ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2698 by tim, Fri Apr 7 22:05:48 2006 UTC vs.
Revision 2718 by tim, Tue Apr 18 04:11:56 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 117 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 221 | Line 221 | Statistical Mechanics concepts presented in this disse
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307  
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 + \end{equation}
320 + A canonical ensemble(NVT)is an ensemble of systems, each of which
321 + can share its energy with a large heat reservoir. The distribution
322 + of the total energy amongst the possible dynamical states is given
323 + by the partition function,
324 + \begin{equation}
325 + \Omega (N,V,T) = e^{ - \beta A}
326 + \label{introEquation:NVTPartition}
327 + \end{equation}
328 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 + TS$. Since most experiment are carried out under constant pressure
330 + condition, isothermal-isobaric ensemble(NPT) play a very important
331 + role in molecular simulation. The isothermal-isobaric ensemble allow
332 + the system to exchange energy with a heat bath of temperature $T$
333 + and to change the volume as well. Its partition function is given as
334 + \begin{equation}
335 + \Delta (N,P,T) =  - e^{\beta G}.
336 + \label{introEquation:NPTPartition}
337 + \end{equation}
338 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 +
340 + \subsection{\label{introSection:liouville}Liouville's theorem}
341 +
342 + The Liouville's theorem is the foundation on which statistical
343 + mechanics rests. It describes the time evolution of phase space
344 + distribution function. In order to calculate the rate of change of
345 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 + consider the two faces perpendicular to the $q_1$ axis, which are
347 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 + leaving the opposite face is given by the expression,
349 + \begin{equation}
350 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 + \ldots \delta p_f .
354 + \end{equation}
355 + Summing all over the phase space, we obtain
356 + \begin{equation}
357 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 + \end{equation}
364 + Differentiating the equations of motion in Hamiltonian formalism
365 + (\ref{introEquation:motionHamiltonianCoordinate},
366 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 + \begin{equation}
368 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 + \end{equation}
371 + which cancels the first terms of the right hand side. Furthermore,
372 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 + p_f $ in both sides, we can write out Liouville's theorem in a
374 + simple form,
375 + \begin{equation}
376 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 + \label{introEquation:liouvilleTheorem}
380 + \end{equation}
381 +
382 + Liouville's theorem states that the distribution function is
383 + constant along any trajectory in phase space. In classical
384 + statistical mechanics, since the number of particles in the system
385 + is huge, we may be able to believe the system is stationary,
386 + \begin{equation}
387 + \frac{{\partial \rho }}{{\partial t}} = 0.
388 + \label{introEquation:stationary}
389 + \end{equation}
390 + In such stationary system, the density of distribution $\rho$ can be
391 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 + distribution,
393 + \begin{equation}
394 + \rho  \propto e^{ - \beta H}
395 + \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 239 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice\cite{Frenkel1996}.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494   A variety of numerical integrators were proposed to simulate the
# Line 312 | Line 546 | f(r) = J\nabla _x H(r)
546   \end{equation}
547   where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548   \begin{equation}
549 < f(r) = J\nabla _x H(r)
549 > f(r) = J\nabla _x H(r).
550   \end{equation}
551   $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552   matrix
# Line 336 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
339 The free rigid body is an example of Poisson system (actually a
340 Lie-Poisson system) with Hamiltonian function of angular kinetic
341 energy.
342 \begin{equation}
343 J(\pi ) = \left( {\begin{array}{*{20}c}
344   0 & {\pi _3 } & { - \pi _2 }  \\
345   { - \pi _3 } & 0 & {\pi _1 }  \\
346   {\pi _2 } & { - \pi _1 } & 0  \\
347 \end{array}} \right)
348 \end{equation}
573  
574 < \begin{equation}
351 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 < \end{equation}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
355 \subsection{\label{introSection:geometricProperties}Geometric Properties}
576   Let $x(t)$ be the exact solution of the ODE system,
577   \begin{equation}
578   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 362 | Line 582 | space to itself. In most cases, it is not easy to find
582   x(t+\tau) =\varphi_\tau(x(t))
583   \]
584   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
585 > space to itself. The flow has the continuous group property,
586   \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611   \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615   The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. The flow of a Hamiltonian vector field
617 < on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
618 < the flow of Hamiltonian vector field, $\varphi$ is a
619 < \emph{symplectic} flow if it satisfies,
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < d \varphi^T J d \varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
626 < statistical mechanics. As to the Poisson system,
626 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 > field on a symplectic manifold can be shown to be a
628 > symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < d\varphi ^T Jd\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632 < is the property must be preserved by the integrator. It is possible
633 < to construct a \emph{volume-preserving} flow for a source free($
634 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
635 < 1$. Changing the variables $y = h(x)$ in a
636 < ODE\ref{introEquation:ODE} will result in a new system,
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641   \[
642   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643   \]
644   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645   In other words, the flow of this vector field is reversible if and
646 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 < designing any numerical methods, one should always try to preserve
400 < the structural properties of the original ODE and its flow.
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 < \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 > \[
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653 > \]
654 > Using chain rule, one may obtain,
655 > \[
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 > \]
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670 > \[
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 > \]
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675 > \[
676 > \left\{ {G,H} \right\} = 0.
677 > \]
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681  
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 + A lot of well established and very effective numerical methods have
688 + been successful precisely because of their symplecticities even
689 + though this fact was not recognized when they were first
690 + constructed. The most famous example is leapfrog methods in
691 + molecular dynamics. In general, symplectic integrators can be
692 + constructed using one of four different methods.
693 + \begin{enumerate}
694 + \item Generating functions
695 + \item Variational methods
696 + \item Runge-Kutta methods
697 + \item Splitting methods
698 + \end{enumerate}
699 +
700 + Generating function tends to lead to methods which are cumbersome
701 + and difficult to use. In dissipative systems, variational methods
702 + can capture the decay of energy accurately. Since their
703 + geometrically unstable nature against non-Hamiltonian perturbations,
704 + ordinary implicit Runge-Kutta methods are not suitable for
705 + Hamiltonian system. Recently, various high-order explicit
706 + Runge--Kutta methods have been developed to overcome this
707 + instability. However, due to computational penalty involved in
708 + implementing the Runge-Kutta methods, they do not attract too much
709 + attention from Molecular Dynamics community. Instead, splitting have
710 + been widely accepted since they exploit natural decompositions of
711 + the system\cite{Tuckerman92}.
712 +
713 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 +
715 + The main idea behind splitting methods is to decompose the discrete
716 + $\varphi_h$ as a composition of simpler flows,
717 + \begin{equation}
718 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 + \varphi _{h_n }
720 + \label{introEquation:FlowDecomposition}
721 + \end{equation}
722 + where each of the sub-flow is chosen such that each represent a
723 + simpler integration of the system.
724 +
725 + Suppose that a Hamiltonian system takes the form,
726 + \[
727 + H = H_1 + H_2.
728 + \]
729 + Here, $H_1$ and $H_2$ may represent different physical processes of
730 + the system. For instance, they may relate to kinetic and potential
731 + energy respectively, which is a natural decomposition of the
732 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 + order is then given by the Lie-Trotter formula
735 + \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 + '\phi ' = \phi '^T J\phi ' = J,
748 + \label{introEquation:SymplecticFlowComposition}
749 + \end{equation}
750 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 + splitting in this context automatically generates a symplectic map.
752 +
753 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 + introduces local errors proportional to $h^2$, while Strang
755 + splitting gives a second-order decomposition,
756 + \begin{equation}
757 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 + \end{equation}
760 + which has a local error proportional to $h^3$. Sprang splitting's
761 + popularity in molecular simulation community attribute to its
762 + symmetric property,
763 + \begin{equation}
764 + \varphi _h^{ - 1} = \varphi _{ - h}.
765 + \label{introEquation:timeReversible}
766 + \end{equation}
767 +
768 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 + The classical equation for a system consisting of interacting
770 + particles can be written in Hamiltonian form,
771 + \[
772 + H = T + V
773 + \]
774 + where $T$ is the kinetic energy and $V$ is the potential energy.
775 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 + obtains the following:
777 + \begin{align}
778 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 + \label{introEquation:Lp10a} \\%
781 + %
782 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 + \label{introEquation:Lp10b}
785 + \end{align}
786 + where $F(t)$ is the force at time $t$. This integration scheme is
787 + known as \emph{velocity verlet} which is
788 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 + time-reversible(\ref{introEquation:timeReversible}) and
790 + volume-preserving (\ref{introEquation:volumePreserving}). These
791 + geometric properties attribute to its long-time stability and its
792 + popularity in the community. However, the most commonly used
793 + velocity verlet integration scheme is written as below,
794 + \begin{align}
795 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 + %
798 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 +    \label{introEquation:Lp9b}\\%
800 + %
801 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 + \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808 +
809 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 +
811 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 +
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet1}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 + \[
845 + [X,Y] = XY - YX .
846 + \]
847 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 + can obtain
849 + \begin{eqnarray*}
850 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 + \ldots )
854 + \end{eqnarray*}
855 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 + error of Spring splitting is proportional to $h^3$. The same
857 + procedure can be applied to general splitting,  of the form
858 + \begin{equation}
859 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 + \end{equation}
862 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 + order method. Yoshida proposed an elegant way to compose higher
864 + order methods based on symmetric splitting. Given a symmetric second
865 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 + method can be constructed by composing,
867 + \[
868 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 + \]
871 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 + \begin{equation}
875 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 + \end{equation}
878 + , if the weights are chosen as
879 + \[
880 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 + \]
883 +
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886   As a special discipline of molecular modeling, Molecular dynamics
# Line 410 | Line 890 | dynamical information.
890  
891   \subsection{\label{introSec:mdInit}Initialization}
892  
893 + \subsection{\label{introSec:forceEvaluation}Force Evaluation}
894 +
895   \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
896  
897   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
898  
899 < A rigid body is a body in which the distance between any two given
900 < points of a rigid body remains constant regardless of external
901 < forces exerted on it. A rigid body therefore conserves its shape
902 < during its motion.
899 > Rigid bodies are frequently involved in the modeling of different
900 > areas, from engineering, physics, to chemistry. For example,
901 > missiles and vehicle are usually modeled by rigid bodies.  The
902 > movement of the objects in 3D gaming engine or other physics
903 > simulator is governed by the rigid body dynamics. In molecular
904 > simulation, rigid body is used to simplify the model in
905 > protein-protein docking study{\cite{Gray03}}.
906  
907 < Applications of dynamics of rigid bodies.
908 <
909 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
910 <
911 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
912 <
913 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
914 <
915 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
907 > It is very important to develop stable and efficient methods to
908 > integrate the equations of motion of orientational degrees of
909 > freedom. Euler angles are the nature choice to describe the
910 > rotational degrees of freedom. However, due to its singularity, the
911 > numerical integration of corresponding equations of motion is very
912 > inefficient and inaccurate. Although an alternative integrator using
913 > different sets of Euler angles can overcome this difficulty\cite{},
914 > the computational penalty and the lost of angular momentum
915 > conservation still remain. A singularity free representation
916 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
917 > this approach suffer from the nonseparable Hamiltonian resulted from
918 > quaternion representation, which prevents the symplectic algorithm
919 > to be utilized. Another different approach is to apply holonomic
920 > constraints to the atoms belonging to the rigid body. Each atom
921 > moves independently under the normal forces deriving from potential
922 > energy and constraint forces which are used to guarantee the
923 > rigidness. However, due to their iterative nature, SHAKE and Rattle
924 > algorithm converge very slowly when the number of constraint
925 > increases.
926  
927 < \section{\label{introSection:correlationFunctions}Correlation Functions}
927 > The break through in geometric literature suggests that, in order to
928 > develop a long-term integration scheme, one should preserve the
929 > symplectic structure of the flow. Introducing conjugate momentum to
930 > rotation matrix $A$ and re-formulating Hamiltonian's equation, a
931 > symplectic integrator, RSHAKE, was proposed to evolve the
932 > Hamiltonian system in a constraint manifold by iteratively
933 > satisfying the orthogonality constraint $A_t A = 1$. An alternative
934 > method using quaternion representation was developed by Omelyan.
935 > However, both of these methods are iterative and inefficient. In
936 > this section, we will present a symplectic Lie-Poisson integrator
937 > for rigid body developed by Dullweber and his
938 > coworkers\cite{Dullweber1997} in depth.
939  
940 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
940 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 > The motion of the rigid body is Hamiltonian with the Hamiltonian
942 > function
943 > \begin{equation}
944 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
946 > \label{introEquation:RBHamiltonian}
947 > \end{equation}
948 > Here, $q$ and $Q$  are the position and rotation matrix for the
949 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
950 > $J$, a diagonal matrix, is defined by
951 > \[
952 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
953 > \]
954 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
955 > constrained Hamiltonian equation subjects to a holonomic constraint,
956 > \begin{equation}
957 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
958 > \end{equation}
959 > which is used to ensure rotation matrix's orthogonality.
960 > Differentiating \ref{introEquation:orthogonalConstraint} and using
961 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962 > \begin{equation}
963 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
964 > \label{introEquation:RBFirstOrderConstraint}
965 > \end{equation}
966  
967 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
967 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
968 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
969 > the equations of motion,
970 > \[
971 > \begin{array}{c}
972 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
975 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976 > \end{array}
977 > \]
978 >
979 > In general, there are two ways to satisfy the holonomic constraints.
980 > We can use constraint force provided by lagrange multiplier on the
981 > normal manifold to keep the motion on constraint space. Or we can
982 > simply evolve the system in constraint manifold. The two method are
983 > proved to be equivalent. The holonomic constraint and equations of
984 > motions define a constraint manifold for rigid body
985 > \[
986 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
987 > \right\}.
988 > \]
989 >
990 > Unfortunately, this constraint manifold is not the cotangent bundle
991 > $T_{\star}SO(3)$. However, it turns out that under symplectic
992 > transformation, the cotangent space and the phase space are
993 > diffeomorphic. Introducing
994 > \[
995 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996 > \]
997 > the mechanical system subject to a holonomic constraint manifold $M$
998 > can be re-formulated as a Hamiltonian system on the cotangent space
999 > \[
1000 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1002 > \]
1003 >
1004 > For a body fixed vector $X_i$ with respect to the center of mass of
1005 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1006 > given as
1007 > \begin{equation}
1008 > X_i^{lab} = Q X_i + q.
1009 > \end{equation}
1010 > Therefore, potential energy $V(q,Q)$ is defined by
1011 > \[
1012 > V(q,Q) = V(Q X_0 + q).
1013 > \]
1014 > Hence, the force and torque are given by
1015 > \[
1016 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 > \]
1018 > and
1019 > \[
1020 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021 > \]
1022 > respectively.
1023 >
1024 > As a common choice to describe the rotation dynamics of the rigid
1025 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1026 > rewrite the equations of motion,
1027 > \begin{equation}
1028 > \begin{array}{l}
1029 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1030 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1031 > \end{array}
1032 > \label{introEqaution:RBMotionPI}
1033 > \end{equation}
1034 > , as well as holonomic constraints,
1035 > \[
1036 > \begin{array}{l}
1037 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1038 > Q^T Q = 1 \\
1039 > \end{array}
1040 > \]
1041 >
1042 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043 > so(3)^ \star$, the hat-map isomorphism,
1044 > \begin{equation}
1045 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046 > {\begin{array}{*{20}c}
1047 >   0 & { - v_3 } & {v_2 }  \\
1048 >   {v_3 } & 0 & { - v_1 }  \\
1049 >   { - v_2 } & {v_1 } & 0  \\
1050 > \end{array}} \right),
1051 > \label{introEquation:hatmapIsomorphism}
1052 > \end{equation}
1053 > will let us associate the matrix products with traditional vector
1054 > operations
1055 > \[
1056 > \hat vu = v \times u
1057 > \]
1058 >
1059 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060 > matrix,
1061 > \begin{equation}
1062 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1063 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1064 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1065 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066 > \end{equation}
1067 > Since $\Lambda$ is symmetric, the last term of Equation
1068 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 > multiplier $\Lambda$ is absent from the equations of motion. This
1070 > unique property eliminate the requirement of iterations which can
1071 > not be avoided in other methods\cite{}.
1072 >
1073 > Applying hat-map isomorphism, we obtain the equation of motion for
1074 > angular momentum on body frame
1075 > \begin{equation}
1076 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1077 > F_i (r,Q)} \right) \times X_i }.
1078 > \label{introEquation:bodyAngularMotion}
1079 > \end{equation}
1080 > In the same manner, the equation of motion for rotation matrix is
1081 > given by
1082 > \[
1083 > \dot Q = Qskew(I^{ - 1} \pi )
1084 > \]
1085 >
1086 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 > Lie-Poisson Integrator for Free Rigid Body}
1088 >
1089 > If there is not external forces exerted on the rigid body, the only
1090 > contribution to the rotational is from the kinetic potential (the
1091 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 > rigid body is an example of Lie-Poisson system with Hamiltonian
1093 > function
1094 > \begin{equation}
1095 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 > \label{introEquation:rotationalKineticRB}
1097 > \end{equation}
1098 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 > Lie-Poisson structure matrix,
1100 > \begin{equation}
1101 > J(\pi ) = \left( {\begin{array}{*{20}c}
1102 >   0 & {\pi _3 } & { - \pi _2 }  \\
1103 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1104 >   {\pi _2 } & { - \pi _1 } & 0  \\
1105 > \end{array}} \right)
1106 > \end{equation}
1107 > Thus, the dynamics of free rigid body is governed by
1108 > \begin{equation}
1109 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1110 > \end{equation}
1111 >
1112 > One may notice that each $T_i^r$ in Equation
1113 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 > instance, the equations of motion due to $T_1^r$ are given by
1115 > \begin{equation}
1116 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 > \label{introEqaution:RBMotionSingleTerm}
1118 > \end{equation}
1119 > where
1120 > \[ R_1  = \left( {\begin{array}{*{20}c}
1121 >   0 & 0 & 0  \\
1122 >   0 & 0 & {\pi _1 }  \\
1123 >   0 & { - \pi _1 } & 0  \\
1124 > \end{array}} \right).
1125 > \]
1126 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 > \[
1128 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 > Q(0)e^{\Delta tR_1 }
1130 > \]
1131 > with
1132 > \[
1133 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1134 >   0 & 0 & 0  \\
1135 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1136 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1137 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 > \]
1139 > To reduce the cost of computing expensive functions in e^{\Delta
1140 > tR_1 }, we can use Cayley transformation,
1141 > \[
1142 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 > )
1144 > \]
1145 >
1146 > The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 > manner.
1148 >
1149 > In order to construct a second-order symplectic method, we split the
1150 > angular kinetic Hamiltonian function can into five terms
1151 > \[
1152 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 > (\pi _1 )
1155 > \].
1156 > Concatenating flows corresponding to these five terms, we can obtain
1157 > an symplectic integrator,
1158 > \[
1159 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1160 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1161 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1162 > _1 }.
1163 > \]
1164 >
1165 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 > $F(\pi )$ and $G(\pi )$ is defined by
1167 > \[
1168 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1169 > )
1170 > \]
1171 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 > conserved quantity in Poisson system. We can easily verify that the
1174 > norm of the angular momentum, $\parallel \pi
1175 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 > then by the chain rule
1178 > \[
1179 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 > }}{2})\pi
1181 > \]
1182 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1183 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1184 > Lie-Poisson integrator is found to be extremely efficient and stable
1185 > which can be explained by the fact the small angle approximation is
1186 > used and the norm of the angular momentum is conserved.
1187 >
1188 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 > Splitting for Rigid Body}
1190 >
1191 > The Hamiltonian of rigid body can be separated in terms of kinetic
1192 > energy and potential energy,
1193 > \[
1194 > H = T(p,\pi ) + V(q,Q)
1195 > \]
1196 > The equations of motion corresponding to potential energy and
1197 > kinetic energy are listed in the below table,
1198 > \begin{center}
1199 > \begin{tabular}{|l|l|}
1200 >  \hline
1201 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 >  Potential & Kinetic \\
1203 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1207 >  \hline
1208 > \end{tabular}
1209 > \end{center}
1210 > A second-order symplectic method is now obtained by the composition
1211 > of the flow maps,
1212 > \[
1213 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1214 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1215 > \]
1216 > Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 > which corresponding to force and torque respectively,
1218 > \[
1219 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1220 > _{\Delta t/2,\tau }.
1221 > \]
1222 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 > order inside \varphi _{\Delta t/2,V} does not matter.
1225  
1226 + Furthermore, kinetic potential can be separated to translational
1227 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 + \begin{equation}
1229 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 + \end{equation}
1231 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 + corresponding flow maps are given by
1234 + \[
1235 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1236 + _{\Delta t,T^r }.
1237 + \]
1238 + Finally, we obtain the overall symplectic flow maps for free moving
1239 + rigid body
1240 + \begin{equation}
1241 + \begin{array}{c}
1242 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1243 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1244 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1245 + \end{array}
1246 + \label{introEquation:overallRBFlowMaps}
1247 + \end{equation}
1248 +
1249 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 + As an alternative to newtonian dynamics, Langevin dynamics, which
1251 + mimics a simple heat bath with stochastic and dissipative forces,
1252 + has been applied in a variety of studies. This section will review
1253 + the theory of Langevin dynamics simulation. A brief derivation of
1254 + generalized Langevin Dynamics will be given first. Follow that, we
1255 + will discuss the physical meaning of the terms appearing in the
1256 + equation as well as the calculation of friction tensor from
1257 + hydrodynamics theory.
1258 +
1259   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260  
1261   \begin{equation}
# Line 479 | Line 1300 | introEquation:motionHamiltonianMomentum},
1300   \dot p &=  - \frac{{\partial H}}{{\partial x}}
1301         &= m\ddot x
1302         &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1303 < \label{introEq:Lp5}
1303 > \label{introEquation:Lp5}
1304   \end{align}
1305   , and
1306   \begin{align}
# Line 627 | Line 1448 | And since the $q$ coordinates are harmonic oscillators
1448   \label{introEquation:secondFluctuationDissipation}
1449   \end{equation}
1450  
630 \section{\label{introSection:hydroynamics}Hydrodynamics}
631
1451   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 < \subsection{\label{introSection:analyticalApproach}Analytical
1453 < Approach}
1454 <
1455 < \subsection{\label{introSection:approximationApproach}Approximation
1456 < Approach}
1452 > Theoretically, the friction kernel can be determined using velocity
1453 > autocorrelation function. However, this approach become impractical
1454 > when the system become more and more complicate. Instead, various
1455 > approaches based on hydrodynamics have been developed to calculate
1456 > the friction coefficients. The friction effect is isotropic in
1457 > Equation, \zeta can be taken as a scalar. In general, friction
1458 > tensor \Xi is a $6\times 6$ matrix given by
1459 > \[
1460 > \Xi  = \left( {\begin{array}{*{20}c}
1461 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1462 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1463 > \end{array}} \right).
1464 > \]
1465 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 > tensor and rotational resistance (friction) tensor respectively,
1467 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1468 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1469 > particle moves in a fluid, it may experience friction force or
1470 > torque along the opposite direction of the velocity or angular
1471 > velocity,
1472 > \[
1473 > \left( \begin{array}{l}
1474 > F_R  \\
1475 > \tau _R  \\
1476 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1477 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1478 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1479 > \end{array}} \right)\left( \begin{array}{l}
1480 > v \\
1481 > w \\
1482 > \end{array} \right)
1483 > \]
1484 > where $F_r$ is the friction force and $\tau _R$ is the friction
1485 > toque.
1486  
1487 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1488 < Body}
1487 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1488 >
1489 > For a spherical particle, the translational and rotational friction
1490 > constant can be calculated from Stoke's law,
1491 > \[
1492 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1493 >   {6\pi \eta R} & 0 & 0  \\
1494 >   0 & {6\pi \eta R} & 0  \\
1495 >   0 & 0 & {6\pi \eta R}  \\
1496 > \end{array}} \right)
1497 > \]
1498 > and
1499 > \[
1500 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1501 >   {8\pi \eta R^3 } & 0 & 0  \\
1502 >   0 & {8\pi \eta R^3 } & 0  \\
1503 >   0 & 0 & {8\pi \eta R^3 }  \\
1504 > \end{array}} \right)
1505 > \]
1506 > where $\eta$ is the viscosity of the solvent and $R$ is the
1507 > hydrodynamics radius.
1508 >
1509 > Other non-spherical shape, such as cylinder and ellipsoid
1510 > \textit{etc}, are widely used as reference for developing new
1511 > hydrodynamics theory, because their properties can be calculated
1512 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1513 > also called a triaxial ellipsoid, which is given in Cartesian
1514 > coordinates by
1515 > \[
1516 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1517 > }} = 1
1518 > \]
1519 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1520 > due to the complexity of the elliptic integral, only the ellipsoid
1521 > with the restriction of two axes having to be equal, \textit{i.e.}
1522 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1523 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1524 > \[
1525 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1526 > } }}{b},
1527 > \]
1528 > and oblate,
1529 > \[
1530 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1531 > }}{a}
1532 > \],
1533 > one can write down the translational and rotational resistance
1534 > tensors
1535 > \[
1536 > \begin{array}{l}
1537 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1538 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1539 > \end{array},
1540 > \]
1541 > and
1542 > \[
1543 > \begin{array}{l}
1544 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1545 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1546 > \end{array}.
1547 > \]
1548 >
1549 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1550 >
1551 > Unlike spherical and other regular shaped molecules, there is not
1552 > analytical solution for friction tensor of any arbitrary shaped
1553 > rigid molecules. The ellipsoid of revolution model and general
1554 > triaxial ellipsoid model have been used to approximate the
1555 > hydrodynamic properties of rigid bodies. However, since the mapping
1556 > from all possible ellipsoidal space, $r$-space, to all possible
1557 > combination of rotational diffusion coefficients, $D$-space is not
1558 > unique\cite{Wegener79} as well as the intrinsic coupling between
1559 > translational and rotational motion of rigid body\cite{}, general
1560 > ellipsoid is not always suitable for modeling arbitrarily shaped
1561 > rigid molecule. A number of studies have been devoted to determine
1562 > the friction tensor for irregularly shaped rigid bodies using more
1563 > advanced method\cite{} where the molecule of interest was modeled by
1564 > combinations of spheres(beads)\cite{} and the hydrodynamics
1565 > properties of the molecule can be calculated using the hydrodynamic
1566 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1567 > immersed in a continuous medium. Due to hydrodynamics interaction,
1568 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1569 > unperturbed velocity $v_i$,
1570 > \[
1571 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1572 > \]
1573 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1574 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1575 > proportional to its ``net'' velocity
1576 > \begin{equation}
1577 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1578 > \label{introEquation:tensorExpression}
1579 > \end{equation}
1580 > This equation is the basis for deriving the hydrodynamic tensor. In
1581 > 1930, Oseen and Burgers gave a simple solution to Equation
1582 > \ref{introEquation:tensorExpression}
1583 > \begin{equation}
1584 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1585 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1586 > \label{introEquation:oseenTensor}
1587 > \end{equation}
1588 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1589 > A second order expression for element of different size was
1590 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1591 > la Torre and Bloomfield,
1592 > \begin{equation}
1593 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1594 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1595 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1596 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1597 > \label{introEquation:RPTensorNonOverlapped}
1598 > \end{equation}
1599 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1600 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1601 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1602 > overlapping beads with the same radius, $\sigma$, is given by
1603 > \begin{equation}
1604 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1605 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1606 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1607 > \label{introEquation:RPTensorOverlapped}
1608 > \end{equation}
1609 >
1610 > To calculate the resistance tensor at an arbitrary origin $O$, we
1611 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1612 > $B_{ij}$ blocks
1613 > \begin{equation}
1614 > B = \left( {\begin{array}{*{20}c}
1615 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1616 >    \vdots  &  \ddots  &  \vdots   \\
1617 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1618 > \end{array}} \right),
1619 > \end{equation}
1620 > where $B_{ij}$ is given by
1621 > \[
1622 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1623 > )T_{ij}
1624 > \]
1625 > where \delta _{ij} is Kronecker delta function. Inverting matrix
1626 > $B$, we obtain
1627 >
1628 > \[
1629 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1630 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1631 >    \vdots  &  \ddots  &  \vdots   \\
1632 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1633 > \end{array}} \right)
1634 > \]
1635 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1636 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1637 > \[
1638 > U_i  = \left( {\begin{array}{*{20}c}
1639 >   0 & { - z_i } & {y_i }  \\
1640 >   {z_i } & 0 & { - x_i }  \\
1641 >   { - y_i } & {x_i } & 0  \\
1642 > \end{array}} \right)
1643 > \]
1644 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1645 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1646 > arbitrary origin $O$ can be written as
1647 > \begin{equation}
1648 > \begin{array}{l}
1649 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1650 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1651 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1652 > \end{array}
1653 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1654 > \end{equation}
1655 >
1656 > The resistance tensor depends on the origin to which they refer. The
1657 > proper location for applying friction force is the center of
1658 > resistance (reaction), at which the trace of rotational resistance
1659 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1660 > resistance is defined as an unique point of the rigid body at which
1661 > the translation-rotation coupling tensor are symmetric,
1662 > \begin{equation}
1663 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1664 > \label{introEquation:definitionCR}
1665 > \end{equation}
1666 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1667 > we can easily find out that the translational resistance tensor is
1668 > origin independent, while the rotational resistance tensor and
1669 > translation-rotation coupling resistance tensor do depend on the
1670 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1671 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1672 > obtain the resistance tensor at $P$ by
1673 > \begin{equation}
1674 > \begin{array}{l}
1675 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1676 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1677 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1678 > \end{array}
1679 > \label{introEquation:resistanceTensorTransformation}
1680 > \end{equation}
1681 > where
1682 > \[
1683 > U_{OP}  = \left( {\begin{array}{*{20}c}
1684 >   0 & { - z_{OP} } & {y_{OP} }  \\
1685 >   {z_i } & 0 & { - x_{OP} }  \\
1686 >   { - y_{OP} } & {x_{OP} } & 0  \\
1687 > \end{array}} \right)
1688 > \]
1689 > Using Equations \ref{introEquation:definitionCR} and
1690 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1691 > the position of center of resistance,
1692 > \[
1693 > \left( \begin{array}{l}
1694 > x_{OR}  \\
1695 > y_{OR}  \\
1696 > z_{OR}  \\
1697 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1698 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1699 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1700 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1701 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1702 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1703 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1704 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1705 > \end{array} \right).
1706 > \]
1707 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1708 > joining center of resistance $R$ and origin $O$.
1709 >
1710 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines