1121 > missiles and vehicle are usually modeled by rigid bodies.  The
1122 > movement of the objects in 3D gaming engine or other physics
1123 > simulator is governed by rigid body dynamics. In molecular
1124 > simulations, rigid bodies are used to simplify protein-protein
1125 > docking studies\cite{Gray2003}.
1126  
1127 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1127 > It is very important to develop stable and efficient methods to
1128 > integrate the equations of motion for orientational degrees of
1129 > freedom. Euler angles are the natural choice to describe the
1130 > rotational degrees of freedom. However, due to $\frac {1}{sin
1131 > \theta}$ singularities, the numerical integration of corresponding
1132 > equations of motion is very inefficient and inaccurate. Although an
1133 > alternative integrator using multiple sets of Euler angles can
1134 > overcome this difficulty\cite{Barojas1973}, the computational
1135 > penalty and the loss of angular momentum conservation still remain.
1136 > A singularity-free representation utilizing quaternions was
1137 > developed by Evans in 1977\cite{Evans1977}. Unfortunately, this
1138 > approach uses a nonseparable Hamiltonian resulting from the
1139 > quaternion representation, which prevents the symplectic algorithm
1140 > to be utilized. Another different approach is to apply holonomic
1141 > constraints to the atoms belonging to the rigid body. Each atom
1142 > moves independently under the normal forces deriving from potential
1143 > energy and constraint forces which are used to guarantee the
1144 > rigidness. However, due to their iterative nature, the SHAKE and
1145 > Rattle algorithms also converge very slowly when the number of
1146 > constraints increases\cite{Ryckaert1977, Andersen1983}.
1147  
1148 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1149 < \subsection{\label{introSection:analyticalApproach}Analytical
1150 < Approach}
1148 > A break-through in geometric literature suggests that, in order to
1149 > develop a long-term integration scheme, one should preserve the
1150 > symplectic structure of the flow. By introducing a conjugate
1151 > momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1152 > equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1153 > proposed to evolve the Hamiltonian system in a constraint manifold
1154 > by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1155 > An alternative method using the quaternion representation was
1156 > developed by Omelyan\cite{Omelyan1998}. However, both of these
1157 > methods are iterative and inefficient. In this section, we descibe a
1158 > symplectic Lie-Poisson integrator for rigid body developed by
1159 > Dullweber and his coworkers\cite{Dullweber1997} in depth.
1160  
1161 < \subsection{\label{introSection:approximationApproach}Approximation
1162 < Approach}
1161 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1162 > The motion of a rigid body is Hamiltonian with the Hamiltonian
1163 > function
1164 > \begin{equation}
1165 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1166 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1167 > \label{introEquation:RBHamiltonian}
1168 > \end{equation}
1169 > Here, $q$ and $Q$  are the position and rotation matrix for the
1170 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1171 > $J$, a diagonal matrix, is defined by
1172 > \[
1173 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1174 > \]
1175 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1176 > constrained Hamiltonian equation is subjected to a holonomic
1177 > constraint,
1178 > \begin{equation}
1179 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1180 > \end{equation}
1181 > which is used to ensure rotation matrix's unitarity. Differentiating
1182 > Eq.~\ref{introEquation:orthogonalConstraint} and using
1183 > Eq.~\ref{introEquation:RBMotionMomentum}, one may obtain,
1184 > \begin{equation}
1185 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1186 > \label{introEquation:RBFirstOrderConstraint}
1187 > \end{equation}
1188 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1189 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1190 > the equations of motion,
1191 > \begin{eqnarray}
1192 > \frac{{dq}}{{dt}} & = & \frac{p}{m}, \label{introEquation:RBMotionPosition}\\
1193 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q), \label{introEquation:RBMotionMomentum}\\
1194 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1},  \label{introEquation:RBMotionRotation}\\
1195 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1196 > \end{eqnarray}
1197 > In general, there are two ways to satisfy the holonomic constraints.
1198 > We can use a constraint force provided by a Lagrange multiplier on
1199 > the normal manifold to keep the motion on constraint space. Or we
1200 > can simply evolve the system on the constraint manifold. These two
1201 > methods have been proved to be equivalent. The holonomic constraint
1202 > and equations of motions define a constraint manifold for rigid
1203 > bodies
1204 > \[
1205 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1206 > \right\}.
1207 > \]
1208 > Unfortunately, this constraint manifold is not the cotangent bundle
1209 > $T^* SO(3)$ which can be consider as a symplectic manifold on Lie
1210 > rotation group $SO(3)$. However, it turns out that under symplectic
1211 > transformation, the cotangent space and the phase space are
1212 > diffeomorphic. By introducing
1213 > \[
1214 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1215 > \]
1216 > the mechanical system subject to a holonomic constraint manifold $M$
1217 > can be re-formulated as a Hamiltonian system on the cotangent space
1218 > \[
1219 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1220 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1221 > \]
1222 > For a body fixed vector $X_i$ with respect to the center of mass of
1223 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1224 > given as
1225 > \begin{equation}
1226 > X_i^{lab} = Q X_i + q.
1227 > \end{equation}
1228 > Therefore, potential energy $V(q,Q)$ is defined by
1229 > \[
1230 > V(q,Q) = V(Q X_0 + q).
1231 > \]
1232 > Hence, the force and torque are given by
1233 > \[
1234 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1235 > \]
1236 > and
1237 > \[
1238 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1239 > \]
1240 > respectively. As a common choice to describe the rotation dynamics
1241 > of the rigid body, the angular momentum on the body fixed frame $\Pi
1242 > = Q^t P$ is introduced to rewrite the equations of motion,
1243 > \begin{equation}
1244 > \begin{array}{l}
1245 > \dot \Pi  = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda,  \\
1246 > \dot Q  = Q\Pi {\rm{ }}J^{ - 1},  \\
1247 > \end{array}
1248 > \label{introEqaution:RBMotionPI}
1249 > \end{equation}
1250 > as well as holonomic constraints $\Pi J^{ - 1}  + J^{ - 1} \Pi ^t  =
1251 > 0$ and $Q^T Q = 1$. For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a
1252 > matrix $\hat v \in so(3)^ \star$, the hat-map isomorphism,
1253 > \begin{equation}
1254 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1255 > {\begin{array}{*{20}c}
1256 >   0 & { - v_3 } & {v_2 }  \\
1257 >   {v_3 } & 0 & { - v_1 }  \\
1258 >   { - v_2 } & {v_1 } & 0  \\
1259 > \end{array}} \right),
1260 > \label{introEquation:hatmapIsomorphism}
1261 > \end{equation}
1262 > will let us associate the matrix products with traditional vector
1263 > operations
1264 > \[
1265 > \hat vu = v \times u.
1266 > \]
1267 > Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1268 > matrix,
1269 > \begin{eqnarray}
1270 > (\dot \Pi  - \dot \Pi ^T )&= &(\Pi  - \Pi ^T )(J^{ - 1} \Pi  + \Pi J^{ - 1} ) \notag \\
1271 > & & + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]}  -
1272 > (\Lambda  - \Lambda ^T ). \label{introEquation:skewMatrixPI}
1273 > \end{eqnarray}
1274 > Since $\Lambda$ is symmetric, the last term of
1275 > Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1276 > Lagrange multiplier $\Lambda$ is absent from the equations of
1277 > motion. This unique property eliminates the requirement of
1278 > iterations which can not be avoided in other methods\cite{Kol1997,
1279 > Omelyan1998}. Applying the hat-map isomorphism, we obtain the
1280 > equation of motion for angular momentum on body frame
1281 > \begin{equation}
1282 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1283 > F_i (r,Q)} \right) \times X_i }.
1284 > \label{introEquation:bodyAngularMotion}
1285 > \end{equation}
1286 > In the same manner, the equation of motion for rotation matrix is
1287 > given by
1288 > \[
1289 > \dot Q = Qskew(I^{ - 1} \pi ).
1290 > \]
1291  
1292 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1293 < Body}
1292 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1293 > Lie-Poisson Integrator for Free Rigid Body}
1294 >
1295 > If there are no external forces exerted on the rigid body, the only
1296 > contribution to the rotational motion is from the kinetic energy
1297 > (the first term of \ref{introEquation:bodyAngularMotion}). The free
1298 > rigid body is an example of a Lie-Poisson system with Hamiltonian
1299 > function
1300 > \begin{equation}
1301 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1302 > \label{introEquation:rotationalKineticRB}
1303 > \end{equation}
1304 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1305 > Lie-Poisson structure matrix,
1306 > \begin{equation}
1307 > J(\pi ) = \left( {\begin{array}{*{20}c}
1308 >   0 & {\pi _3 } & { - \pi _2 }  \\
1309 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1310 >   {\pi _2 } & { - \pi _1 } & 0  \\
1311 > \end{array}} \right).
1312 > \end{equation}
1313 > Thus, the dynamics of free rigid body is governed by
1314 > \begin{equation}
1315 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi ).
1316 > \end{equation}
1317 > One may notice that each $T_i^r$ in
1318 > Eq.~\ref{introEquation:rotationalKineticRB} can be solved exactly.
1319 > For instance, the equations of motion due to $T_1^r$ are given by
1320 > \begin{equation}
1321 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1322 > \label{introEqaution:RBMotionSingleTerm}
1323 > \end{equation}
1324 > with
1325 > \[ R_1  = \left( {\begin{array}{*{20}c}
1326 >   0 & 0 & 0  \\
1327 >   0 & 0 & {\pi _1 }  \\
1328 >   0 & { - \pi _1 } & 0  \\
1329 > \end{array}} \right).
1330 > \]
1331 > The solutions of Eq.~\ref{introEqaution:RBMotionSingleTerm} is
1332 > \[
1333 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1334 > Q(0)e^{\Delta tR_1 }
1335 > \]
1336 > with
1337 > \[
1338 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1339 >   0 & 0 & 0  \\
1340 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1341 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1342 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1343 > \]
1344 > To reduce the cost of computing expensive functions in $e^{\Delta
1345 > tR_1 }$, we can use Cayley transformation to obtain a single-aixs
1346 > propagator,
1347 > \[
1348 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1349 > ).
1350 > \]
1351 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1352 > manner. In order to construct a second-order symplectic method, we
1353 > split the angular kinetic Hamiltonian function into five terms
1354 > \[
1355 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1356 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1357 > (\pi _1 ).
1358 > \]
1359 > By concatenating the propagators corresponding to these five terms,
1360 > we can obtain an symplectic integrator,
1361 > \[
1362 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1363 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1364 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1365 > _1 }.
1366 > \]
1367 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1368 > $F(\pi )$ and $G(\pi )$ is defined by
1369 > \[
1370 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1371 > ).
1372 > \]
1373 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1374 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1375 > conserved quantity in Poisson system. We can easily verify that the
1376 > norm of the angular momentum, $\parallel \pi
1377 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1378 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1379 > then by the chain rule
1380 > \[
1381 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1382 > }}{2})\pi.
1383 > \]
1384 > Thus, $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel
1385 > \pi
1386 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1387 > Lie-Poisson integrator is found to be both extremely efficient and
1388 > stable. These properties can be explained by the fact the small
1389 > angle approximation is used and the norm of the angular momentum is
1390 > conserved.
1391 >
1392 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1393 > Splitting for Rigid Body}
1394 >
1395 > The Hamiltonian of rigid body can be separated in terms of kinetic
1396 > energy and potential energy,$H = T(p,\pi ) + V(q,Q)$. The equations
1397 > of motion corresponding to potential energy and kinetic energy are
1398 > listed in the below table,
1399 > \begin{table}
1400 > \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1401 > \begin{center}
1402 > \begin{tabular}{|l|l|}
1403 >  \hline
1404 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1405 >  Potential & Kinetic \\
1406 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1407 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1408 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1409 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1410 >  \hline
1411 > \end{tabular}
1412 > \end{center}
1413 > \end{table}
1414 > A second-order symplectic method is now obtained by the composition
1415 > of the position and velocity propagators,
1416 > \[
1417 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1418 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1419 > \]
1420 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1421 > sub-propagators which corresponding to force and torque
1422 > respectively,
1423 > \[
1424 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1425 > _{\Delta t/2,\tau }.
1426 > \]
1427 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1428 > $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1429 > inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1430 > kinetic energy can be separated to translational kinetic term, $T^t
1431 > (p)$, and rotational kinetic term, $T^r (\pi )$,
1432 > \begin{equation}
1433 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1434 > \end{equation}
1435 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1436 > defined by Eq.~\ref{introEquation:rotationalKineticRB}. Therefore,
1437 > the corresponding propagators are given by
1438 > \[
1439 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1440 > _{\Delta t,T^r }.
1441 > \]
1442 > Finally, we obtain the overall symplectic propagators for freely
1443 > moving rigid bodies
1444 > \begin{eqnarray}
1445 > \varphi _{\Delta t}  &=& \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \notag\\
1446 >  & & \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \notag\\
1447 >  & & \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1448 > \label{introEquation:overallRBFlowMaps}
1449 > \end{eqnarray}
1450 >
1451 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1452 > As an alternative to newtonian dynamics, Langevin dynamics, which
1453 > mimics a simple heat bath with stochastic and dissipative forces,
1454 > has been applied in a variety of studies. This section will review
1455 > the theory of Langevin dynamics. A brief derivation of generalized
1456 > Langevin equation will be given first. Following that, we will
1457 > discuss the physical meaning of the terms appearing in the equation
1458 > as well as the calculation of friction tensor from hydrodynamics
1459 > theory.
1460 >
1461 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1462 >
1463 > A harmonic bath model, in which an effective set of harmonic
1464 > oscillators are used to mimic the effect of a linearly responding
1465 > environment, has been widely used in quantum chemistry and
1466 > statistical mechanics. One of the successful applications of
1467 > Harmonic bath model is the derivation of the Generalized Langevin
1468 > Dynamics (GLE). Lets consider a system, in which the degree of
1469 > freedom $x$ is assumed to couple to the bath linearly, giving a
1470 > Hamiltonian of the form
1471 > \begin{equation}
1472 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1473 > \label{introEquation:bathGLE}.
1474 > \end{equation}
1475 > Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1476 > with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1477 > \[
1478 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1479 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1480 > \right\}}
1481 > \]
1482 > where the index $\alpha$ runs over all the bath degrees of freedom,
1483 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1484 > the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1485 > coupling,
1486 > \[
1487 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1488 > \]
1489 > where $g_\alpha$ are the coupling constants between the bath
1490 > coordinates ($x_ \alpha$) and the system coordinate ($x$).
1491 > Introducing
1492 > \[
1493 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1494 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1495 > \]
1496 > and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1497 > \[
1498 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1499 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1500 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1501 > w_\alpha ^2 }}x} \right)^2 } \right\}}.
1502 > \]
1503 > Since the first two terms of the new Hamiltonian depend only on the
1504 > system coordinates, we can get the equations of motion for
1505 > Generalized Langevin Dynamics by Hamilton's equations,
1506 > \begin{equation}
1507 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1508 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1509 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1510 > \label{introEquation:coorMotionGLE}
1511 > \end{equation}
1512 > and
1513 > \begin{equation}
1514 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1515 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1516 > \label{introEquation:bathMotionGLE}
1517 > \end{equation}
1518 > In order to derive an equation for $x$, the dynamics of the bath
1519 > variables $x_\alpha$ must be solved exactly first. As an integral
1520 > transform which is particularly useful in solving linear ordinary
1521 > differential equations,the Laplace transform is the appropriate tool
1522 > to solve this problem. The basic idea is to transform the difficult
1523 > differential equations into simple algebra problems which can be
1524 > solved easily. Then, by applying the inverse Laplace transform, also
1525 > known as the Bromwich integral, we can retrieve the solutions of the
1526 > original problems. Let $f(t)$ be a function defined on $ [0,\infty )
1527 > $, the Laplace transform of $f(t)$ is a new function defined as
1528 > \[
1529 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1530 > \]
1531 > where  $p$ is real and  $L$ is called the Laplace Transform
1532 > Operator. Below are some important properties of Laplace transform
1533 > \begin{eqnarray*}
1534 > L(x + y)  & = & L(x) + L(y) \\
1535 > L(ax)     & = & aL(x) \\
1536 > L(\dot x) & = & pL(x) - px(0) \\
1537 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1538 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1539 > \end{eqnarray*}
1540 > Applying the Laplace transform to the bath coordinates, we obtain
1541 > \begin{eqnarray*}
1542 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x), \\
1543 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}. \\
1544 > \end{eqnarray*}
1545 > By the same way, the system coordinates become
1546 > \begin{eqnarray*}
1547 > mL(\ddot x) & = &
1548 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1549 >  & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}.
1550 > \end{eqnarray*}
1551 > With the help of some relatively important inverse Laplace
1552 > transformations:
1553 > \[
1554 > \begin{array}{c}
1555 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1556 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1557 > L(1) = \frac{1}{p} \\
1558 > \end{array}
1559 > \]
1560 > we obtain
1561 > \begin{eqnarray*}
1562 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1563 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1564 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1565 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1566 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1567 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1568 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1569 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1570 > \end{eqnarray*}
1571 > \begin{eqnarray*}
1572 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1573 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1574 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1575 > t)\dot x(t - \tau )d} \tau }  \\
1576 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1577 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1578 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1579 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1580 > \end{eqnarray*}
1581 > Introducing a \emph{dynamic friction kernel}
1582 > \begin{equation}
1583 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1584 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1585 > \label{introEquation:dynamicFrictionKernelDefinition}
1586 > \end{equation}
1587 > and \emph{a random force}
1588 > \begin{equation}
1589 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1590 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1591 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1592 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1593 > \label{introEquation:randomForceDefinition}
1594 > \end{equation}
1595 > the equation of motion can be rewritten as
1596 > \begin{equation}
1597 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1598 > (t)\dot x(t - \tau )d\tau }  + R(t)
1599 > \label{introEuqation:GeneralizedLangevinDynamics}
1600 > \end{equation}
1601 > which is known as the \emph{generalized Langevin equation}.
1602 >
1603 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1604 >
1605 > One may notice that $R(t)$ depends only on initial conditions, which
1606 > implies it is completely deterministic within the context of a
1607 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1608 > uncorrelated to $x$ and $\dot x$,$\left\langle {x(t)R(t)}
1609 > \right\rangle  = 0, \left\langle {\dot x(t)R(t)} \right\rangle  =
1610 > 0.$ This property is what we expect from a truly random process. As
1611 > long as the model chosen for $R(t)$ was a gaussian distribution in
1612 > general, the stochastic nature of the GLE still remains.
1613 > %dynamic friction kernel
1614 > The convolution integral
1615 > \[
1616 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1617 > \]
1618 > depends on the entire history of the evolution of $x$, which implies
1619 > that the bath retains memory of previous motions. In other words,
1620 > the bath requires a finite time to respond to change in the motion
1621 > of the system. For a sluggish bath which responds slowly to changes
1622 > in the system coordinate, we may regard $\xi(t)$ as a constant
1623 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1624 > \[
1625 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1626 > \]
1627 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1628 > \[
1629 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1630 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1631 > \]
1632 > which can be used to describe the effect of dynamic caging in
1633 > viscous solvents. The other extreme is the bath that responds
1634 > infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1635 > taken as a $delta$ function in time:
1636 > \[
1637 > \xi (t) = 2\xi _0 \delta (t)
1638 > \]
1639 > Hence, the convolution integral becomes
1640 > \[
1641 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1642 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1643 > \]
1644 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1645 > \begin{equation}
1646 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1647 > x(t) + R(t) \label{introEquation:LangevinEquation}
1648 > \end{equation}
1649 > which is known as the Langevin equation. The static friction
1650 > coefficient $\xi _0$ can either be calculated from spectral density
1651 > or be determined by Stokes' law for regular shaped particles. A
1652 > briefly review on calculating friction tensor for arbitrary shaped
1653 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1654 >
1655 > \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1656 >
1657 > Defining a new set of coordinates
1658 > \[
1659 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1660 > ^2 }}x(0),
1661 > \]
1662 > we can rewrite $R(T)$ as
1663 > \[
1664 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1665 > \]
1666 > And since the $q$ coordinates are harmonic oscillators,
1667 > \begin{eqnarray*}
1668 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1669 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1670 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1671 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1672 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1673 >  & = &kT\xi (t) \\
1674 > \end{eqnarray*}
1675 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1676 > \begin{equation}
1677 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1678 > \label{introEquation:secondFluctuationDissipation},
1679 > \end{equation}
1680 > which acts as a constraint on the possible ways in which one can
1681 > model the random force and friction kernel.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines