ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2692 by tim, Tue Apr 4 21:32:58 2006 UTC vs.
Revision 2702 by tim, Wed Apr 12 03:37:46 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
10 \subsection{\label{introSection:classicalMechanics}Classical Mechanics}
11
6   Closely related to Classical Mechanics, Molecular Dynamics
7   simulations are carried out by integrating the equations of motion
8   for a given system of particles. There are three fundamental ideas
# Line 20 | Line 14 | sufficient to predict the future behavior of the syste
14   when further combine with the laws of mechanics will also be
15   sufficient to predict the future behavior of the system.
16  
17 < \subsubsection{\label{introSection:newtonian}Newtonian Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_{ij} = -F_{ji}
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 < \subsubsection{\label{introSection:lagrangian}Lagrangian Mechanics}
38 > Conservation laws of Newtonian Mechanics play very important roles
39 > in solving mechanics problems. The linear momentum of a particle is
40 > conserved if it is free or it experiences no force. The second
41 > conservation theorem concerns the angular momentum of a particle.
42 > The angular momentum $L$ of a particle with respect to an origin
43 > from which $r$ is measured is defined to be
44 > \begin{equation}
45 > L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 > \end{equation}
47 > The torque $\tau$ with respect to the same origin is defined to be
48 > \begin{equation}
49 > N \equiv r \times F \label{introEquation:torqueDefinition}
50 > \end{equation}
51 > Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 > \[
53 > \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 > \dot p)
55 > \]
56 > since
57 > \[
58 > \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 > \]
60 > thus,
61 > \begin{equation}
62 > \dot L = r \times \dot p = N
63 > \end{equation}
64 > If there are no external torques acting on a body, the angular
65 > momentum of it is conserved. The last conservation theorem state
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 +
75   Newtonian Mechanics suffers from two important limitations: it
76   describes their motion in special cartesian coordinate systems.
77   Another limitation of Newtonian mechanics becomes obvious when we
# Line 35 | Line 83 | system, alternative procedures may be developed.
83   which arise in attempts to apply Newton's equation to complex
84   system, alternative procedures may be developed.
85  
86 < \subsubsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
86 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87   Principle}
88  
89   Hamilton introduced the dynamical principle upon which it is
# Line 45 | Line 93 | the kinetic, $K$, and potential energies, $U$.
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$.
96 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 < \lable{introEquation:halmitonianPrinciple1}
99 > \label{introEquation:halmitonianPrinciple1}
100   \end{equation}
101  
102   For simple mechanical systems, where the forces acting on the
# Line 62 | Line 110 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
110   \end{equation}
111   then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112   \begin{equation}
113 < \delta \int_{t_1 }^{t_2 } {K dt = 0} ,
114 < \lable{introEquation:halmitonianPrinciple2}
113 > \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 > \label{introEquation:halmitonianPrinciple2}
115   \end{equation}
116  
117 < \subsubsubsection{\label{introSection:equationOfMotionLagrangian}The
117 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 < \lable{introEquation:eqMotionLagrangian}
125 > \label{introEquation:eqMotionLagrangian}
126   \end{equation}
127   where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128   generalized velocity.
129  
130 < \subsubsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
130 > \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131  
132   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133   introduced by William Rowan Hamilton in 1833 as a re-formulation of
# Line 90 | Line 138 | With the help of these momenta, we may now define a ne
138   p_i = \frac{\partial L}{\partial \dot q_i}
139   \label{introEquation:generalizedMomenta}
140   \end{equation}
141 < With the help of these momenta, we may now define a new quantity $H$
94 < by the equation
141 > The Lagrange equations of motion are then expressed by
142   \begin{equation}
143 < H = p_1 \dot q_1  +  \ldots  + p_f \dot q_f  - L,
143 > p_i  = \frac{{\partial L}}{{\partial q_i }}
144 > \label{introEquation:generalizedMomentaDot}
145 > \end{equation}
146 >
147 > With the help of the generalized momenta, we may now define a new
148 > quantity $H$ by the equation
149 > \begin{equation}
150 > H = \sum\limits_k {p_k \dot q_k }  - L ,
151   \label{introEquation:hamiltonianDefByLagrangian}
152   \end{equation}
153   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
154   $L$ is the Lagrangian function for the system.
155  
156 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 + one can obtain
158 + \begin{equation}
159 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
160 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
161 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
162 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 + \end{equation}
164 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
165 + second and fourth terms in the parentheses cancel. Therefore,
166 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 + \begin{equation}
168 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
169 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
170 + \label{introEquation:diffHamiltonian2}
171 + \end{equation}
172 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 + find
174 + \begin{equation}
175 + \frac{{\partial H}}{{\partial p_k }} = q_k
176 + \label{introEquation:motionHamiltonianCoordinate}
177 + \end{equation}
178 + \begin{equation}
179 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
180 + \label{introEquation:motionHamiltonianMomentum}
181 + \end{equation}
182 + and
183 + \begin{equation}
184 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
185 + t}}
186 + \label{introEquation:motionHamiltonianTime}
187 + \end{equation}
188 +
189 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 + equation of motion. Due to their symmetrical formula, they are also
192 + known as the canonical equations of motions \cite{Goldstein01}.
193 +
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
196   function of the generalized velocities $\dot q_i$ and the
# Line 108 | Line 200 | equations.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations.
203 > equations\cite{Marion90}.
204  
205 + In Newtonian Mechanics, a system described by conservative forces
206 + conserves the total energy \ref{introEquation:energyConservation}.
207 + It follows that Hamilton's equations of motion conserve the total
208 + Hamiltonian.
209 + \begin{equation}
210 + \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 + H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 + }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 + H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 + \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 + q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 + \end{equation}
217  
218 < \subsubsection{\label{introSection:canonicalTransformation}Canonical Transformation}
218 > \section{\label{introSection:statisticalMechanics}Statistical
219 > Mechanics}
220  
221 < \subsection{\label{introSection:statisticalMechanics}Statistical Mechanics}
117 <
118 < The thermodynamic behaviors and properties  of Molecular Dynamics
221 > The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsubsection{\label{introSection::ensemble}Ensemble}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228  
229 < \subsubsection{\label{introSection:ergodic}The Ergodic Hypothesis}
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239  
240 < \subsection{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270  
271 < \subsection{\label{introSection:correlationFunctions}Correlation Functions}
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS}
319 > \label{introEqaution:NVEPartition}.
320 > \end{equation}
321 > A canonical ensemble(NVT)is an ensemble of systems, each of which
322 > can share its energy with a large heat reservoir. The distribution
323 > of the total energy amongst the possible dynamical states is given
324 > by the partition function,
325 > \begin{equation}
326 > \Omega (N,V,T) = e^{ - \beta A}
327 > \label{introEquation:NVTPartition}
328 > \end{equation}
329 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
330 > TS$. Since most experiment are carried out under constant pressure
331 > condition, isothermal-isobaric ensemble(NPT) play a very important
332 > role in molecular simulation. The isothermal-isobaric ensemble allow
333 > the system to exchange energy with a heat bath of temperature $T$
334 > and to change the volume as well. Its partition function is given as
335 > \begin{equation}
336 > \Delta (N,P,T) =  - e^{\beta G}.
337 > \label{introEquation:NPTPartition}
338 > \end{equation}
339 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
340 >
341 > \subsection{\label{introSection:liouville}Liouville's theorem}
342 >
343 > The Liouville's theorem is the foundation on which statistical
344 > mechanics rests. It describes the time evolution of phase space
345 > distribution function. In order to calculate the rate of change of
346 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
347 > consider the two faces perpendicular to the $q_1$ axis, which are
348 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
349 > leaving the opposite face is given by the expression,
350 > \begin{equation}
351 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
352 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
353 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
354 > \ldots \delta p_f .
355 > \end{equation}
356 > Summing all over the phase space, we obtain
357 > \begin{equation}
358 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
359 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
360 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
361 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
362 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
363 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
364 > \end{equation}
365 > Differentiating the equations of motion in Hamiltonian formalism
366 > (\ref{introEquation:motionHamiltonianCoordinate},
367 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
368 > \begin{equation}
369 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
370 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
371 > \end{equation}
372 > which cancels the first terms of the right hand side. Furthermore,
373 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
374 > p_f $ in both sides, we can write out Liouville's theorem in a
375 > simple form,
376 > \begin{equation}
377 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
378 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
379 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
380 > \label{introEquation:liouvilleTheorem}
381 > \end{equation}
382 >
383 > Liouville's theorem states that the distribution function is
384 > constant along any trajectory in phase space. In classical
385 > statistical mechanics, since the number of particles in the system
386 > is huge, we may be able to believe the system is stationary,
387 > \begin{equation}
388 > \frac{{\partial \rho }}{{\partial t}} = 0.
389 > \label{introEquation:stationary}
390 > \end{equation}
391 > In such stationary system, the density of distribution $\rho$ can be
392 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
393 > distribution,
394 > \begin{equation}
395 > \rho  \propto e^{ - \beta H}
396 > \label{introEquation:densityAndHamiltonian}
397 > \end{equation}
398 >
399 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
400 > Lets consider a region in the phase space,
401 > \begin{equation}
402 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
403 > \end{equation}
404 > If this region is small enough, the density $\rho$ can be regarded
405 > as uniform over the whole phase space. Thus, the number of phase
406 > points inside this region is given by,
407 > \begin{equation}
408 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
409 > dp_1 } ..dp_f.
410 > \end{equation}
411 >
412 > \begin{equation}
413 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
414 > \frac{d}{{dt}}(\delta v) = 0.
415 > \end{equation}
416 > With the help of stationary assumption
417 > (\ref{introEquation:stationary}), we obtain the principle of the
418 > \emph{conservation of extension in phase space},
419 > \begin{equation}
420 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
421 > ...dq_f dp_1 } ..dp_f  = 0.
422 > \label{introEquation:volumePreserving}
423 > \end{equation}
424 >
425 > \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
426 >
427 > Liouville's theorem can be expresses in a variety of different forms
428 > which are convenient within different contexts. For any two function
429 > $F$ and $G$ of the coordinates and momenta of a system, the Poisson
430 > bracket ${F, G}$ is defined as
431 > \begin{equation}
432 > \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
433 > F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
434 > \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
435 > q_i }}} \right)}.
436 > \label{introEquation:poissonBracket}
437 > \end{equation}
438 > Substituting equations of motion in Hamiltonian formalism(
439 > \ref{introEquation:motionHamiltonianCoordinate} ,
440 > \ref{introEquation:motionHamiltonianMomentum} ) into
441 > (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
442 > theorem using Poisson bracket notion,
443 > \begin{equation}
444 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
445 > {\rho ,H} \right\}.
446 > \label{introEquation:liouvilleTheromInPoissin}
447 > \end{equation}
448 > Moreover, the Liouville operator is defined as
449 > \begin{equation}
450 > iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
451 > p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
452 > H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
453 > \label{introEquation:liouvilleOperator}
454 > \end{equation}
455 > In terms of Liouville operator, Liouville's equation can also be
456 > expressed as
457 > \begin{equation}
458 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
459 > \label{introEquation:liouvilleTheoremInOperator}
460 > \end{equation}
461 >
462 > \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
463 >
464 > Various thermodynamic properties can be calculated from Molecular
465 > Dynamics simulation. By comparing experimental values with the
466 > calculated properties, one can determine the accuracy of the
467 > simulation and the quality of the underlying model. However, both of
468 > experiment and computer simulation are usually performed during a
469 > certain time interval and the measurements are averaged over a
470 > period of them which is different from the average behavior of
471 > many-body system in Statistical Mechanics. Fortunately, Ergodic
472 > Hypothesis is proposed to make a connection between time average and
473 > ensemble average. It states that time average and average over the
474 > statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
475 > \begin{equation}
476 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
478 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
479 > \end{equation}
480 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
481 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
482 > distribution function. If an observation is averaged over a
483 > sufficiently long time (longer than relaxation time), all accessible
484 > microstates in phase space are assumed to be equally probed, giving
485 > a properly weighted statistical average. This allows the researcher
486 > freedom of choice when deciding how best to measure a given
487 > observable. In case an ensemble averaged approach sounds most
488 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
489 > utilized. Or if the system lends itself to a time averaging
490 > approach, the Molecular Dynamics techniques in
491 > Sec.~\ref{introSection:molecularDynamics} will be the best
492 > choice\cite{Frenkel1996}.
493 >
494 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
495 > A variety of numerical integrators were proposed to simulate the
496 > motions. They usually begin with an initial conditionals and move
497 > the objects in the direction governed by the differential equations.
498 > However, most of them ignore the hidden physical law contained
499 > within the equations. Since 1990, geometric integrators, which
500 > preserve various phase-flow invariants such as symplectic structure,
501 > volume and time reversal symmetry, are developed to address this
502 > issue. The velocity verlet method, which happens to be a simple
503 > example of symplectic integrator, continues to gain its popularity
504 > in molecular dynamics community. This fact can be partly explained
505 > by its geometric nature.
506 >
507 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508 > A \emph{manifold} is an abstract mathematical space. It locally
509 > looks like Euclidean space, but when viewed globally, it may have
510 > more complicate structure. A good example of manifold is the surface
511 > of Earth. It seems to be flat locally, but it is round if viewed as
512 > a whole. A \emph{differentiable manifold} (also known as
513 > \emph{smooth manifold}) is a manifold with an open cover in which
514 > the covering neighborhoods are all smoothly isomorphic to one
515 > another. In other words,it is possible to apply calculus on
516 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
517 > defined as a pair $(M, \omega)$ which consisting of a
518 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
519 > bilinear symplectic form, $\omega$. A symplectic form on a vector
520 > space $V$ is a function $\omega(x, y)$ which satisfies
521 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
522 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
523 > $\omega(x, x) = 0$. Cross product operation in vector field is an
524 > example of symplectic form.
525 >
526 > One of the motivations to study \emph{symplectic manifold} in
527 > Hamiltonian Mechanics is that a symplectic manifold can represent
528 > all possible configurations of the system and the phase space of the
529 > system can be described by it's cotangent bundle. Every symplectic
530 > manifold is even dimensional. For instance, in Hamilton equations,
531 > coordinate and momentum always appear in pairs.
532 >
533 > Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
534 > \[
535 > f : M \rightarrow N
536 > \]
537 > is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
538 > the \emph{pullback} of $\eta$ under f is equal to $\omega$.
539 > Canonical transformation is an example of symplectomorphism in
540 > classical mechanics.
541 >
542 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
543 >
544 > For a ordinary differential system defined as
545 > \begin{equation}
546 > \dot x = f(x)
547 > \end{equation}
548 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
549 > \begin{equation}
550 > f(r) = J\nabla _x H(r).
551 > \end{equation}
552 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
553 > matrix
554 > \begin{equation}
555 > J = \left( {\begin{array}{*{20}c}
556 >   0 & I  \\
557 >   { - I} & 0  \\
558 > \end{array}} \right)
559 > \label{introEquation:canonicalMatrix}
560 > \end{equation}
561 > where $I$ is an identity matrix. Using this notation, Hamiltonian
562 > system can be rewritten as,
563 > \begin{equation}
564 > \frac{d}{{dt}}x = J\nabla _x H(x)
565 > \label{introEquation:compactHamiltonian}
566 > \end{equation}In this case, $f$ is
567 > called a \emph{Hamiltonian vector field}.
568 >
569 > Another generalization of Hamiltonian dynamics is Poisson Dynamics,
570 > \begin{equation}
571 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
572 > \end{equation}
573 > The most obvious change being that matrix $J$ now depends on $x$.
574 > The free rigid body is an example of Poisson system (actually a
575 > Lie-Poisson system) with Hamiltonian function of angular kinetic
576 > energy.
577 > \begin{equation}
578 > J(\pi ) = \left( {\begin{array}{*{20}c}
579 >   0 & {\pi _3 } & { - \pi _2 }  \\
580 >   { - \pi _3 } & 0 & {\pi _1 }  \\
581 >   {\pi _2 } & { - \pi _1 } & 0  \\
582 > \end{array}} \right)
583 > \end{equation}
584 >
585 > \begin{equation}
586 > H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 > }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 > \end{equation}
589 >
590 > \subsection{\label{introSection:exactFlow}Exact Flow}
591 >
592 > Let $x(t)$ be the exact solution of the ODE system,
593 > \begin{equation}
594 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
595 > \end{equation}
596 > The exact flow(solution) $\varphi_\tau$ is defined by
597 > \[
598 > x(t+\tau) =\varphi_\tau(x(t))
599 > \]
600 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
601 > space to itself. The flow has the continuous group property,
602 > \begin{equation}
603 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
604 > + \tau _2 } .
605 > \end{equation}
606 > In particular,
607 > \begin{equation}
608 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
609 > \end{equation}
610 > Therefore, the exact flow is self-adjoint,
611 > \begin{equation}
612 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
613 > \end{equation}
614 > The exact flow can also be written in terms of the of an operator,
615 > \begin{equation}
616 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
617 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
618 > \label{introEquation:exponentialOperator}
619 > \end{equation}
620 >
621 > In most cases, it is not easy to find the exact flow $\varphi_\tau$.
622 > Instead, we use a approximate map, $\psi_\tau$, which is usually
623 > called integrator. The order of an integrator $\psi_\tau$ is $p$, if
624 > the Taylor series of $\psi_\tau$ agree to order $p$,
625 > \begin{equation}
626 > \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
627 > \end{equation}
628 >
629 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
630 >
631 > The hidden geometric properties of ODE and its flow play important
632 > roles in numerical studies. Many of them can be found in systems
633 > which occur naturally in applications.
634 >
635 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
636 > a \emph{symplectic} flow if it satisfies,
637 > \begin{equation}
638 > '\varphi^T J '\varphi = J.
639 > \end{equation}
640 > According to Liouville's theorem, the symplectic volume is invariant
641 > under a Hamiltonian flow, which is the basis for classical
642 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
643 > field on a symplectic manifold can be shown to be a
644 > symplectomorphism. As to the Poisson system,
645 > \begin{equation}
646 > '\varphi ^T J '\varphi  = J \circ \varphi
647 > \end{equation}
648 > is the property must be preserved by the integrator.
649 >
650 > It is possible to construct a \emph{volume-preserving} flow for a
651 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
652 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
653 > be volume-preserving.
654 >
655 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
656 > will result in a new system,
657 > \[
658 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
659 > \]
660 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
661 > In other words, the flow of this vector field is reversible if and
662 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
663 >
664 > When designing any numerical methods, one should always try to
665 > preserve the structural properties of the original ODE and its flow.
666 >
667 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
668 > A lot of well established and very effective numerical methods have
669 > been successful precisely because of their symplecticities even
670 > though this fact was not recognized when they were first
671 > constructed. The most famous example is leapfrog methods in
672 > molecular dynamics. In general, symplectic integrators can be
673 > constructed using one of four different methods.
674 > \begin{enumerate}
675 > \item Generating functions
676 > \item Variational methods
677 > \item Runge-Kutta methods
678 > \item Splitting methods
679 > \end{enumerate}
680 >
681 > Generating function tends to lead to methods which are cumbersome
682 > and difficult to use. In dissipative systems, variational methods
683 > can capture the decay of energy accurately. Since their
684 > geometrically unstable nature against non-Hamiltonian perturbations,
685 > ordinary implicit Runge-Kutta methods are not suitable for
686 > Hamiltonian system. Recently, various high-order explicit
687 > Runge--Kutta methods have been developed to overcome this
688 > instability \cite{}. However, due to computational penalty involved
689 > in implementing the Runge-Kutta methods, they do not attract too
690 > much attention from Molecular Dynamics community. Instead, splitting
691 > have been widely accepted since they exploit natural decompositions
692 > of the system\cite{Tuckerman92}.
693 >
694 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
695 >
696 > The main idea behind splitting methods is to decompose the discrete
697 > $\varphi_h$ as a composition of simpler flows,
698 > \begin{equation}
699 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
700 > \varphi _{h_n }
701 > \label{introEquation:FlowDecomposition}
702 > \end{equation}
703 > where each of the sub-flow is chosen such that each represent a
704 > simpler integration of the system.
705 >
706 > Suppose that a Hamiltonian system takes the form,
707 > \[
708 > H = H_1 + H_2.
709 > \]
710 > Here, $H_1$ and $H_2$ may represent different physical processes of
711 > the system. For instance, they may relate to kinetic and potential
712 > energy respectively, which is a natural decomposition of the
713 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
714 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
715 > order is then given by the Lie-Trotter formula
716 > \begin{equation}
717 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
718 > \label{introEquation:firstOrderSplitting}
719 > \end{equation}
720 > where $\varphi _h$ is the result of applying the corresponding
721 > continuous $\varphi _i$ over a time $h$. By definition, as
722 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
723 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
724 > It is easy to show that any composition of symplectic flows yields a
725 > symplectic map,
726 > \begin{equation}
727 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
728 > '\phi ' = \phi '^T J\phi ' = J,
729 > \label{introEquation:SymplecticFlowComposition}
730 > \end{equation}
731 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
732 > splitting in this context automatically generates a symplectic map.
733 >
734 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
735 > introduces local errors proportional to $h^2$, while Strang
736 > splitting gives a second-order decomposition,
737 > \begin{equation}
738 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
739 > _{1,h/2} ,
740 > \label{introEqaution:secondOrderSplitting}
741 > \end{equation}
742 > which has a local error proportional to $h^3$. Sprang splitting's
743 > popularity in molecular simulation community attribute to its
744 > symmetric property,
745 > \begin{equation}
746 > \varphi _h^{ - 1} = \varphi _{ - h}.
747 > \lable{introEquation:timeReversible}
748 > \end{equation}
749 >
750 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
751 > The classical equation for a system consisting of interacting
752 > particles can be written in Hamiltonian form,
753 > \[
754 > H = T + V
755 > \]
756 > where $T$ is the kinetic energy and $V$ is the potential energy.
757 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
758 > obtains the following:
759 > \begin{align}
760 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
761 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
762 > \label{introEquation:Lp10a} \\%
763 > %
764 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
765 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
766 > \label{introEquation:Lp10b}
767 > \end{align}
768 > where $F(t)$ is the force at time $t$. This integration scheme is
769 > known as \emph{velocity verlet} which is
770 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
771 > time-reversible(\ref{introEquation:timeReversible}) and
772 > volume-preserving (\ref{introEquation:volumePreserving}). These
773 > geometric properties attribute to its long-time stability and its
774 > popularity in the community. However, the most commonly used
775 > velocity verlet integration scheme is written as below,
776 > \begin{align}
777 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
778 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
779 > %
780 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
781 >    \label{introEquation:Lp9b}\\%
782 > %
783 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
784 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
785 > \end{align}
786 > From the preceding splitting, one can see that the integration of
787 > the equations of motion would follow:
788 > \begin{enumerate}
789 > \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
790 >
791 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
792 >
793 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
794 >
795 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
796 > \end{enumerate}
797 >
798 > Simply switching the order of splitting and composing, a new
799 > integrator, the \emph{position verlet} integrator, can be generated,
800 > \begin{align}
801 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
802 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
803 > \label{introEquation:positionVerlet1} \\%
804 > %
805 > q(\Delta t) = q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
806 > q(\Delta t)} \right]. %
807 > \label{introEquation:positionVerlet1}
808 > \end{align}
809 >
810 > \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
811 >
812 > Baker-Campbell-Hausdorff formula can be used to determine the local
813 > error of splitting method in terms of commutator of the
814 > operators(\ref{introEquation:exponentialOperator}) associated with
815 > the sub-flow. For operators $hX$ and $hY$ which are associate to
816 > $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
817 > \begin{equation}
818 > \exp (hX + hY) = \exp (hZ)
819 > \end{equation}
820 > where
821 > \begin{equation}
822 > hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
823 > {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
824 > \end{equation}
825 > Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
826 > \[
827 > [X,Y] = XY - YX .
828 > \]
829 > Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
830 > can obtain
831 > \begin{eqnarray}
832 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
833 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 +
834 > h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 +  \ldots )
835 > \end{eqnarray}
836 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
837 > error of Spring splitting is proportional to $h^3$. The same
838 > procedure can be applied to general splitting,  of the form
839 > \begin{equation}
840 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
841 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
842 > \end{equation}
843 > Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
844 > order method. Yoshida proposed an elegant way to compose higher
845 > order methods based on symmetric splitting. Given a symmetric second
846 > order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
847 > method can be constructed by composing,
848 > \[
849 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
850 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
851 > \]
852 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
853 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
854 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
855 > \begin{equation}
856 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
857 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
858 > \end{equation}
859 > , if the weights are chosen as
860 > \[
861 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
862 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
863 > \]
864  
865 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
866 +
867 + As a special discipline of molecular modeling, Molecular dynamics
868 + has proven to be a powerful tool for studying the functions of
869 + biological systems, providing structural, thermodynamic and
870 + dynamical information.
871 +
872 + \subsection{\label{introSec:mdInit}Initialization}
873 +
874 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
875 +
876 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
877 +
878 + A rigid body is a body in which the distance between any two given
879 + points of a rigid body remains constant regardless of external
880 + forces exerted on it. A rigid body therefore conserves its shape
881 + during its motion.
882 +
883 + Applications of dynamics of rigid bodies.
884 +
885 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
886 +
887 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
888 +
889 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
890 +
891 + \section{\label{introSection:correlationFunctions}Correlation Functions}
892 +
893   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
894  
895 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
896 +
897   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
898  
899 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
899 > \begin{equation}
900 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
901 > \label{introEquation:bathGLE}
902 > \end{equation}
903 > where $H_B$ is harmonic bath Hamiltonian,
904 > \[
905 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
906 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
907 > \]
908 > and $\Delta U$ is bilinear system-bath coupling,
909 > \[
910 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
911 > \]
912 > Completing the square,
913 > \[
914 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
915 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
916 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
917 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
918 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
919 > \]
920 > and putting it back into Eq.~\ref{introEquation:bathGLE},
921 > \[
922 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
923 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
924 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
925 > w_\alpha ^2 }}x} \right)^2 } \right\}}
926 > \]
927 > where
928 > \[
929 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
930 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
931 > \]
932 > Since the first two terms of the new Hamiltonian depend only on the
933 > system coordinates, we can get the equations of motion for
934 > Generalized Langevin Dynamics by Hamilton's equations
935 > \ref{introEquation:motionHamiltonianCoordinate,
936 > introEquation:motionHamiltonianMomentum},
937 > \begin{align}
938 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
939 >       &= m\ddot x
940 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
941 > \label{introEquation:Lp5}
942 > \end{align}
943 > , and
944 > \begin{align}
945 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
946 >                &= m\ddot x_\alpha
947 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
948 > \end{align}
949 >
950 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
951 >
952 > \[
953 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
954 > \]
955 >
956 > \[
957 > L(x + y) = L(x) + L(y)
958 > \]
959 >
960 > \[
961 > L(ax) = aL(x)
962 > \]
963 >
964 > \[
965 > L(\dot x) = pL(x) - px(0)
966 > \]
967 >
968 > \[
969 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
970 > \]
971 >
972 > \[
973 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
974 > \]
975 >
976 > Some relatively important transformation,
977 > \[
978 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
979 > \]
980 >
981 > \[
982 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
983 > \]
984 >
985 > \[
986 > L(1) = \frac{1}{p}
987 > \]
988 >
989 > First, the bath coordinates,
990 > \[
991 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
992 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
993 > }}L(x)
994 > \]
995 > \[
996 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
997 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
998 > \]
999 > Then, the system coordinates,
1000 > \begin{align}
1001 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1002 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1003 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1004 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1005 > }}\omega _\alpha ^2 L(x)} \right\}}
1006 > %
1007 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1008 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1009 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1010 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1011 > \end{align}
1012 > Then, the inverse transform,
1013 >
1014 > \begin{align}
1015 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1016 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1017 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1018 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1019 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1020 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1021 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1022 > %
1023 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1024 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1025 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1026 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1027 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1028 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1029 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1030 > (\omega _\alpha  t)} \right\}}
1031 > \end{align}
1032 >
1033 > \begin{equation}
1034 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1035 > (t)\dot x(t - \tau )d\tau }  + R(t)
1036 > \label{introEuqation:GeneralizedLangevinDynamics}
1037 > \end{equation}
1038 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1039 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1040 > \[
1041 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1042 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1043 > \]
1044 > For an infinite harmonic bath, we can use the spectral density and
1045 > an integral over frequencies.
1046 >
1047 > \[
1048 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1049 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1050 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1051 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1052 > \]
1053 > The random forces depend only on initial conditions.
1054 >
1055 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1056 > So we can define a new set of coordinates,
1057 > \[
1058 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1059 > ^2 }}x(0)
1060 > \]
1061 > This makes
1062 > \[
1063 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1064 > \]
1065 > And since the $q$ coordinates are harmonic oscillators,
1066 > \[
1067 > \begin{array}{l}
1068 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1069 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1070 > \end{array}
1071 > \]
1072 >
1073 > \begin{align}
1074 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1075 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1076 > (t)q_\beta  (0)} \right\rangle } }
1077 > %
1078 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1079 > \right\rangle \cos (\omega _\alpha  t)}
1080 > %
1081 > &= kT\xi (t)
1082 > \end{align}
1083 >
1084 > \begin{equation}
1085 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1086 > \label{introEquation:secondFluctuationDissipation}
1087 > \end{equation}
1088 >
1089 > \section{\label{introSection:hydroynamics}Hydrodynamics}
1090 >
1091 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1092 > \subsection{\label{introSection:analyticalApproach}Analytical
1093 > Approach}
1094 >
1095 > \subsection{\label{introSection:approximationApproach}Approximation
1096 > Approach}
1097 >
1098 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1099 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines