ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2705 by tim, Wed Apr 12 21:20:13 2006 UTC vs.
Revision 2713 by tim, Sat Apr 15 01:08:18 2006 UTC

# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 571 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
574 The free rigid body is an example of Poisson system (actually a
575 Lie-Poisson system) with Hamiltonian function of angular kinetic
576 energy.
577 \begin{equation}
578 J(\pi ) = \left( {\begin{array}{*{20}c}
579   0 & {\pi _3 } & { - \pi _2 }  \\
580   { - \pi _3 } & 0 & {\pi _1 }  \\
581   {\pi _2 } & { - \pi _1 } & 0  \\
582 \end{array}} \right)
583 \end{equation}
584
585 \begin{equation}
586 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 \end{equation}
573  
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
# Line 771 | Line 755 | _{1,h/2} ,
755   splitting gives a second-order decomposition,
756   \begin{equation}
757   \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 < _{1,h/2} ,
775 < \label{introEqaution:secondOrderSplitting}
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759   \end{equation}
760   which has a local error proportional to $h^3$. Sprang splitting's
761   popularity in molecular simulation community attribute to its
# Line 951 | Line 934 | for rigid body developed by Dullweber and his coworker
934   method using quaternion representation was developed by Omelyan.
935   However, both of these methods are iterative and inefficient. In
936   this section, we will present a symplectic Lie-Poisson integrator
937 < for rigid body developed by Dullweber and his coworkers\cite{}.
937 > for rigid body developed by Dullweber and his
938 > coworkers\cite{Dullweber1997} in depth.
939  
940 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
941 <
942 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
943 <
944 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
940 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 > The motion of the rigid body is Hamiltonian with the Hamiltonian
942 > function
943 > \begin{equation}
944 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
946 > \label{introEquation:RBHamiltonian}
947 > \end{equation}
948 > Here, $q$ and $Q$  are the position and rotation matrix for the
949 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
950 > $J$, a diagonal matrix, is defined by
951 > \[
952 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
953 > \]
954 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
955 > constrained Hamiltonian equation subjects to a holonomic constraint,
956 > \begin{equation}
957 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
958 > \end{equation}
959 > which is used to ensure rotation matrix's orthogonality.
960 > Differentiating \ref{introEquation:orthogonalConstraint} and using
961 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962 > \begin{equation}
963 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
964 > \label{introEquation:RBFirstOrderConstraint}
965 > \end{equation}
966  
967 < \section{\label{introSection:correlationFunctions}Correlation Functions}
967 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
968 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
969 > the equations of motion,
970 > \[
971 > \begin{array}{c}
972 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
975 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976 > \end{array}
977 > \]
978 >
979 > In general, there are two ways to satisfy the holonomic constraints.
980 > We can use constraint force provided by lagrange multiplier on the
981 > normal manifold to keep the motion on constraint space. Or we can
982 > simply evolve the system in constraint manifold. The two method are
983 > proved to be equivalent. The holonomic constraint and equations of
984 > motions define a constraint manifold for rigid body
985 > \[
986 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
987 > \right\}.
988 > \]
989 >
990 > Unfortunately, this constraint manifold is not the cotangent bundle
991 > $T_{\star}SO(3)$. However, it turns out that under symplectic
992 > transformation, the cotangent space and the phase space are
993 > diffeomorphic. Introducing
994 > \[
995 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996 > \]
997 > the mechanical system subject to a holonomic constraint manifold $M$
998 > can be re-formulated as a Hamiltonian system on the cotangent space
999 > \[
1000 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1002 > \]
1003  
1004 + For a body fixed vector $X_i$ with respect to the center of mass of
1005 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1006 + given as
1007 + \begin{equation}
1008 + X_i^{lab} = Q X_i + q.
1009 + \end{equation}
1010 + Therefore, potential energy $V(q,Q)$ is defined by
1011 + \[
1012 + V(q,Q) = V(Q X_0 + q).
1013 + \]
1014 + Hence, the force and torque are given by
1015 + \[
1016 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 + \]
1018 + and
1019 + \[
1020 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021 + \]
1022 + respectively.
1023 +
1024 + As a common choice to describe the rotation dynamics of the rigid
1025 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1026 + rewrite the equations of motion,
1027 + \begin{equation}
1028 + \begin{array}{l}
1029 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1030 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1031 + \end{array}
1032 + \label{introEqaution:RBMotionPI}
1033 + \end{equation}
1034 + , as well as holonomic constraints,
1035 + \[
1036 + \begin{array}{l}
1037 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1038 + Q^T Q = 1 \\
1039 + \end{array}
1040 + \]
1041 +
1042 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043 + so(3)^ \star$, the hat-map isomorphism,
1044 + \begin{equation}
1045 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046 + {\begin{array}{*{20}c}
1047 +   0 & { - v_3 } & {v_2 }  \\
1048 +   {v_3 } & 0 & { - v_1 }  \\
1049 +   { - v_2 } & {v_1 } & 0  \\
1050 + \end{array}} \right),
1051 + \label{introEquation:hatmapIsomorphism}
1052 + \end{equation}
1053 + will let us associate the matrix products with traditional vector
1054 + operations
1055 + \[
1056 + \hat vu = v \times u
1057 + \]
1058 +
1059 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060 + matrix,
1061 + \begin{equation}
1062 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1063 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1064 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1065 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066 + \end{equation}
1067 + Since $\Lambda$ is symmetric, the last term of Equation
1068 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 + multiplier $\Lambda$ is absent from the equations of motion. This
1070 + unique property eliminate the requirement of iterations which can
1071 + not be avoided in other methods\cite{}.
1072 +
1073 + Applying hat-map isomorphism, we obtain the equation of motion for
1074 + angular momentum on body frame
1075 + \begin{equation}
1076 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1077 + F_i (r,Q)} \right) \times X_i }.
1078 + \label{introEquation:bodyAngularMotion}
1079 + \end{equation}
1080 + In the same manner, the equation of motion for rotation matrix is
1081 + given by
1082 + \[
1083 + \dot Q = Qskew(I^{ - 1} \pi )
1084 + \]
1085 +
1086 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 + Lie-Poisson Integrator for Free Rigid Body}
1088 +
1089 + If there is not external forces exerted on the rigid body, the only
1090 + contribution to the rotational is from the kinetic potential (the
1091 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 + rigid body is an example of Lie-Poisson system with Hamiltonian
1093 + function
1094 + \begin{equation}
1095 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 + \label{introEquation:rotationalKineticRB}
1097 + \end{equation}
1098 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 + Lie-Poisson structure matrix,
1100 + \begin{equation}
1101 + J(\pi ) = \left( {\begin{array}{*{20}c}
1102 +   0 & {\pi _3 } & { - \pi _2 }  \\
1103 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1104 +   {\pi _2 } & { - \pi _1 } & 0  \\
1105 + \end{array}} \right)
1106 + \end{equation}
1107 + Thus, the dynamics of free rigid body is governed by
1108 + \begin{equation}
1109 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1110 + \end{equation}
1111 +
1112 + One may notice that each $T_i^r$ in Equation
1113 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 + instance, the equations of motion due to $T_1^r$ are given by
1115 + \begin{equation}
1116 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 + \label{introEqaution:RBMotionSingleTerm}
1118 + \end{equation}
1119 + where
1120 + \[ R_1  = \left( {\begin{array}{*{20}c}
1121 +   0 & 0 & 0  \\
1122 +   0 & 0 & {\pi _1 }  \\
1123 +   0 & { - \pi _1 } & 0  \\
1124 + \end{array}} \right).
1125 + \]
1126 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 + \[
1128 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 + Q(0)e^{\Delta tR_1 }
1130 + \]
1131 + with
1132 + \[
1133 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1134 +   0 & 0 & 0  \\
1135 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1136 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1137 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 + \]
1139 + To reduce the cost of computing expensive functions in e^{\Delta
1140 + tR_1 }, we can use Cayley transformation,
1141 + \[
1142 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 + )
1144 + \]
1145 +
1146 + The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 + manner.
1148 +
1149 + In order to construct a second-order symplectic method, we split the
1150 + angular kinetic Hamiltonian function can into five terms
1151 + \[
1152 + T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 + ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 + (\pi _1 )
1155 + \].
1156 + Concatenating flows corresponding to these five terms, we can obtain
1157 + an symplectic integrator,
1158 + \[
1159 + \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1160 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1161 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1162 + _1 }.
1163 + \]
1164 +
1165 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 + $F(\pi )$ and $G(\pi )$ is defined by
1167 + \[
1168 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1169 + )
1170 + \]
1171 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 + conserved quantity in Poisson system. We can easily verify that the
1174 + norm of the angular momentum, $\parallel \pi
1175 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 + then by the chain rule
1178 + \[
1179 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 + }}{2})\pi
1181 + \]
1182 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1183 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1184 + Lie-Poisson integrator is found to be extremely efficient and stable
1185 + which can be explained by the fact the small angle approximation is
1186 + used and the norm of the angular momentum is conserved.
1187 +
1188 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 + Splitting for Rigid Body}
1190 +
1191 + The Hamiltonian of rigid body can be separated in terms of kinetic
1192 + energy and potential energy,
1193 + \[
1194 + H = T(p,\pi ) + V(q,Q)
1195 + \]
1196 + The equations of motion corresponding to potential energy and
1197 + kinetic energy are listed in the below table,
1198 + \begin{center}
1199 + \begin{tabular}{|l|l|}
1200 +  \hline
1201 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 +  Potential & Kinetic \\
1203 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1207 +  \hline
1208 + \end{tabular}
1209 + \end{center}
1210 + A second-order symplectic method is now obtained by the composition
1211 + of the flow maps,
1212 + \[
1213 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1214 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1215 + \]
1216 + Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 + which corresponding to force and torque respectively,
1218 + \[
1219 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1220 + _{\Delta t/2,\tau }.
1221 + \]
1222 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 + order inside \varphi _{\Delta t/2,V} does not matter.
1225 +
1226 + Furthermore, kinetic potential can be separated to translational
1227 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 + \begin{equation}
1229 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 + \end{equation}
1231 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 + corresponding flow maps are given by
1234 + \[
1235 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1236 + _{\Delta t,T^r }.
1237 + \]
1238 + Finally, we obtain the overall symplectic flow maps for free moving
1239 + rigid body
1240 + \begin{equation}
1241 + \begin{array}{c}
1242 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1243 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1244 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1245 + \end{array}
1246 + \label{introEquation:overallRBFlowMaps}
1247 + \end{equation}
1248 +
1249   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250  
1251   \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
# Line 1168 | Line 1453 | Body}
1453  
1454   \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1455   Body}
1456 +
1457 + \section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines