ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC vs.
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC

# Line 949 | Line 949 | for rigid body developed by Dullweber and his coworker
949   method using quaternion representation was developed by Omelyan.
950   However, both of these methods are iterative and inefficient. In
951   this section, we will present a symplectic Lie-Poisson integrator
952 < for rigid body developed by Dullweber and his coworkers\cite{}.
952 > for rigid body developed by Dullweber and his
953 > coworkers\cite{Dullweber1997}.
954  
955   \subsection{\label{introSection:lieAlgebra}Lie Algebra}
956  
# Line 975 | Line 976 | Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
976   Differentiating \ref{introEquation:orthogonalConstraint} and using
977   Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
978   \begin{equation}
979 < Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
979 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
980   \label{introEquation:RBFirstOrderConstraint}
981   \end{equation}
982  
# Line 987 | Line 988 | the equations of motion,
988   \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
989   \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
990   \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
991 < \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
991 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
992   \end{array}
993   \]
994  
995 + In general, there are two ways to satisfy the holonomic constraints.
996 + We can use constraint force provided by lagrange multiplier on the
997 + normal manifold to keep the motion on constraint space. Or we can
998 + simply evolve the system in constraint manifold. The two method are
999 + proved to be equivalent. The holonomic constraint and equations of
1000 + motions define a constraint manifold for rigid body
1001 + \[
1002 + M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1003 + \right\}.
1004 + \]
1005  
1006 + Unfortunately, this constraint manifold is not the cotangent bundle
1007 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1008 + transformation, the cotangent space and the phase space are
1009 + diffeomorphic. Introducing
1010   \[
1011 < M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
997 < \right\} .
1011 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1012   \]
1013 + the mechanical system subject to a holonomic constraint manifold $M$
1014 + can be re-formulated as a Hamiltonian system on the cotangent space
1015 + \[
1016 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1017 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1018 + \]
1019  
1020 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1021 <
1022 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1020 > For a body fixed vector $X_i$ with respect to the center of mass of
1021 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1022 > given as
1023 > \begin{equation}
1024 > X_i^{lab} = Q X_i + q.
1025 > \end{equation}
1026 > Therefore, potential energy $V(q,Q)$ is defined by
1027 > \[
1028 > V(q,Q) = V(Q X_0 + q).
1029 > \]
1030 > Hence,
1031 > \[
1032 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1033 > \]
1034  
1035 + \[
1036 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1037 + \]
1038  
1039 + As a common choice to describe the rotation dynamics of the rigid
1040 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1041 + rewrite the equations of motion,
1042 + \begin{equation}
1043 + \begin{array}{l}
1044 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1045 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1046 + \end{array}
1047 + \label{introEqaution:RBMotionPI}
1048 + \end{equation}
1049 + , as well as holonomic constraints,
1050 + \[
1051 + \begin{array}{l}
1052 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1053 + Q^T Q = 1 \\
1054 + \end{array}
1055 + \]
1056 +
1057 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1058 + so(3)^ \star$, the hat-map isomorphism,
1059 + \begin{equation}
1060 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1061 + {\begin{array}{*{20}c}
1062 +   0 & { - v_3 } & {v_2 }  \\
1063 +   {v_3 } & 0 & { - v_1 }  \\
1064 +   { - v_2 } & {v_1 } & 0  \\
1065 + \end{array}} \right),
1066 + \label{introEquation:hatmapIsomorphism}
1067 + \end{equation}
1068 + will let us associate the matrix products with traditional vector
1069 + operations
1070 + \[
1071 + \hat vu = v \times u
1072 + \]
1073 +
1074 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1075 + matrix,
1076 + \begin{equation}
1077 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1078 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1079 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1080 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1081 + \end{equation}
1082 + Since $\Lambda$ is symmetric, the last term of Equation
1083 + \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1084 + multiplier $\Lambda$ is ignored in the integration.
1085 +
1086 + Hence, applying hat-map isomorphism, we obtain the equation of
1087 + motion for angular momentum on body frame
1088 + \[
1089 + \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1090 + \times X_i }
1091 + \]
1092 + In the same manner, the equation of motion for rotation matrix is
1093 + given by
1094 + \[
1095 + \dot Q = Qskew(M^{ - 1} \pi )
1096 + \]
1097 +
1098 + The free rigid body equation is an example of a non-canonical
1099 + Hamiltonian system.
1100 +
1101 + \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1102 +
1103 + \[
1104 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1105 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1106 + \]
1107 +
1108 + \[
1109 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1110 + _{\Delta t,\pi }
1111 + \]
1112 +
1113 + \[
1114 + \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1115 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1116 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1117 + _1 }
1118 + \]
1119 +
1120 + \[
1121 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1122 + _{\Delta t/2,\tau }
1123 + \]
1124 +
1125 +
1126   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1127  
1128   \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines