ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2702 by tim, Wed Apr 12 03:37:46 2006 UTC vs.
Revision 2720 by tim, Wed Apr 19 19:46:53 2006 UTC

# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 571 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
574 The free rigid body is an example of Poisson system (actually a
575 Lie-Poisson system) with Hamiltonian function of angular kinetic
576 energy.
577 \begin{equation}
578 J(\pi ) = \left( {\begin{array}{*{20}c}
579   0 & {\pi _3 } & { - \pi _2 }  \\
580   { - \pi _3 } & 0 & {\pi _1 }  \\
581   {\pi _2 } & { - \pi _1 } & 0  \\
582 \end{array}} \right)
583 \end{equation}
573  
585 \begin{equation}
586 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 \end{equation}
589
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576   Let $x(t)$ be the exact solution of the ODE system,
# Line 635 | Line 619 | a \emph{symplectic} flow if it satisfies,
619   Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620   a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < '\varphi^T J '\varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
# Line 643 | Line 627 | symplectomorphism. As to the Poisson system,
627   field on a symplectic manifold can be shown to be a
628   symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < '\varphi ^T J '\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632   is the property must be preserved by the integrator.
633  
# Line 661 | Line 645 | When designing any numerical methods, one should alway
645   In other words, the flow of this vector field is reversible if and
646   only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 < When designing any numerical methods, one should always try to
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 > \[
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653 > \]
654 > Using chain rule, one may obtain,
655 > \[
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 > \]
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670 > \[
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 > \]
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675 > \[
676 > \left\{ {G,H} \right\} = 0.
677 > \]
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681 >
682 >
683 > When designing any numerical methods, one should always try to
684   preserve the structural properties of the original ODE and its flow.
685  
686   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
# Line 685 | Line 704 | instability \cite{}. However, due to computational pen
704   ordinary implicit Runge-Kutta methods are not suitable for
705   Hamiltonian system. Recently, various high-order explicit
706   Runge--Kutta methods have been developed to overcome this
707 < instability \cite{}. However, due to computational penalty involved
708 < in implementing the Runge-Kutta methods, they do not attract too
709 < much attention from Molecular Dynamics community. Instead, splitting
710 < have been widely accepted since they exploit natural decompositions
711 < of the system\cite{Tuckerman92}.
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712  
713   \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714  
# Line 736 | Line 755 | _{1,h/2} ,
755   splitting gives a second-order decomposition,
756   \begin{equation}
757   \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 < _{1,h/2} ,
740 < \label{introEqaution:secondOrderSplitting}
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759   \end{equation}
760   which has a local error proportional to $h^3$. Sprang splitting's
761   popularity in molecular simulation community attribute to its
762   symmetric property,
763   \begin{equation}
764   \varphi _h^{ - 1} = \varphi _{ - h}.
765 < \lable{introEquation:timeReversible}
765 > \label{introEquation:timeReversible}
766   \end{equation}
767  
768   \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
# Line 802 | Line 820 | q(\Delta t) = q(0) + \frac{{\Delta t}}{2}\left[ {\dot
820   \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821   \label{introEquation:positionVerlet1} \\%
822   %
823 < q(\Delta t) = q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
823 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 828 | Line 846 | can obtain
846   \]
847   Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848   can obtain
849 < \begin{eqnarray}
849 > \begin{eqnarray*}
850   \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 < [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 +
852 < h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 +  \ldots )
853 < \end{eqnarray}
851 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 > & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 > \ldots )
854 > \end{eqnarray*}
855   Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856   error of Spring splitting is proportional to $h^3$. The same
857   procedure can be applied to general splitting,  of the form
# Line 864 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920  
921 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922  
923 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
923 > \subsubsection{Preliminary preparation}
924  
925 < A rigid body is a body in which the distance between any two given
926 < points of a rigid body remains constant regardless of external
927 < forces exerted on it. A rigid body therefore conserves its shape
928 < during its motion.
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940  
941 < Applications of dynamics of rigid bodies.
941 > \subsubsection{Minimization}
942  
943 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
944 <
945 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
946 <
947 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
948 <
949 < \section{\label{introSection:correlationFunctions}Correlation Functions}
950 <
951 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
952 <
953 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
954 <
955 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962  
963 + \subsubsection{Heating}
964 +
965 + Typically, Heating is performed by assigning random velocities
966 + according to a Gaussian distribution for a temperature. Beginning at
967 + a lower temperature and gradually increasing the temperature by
968 + assigning greater random velocities, we end up with setting the
969 + temperature of the system to a final temperature at which the
970 + simulation will be conducted. In heating phase, we should also keep
971 + the system from drifting or rotating as a whole. Equivalently, the
972 + net linear momentum and angular momentum of the system should be
973 + shifted to zero.
974 +
975 + \subsubsection{Equilibration}
976 +
977 + The purpose of equilibration is to allow the system to evolve
978 + spontaneously for a period of time and reach equilibrium. The
979 + procedure is continued until various statistical properties, such as
980 + temperature, pressure, energy, volume and other structural
981 + properties \textit{etc}, become independent of time. Strictly
982 + speaking, minimization and heating are not necessary, provided the
983 + equilibration process is long enough. However, these steps can serve
984 + as a means to arrive at an equilibrated structure in an effective
985 + way.
986 +
987 + \subsection{\label{introSection:production}Production}
988 +
989 + \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 +
991 + \subsubsection{\label{introSection:integrationSchemes} Integration
992 + Schemes}
993 +
994 + \subsection{\label{introSection:Analysis} Analysis}
995 +
996 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
997 +
998 + Rigid bodies are frequently involved in the modeling of different
999 + areas, from engineering, physics, to chemistry. For example,
1000 + missiles and vehicle are usually modeled by rigid bodies.  The
1001 + movement of the objects in 3D gaming engine or other physics
1002 + simulator is governed by the rigid body dynamics. In molecular
1003 + simulation, rigid body is used to simplify the model in
1004 + protein-protein docking study{\cite{Gray03}}.
1005 +
1006 + It is very important to develop stable and efficient methods to
1007 + integrate the equations of motion of orientational degrees of
1008 + freedom. Euler angles are the nature choice to describe the
1009 + rotational degrees of freedom. However, due to its singularity, the
1010 + numerical integration of corresponding equations of motion is very
1011 + inefficient and inaccurate. Although an alternative integrator using
1012 + different sets of Euler angles can overcome this difficulty\cite{},
1013 + the computational penalty and the lost of angular momentum
1014 + conservation still remain. A singularity free representation
1015 + utilizing quaternions was developed by Evans in 1977. Unfortunately,
1016 + this approach suffer from the nonseparable Hamiltonian resulted from
1017 + quaternion representation, which prevents the symplectic algorithm
1018 + to be utilized. Another different approach is to apply holonomic
1019 + constraints to the atoms belonging to the rigid body. Each atom
1020 + moves independently under the normal forces deriving from potential
1021 + energy and constraint forces which are used to guarantee the
1022 + rigidness. However, due to their iterative nature, SHAKE and Rattle
1023 + algorithm converge very slowly when the number of constraint
1024 + increases.
1025 +
1026 + The break through in geometric literature suggests that, in order to
1027 + develop a long-term integration scheme, one should preserve the
1028 + symplectic structure of the flow. Introducing conjugate momentum to
1029 + rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1030 + symplectic integrator, RSHAKE, was proposed to evolve the
1031 + Hamiltonian system in a constraint manifold by iteratively
1032 + satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1033 + method using quaternion representation was developed by Omelyan.
1034 + However, both of these methods are iterative and inefficient. In
1035 + this section, we will present a symplectic Lie-Poisson integrator
1036 + for rigid body developed by Dullweber and his
1037 + coworkers\cite{Dullweber1997} in depth.
1038 +
1039 + \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1040 + The motion of the rigid body is Hamiltonian with the Hamiltonian
1041 + function
1042   \begin{equation}
1043 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1044 < \label{introEquation:bathGLE}
1043 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1044 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1045 > \label{introEquation:RBHamiltonian}
1046   \end{equation}
1047 < where $H_B$ is harmonic bath Hamiltonian,
1047 > Here, $q$ and $Q$  are the position and rotation matrix for the
1048 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1049 > $J$, a diagonal matrix, is defined by
1050   \[
1051 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
906 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1051 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1052   \]
1053 < and $\Delta U$ is bilinear system-bath coupling,
1053 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1054 > constrained Hamiltonian equation subjects to a holonomic constraint,
1055 > \begin{equation}
1056 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1057 > \end{equation}
1058 > which is used to ensure rotation matrix's orthogonality.
1059 > Differentiating \ref{introEquation:orthogonalConstraint} and using
1060 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1061 > \begin{equation}
1062 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1063 > \label{introEquation:RBFirstOrderConstraint}
1064 > \end{equation}
1065 >
1066 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1067 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1068 > the equations of motion,
1069   \[
1070 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1070 > \begin{array}{c}
1071 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1072 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1073 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1074 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1075 > \end{array}
1076   \]
1077 < Completing the square,
1077 >
1078 > In general, there are two ways to satisfy the holonomic constraints.
1079 > We can use constraint force provided by lagrange multiplier on the
1080 > normal manifold to keep the motion on constraint space. Or we can
1081 > simply evolve the system in constraint manifold. The two method are
1082 > proved to be equivalent. The holonomic constraint and equations of
1083 > motions define a constraint manifold for rigid body
1084   \[
1085 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1086 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
916 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
917 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
918 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1085 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1086 > \right\}.
1087   \]
1088 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1089 < \[
1090 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1091 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1092 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1093 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1088 >
1089 > Unfortunately, this constraint manifold is not the cotangent bundle
1090 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1091 > transformation, the cotangent space and the phase space are
1092 > diffeomorphic. Introducing
1093 > \[
1094 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1095   \]
1096 < where
1096 > the mechanical system subject to a holonomic constraint manifold $M$
1097 > can be re-formulated as a Hamiltonian system on the cotangent space
1098   \[
1099 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1100 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1099 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1100 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1101   \]
932 Since the first two terms of the new Hamiltonian depend only on the
933 system coordinates, we can get the equations of motion for
934 Generalized Langevin Dynamics by Hamilton's equations
935 \ref{introEquation:motionHamiltonianCoordinate,
936 introEquation:motionHamiltonianMomentum},
937 \begin{align}
938 \dot p &=  - \frac{{\partial H}}{{\partial x}}
939       &= m\ddot x
940       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
941 \label{introEquation:Lp5}
942 \end{align}
943 , and
944 \begin{align}
945 \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
946                &= m\ddot x_\alpha
947                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
948 \end{align}
1102  
1103 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1104 <
1103 > For a body fixed vector $X_i$ with respect to the center of mass of
1104 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1105 > given as
1106 > \begin{equation}
1107 > X_i^{lab} = Q X_i + q.
1108 > \end{equation}
1109 > Therefore, potential energy $V(q,Q)$ is defined by
1110   \[
1111 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1111 > V(q,Q) = V(Q X_0 + q).
1112   \]
1113 <
1113 > Hence, the force and torque are given by
1114   \[
1115 < L(x + y) = L(x) + L(y)
1115 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1116   \]
1117 <
1117 > and
1118   \[
1119 < L(ax) = aL(x)
1119 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1120   \]
1121 + respectively.
1122  
1123 + As a common choice to describe the rotation dynamics of the rigid
1124 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1125 + rewrite the equations of motion,
1126 + \begin{equation}
1127 + \begin{array}{l}
1128 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1129 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1130 + \end{array}
1131 + \label{introEqaution:RBMotionPI}
1132 + \end{equation}
1133 + , as well as holonomic constraints,
1134   \[
1135 < L(\dot x) = pL(x) - px(0)
1135 > \begin{array}{l}
1136 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1137 > Q^T Q = 1 \\
1138 > \end{array}
1139   \]
1140  
1141 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1142 + so(3)^ \star$, the hat-map isomorphism,
1143 + \begin{equation}
1144 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1145 + {\begin{array}{*{20}c}
1146 +   0 & { - v_3 } & {v_2 }  \\
1147 +   {v_3 } & 0 & { - v_1 }  \\
1148 +   { - v_2 } & {v_1 } & 0  \\
1149 + \end{array}} \right),
1150 + \label{introEquation:hatmapIsomorphism}
1151 + \end{equation}
1152 + will let us associate the matrix products with traditional vector
1153 + operations
1154   \[
1155 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1155 > \hat vu = v \times u
1156   \]
1157  
1158 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1159 + matrix,
1160 + \begin{equation}
1161 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1162 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1163 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1164 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1165 + \end{equation}
1166 + Since $\Lambda$ is symmetric, the last term of Equation
1167 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1168 + multiplier $\Lambda$ is absent from the equations of motion. This
1169 + unique property eliminate the requirement of iterations which can
1170 + not be avoided in other methods\cite{}.
1171 +
1172 + Applying hat-map isomorphism, we obtain the equation of motion for
1173 + angular momentum on body frame
1174 + \begin{equation}
1175 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1176 + F_i (r,Q)} \right) \times X_i }.
1177 + \label{introEquation:bodyAngularMotion}
1178 + \end{equation}
1179 + In the same manner, the equation of motion for rotation matrix is
1180 + given by
1181   \[
1182 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1182 > \dot Q = Qskew(I^{ - 1} \pi )
1183   \]
1184  
1185 < Some relatively important transformation,
1185 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1186 > Lie-Poisson Integrator for Free Rigid Body}
1187 >
1188 > If there is not external forces exerted on the rigid body, the only
1189 > contribution to the rotational is from the kinetic potential (the
1190 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1191 > rigid body is an example of Lie-Poisson system with Hamiltonian
1192 > function
1193 > \begin{equation}
1194 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1195 > \label{introEquation:rotationalKineticRB}
1196 > \end{equation}
1197 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1198 > Lie-Poisson structure matrix,
1199 > \begin{equation}
1200 > J(\pi ) = \left( {\begin{array}{*{20}c}
1201 >   0 & {\pi _3 } & { - \pi _2 }  \\
1202 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1203 >   {\pi _2 } & { - \pi _1 } & 0  \\
1204 > \end{array}} \right)
1205 > \end{equation}
1206 > Thus, the dynamics of free rigid body is governed by
1207 > \begin{equation}
1208 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1209 > \end{equation}
1210 >
1211 > One may notice that each $T_i^r$ in Equation
1212 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1213 > instance, the equations of motion due to $T_1^r$ are given by
1214 > \begin{equation}
1215 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1216 > \label{introEqaution:RBMotionSingleTerm}
1217 > \end{equation}
1218 > where
1219 > \[ R_1  = \left( {\begin{array}{*{20}c}
1220 >   0 & 0 & 0  \\
1221 >   0 & 0 & {\pi _1 }  \\
1222 >   0 & { - \pi _1 } & 0  \\
1223 > \end{array}} \right).
1224 > \]
1225 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1226   \[
1227 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1227 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1228 > Q(0)e^{\Delta tR_1 }
1229   \]
1230 + with
1231 + \[
1232 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1233 +   0 & 0 & 0  \\
1234 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1235 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1236 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1237 + \]
1238 + To reduce the cost of computing expensive functions in $e^{\Delta
1239 + tR_1 }$, we can use Cayley transformation,
1240 + \[
1241 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1242 + )
1243 + \]
1244 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1245 + manner.
1246  
1247 + In order to construct a second-order symplectic method, we split the
1248 + angular kinetic Hamiltonian function can into five terms
1249   \[
1250 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1250 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1251 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1252 > (\pi _1 )
1253 > \].
1254 > Concatenating flows corresponding to these five terms, we can obtain
1255 > an symplectic integrator,
1256 > \[
1257 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1258 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1259 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1260 > _1 }.
1261   \]
1262  
1263 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1264 + $F(\pi )$ and $G(\pi )$ is defined by
1265   \[
1266 < L(1) = \frac{1}{p}
1266 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1267 > )
1268   \]
1269 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1270 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1271 + conserved quantity in Poisson system. We can easily verify that the
1272 + norm of the angular momentum, $\parallel \pi
1273 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1274 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1275 + then by the chain rule
1276 + \[
1277 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1278 + }}{2})\pi
1279 + \]
1280 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1281 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1282 + Lie-Poisson integrator is found to be extremely efficient and stable
1283 + which can be explained by the fact the small angle approximation is
1284 + used and the norm of the angular momentum is conserved.
1285  
1286 < First, the bath coordinates,
1286 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1287 > Splitting for Rigid Body}
1288 >
1289 > The Hamiltonian of rigid body can be separated in terms of kinetic
1290 > energy and potential energy,
1291   \[
1292 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
992 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
993 < }}L(x)
1292 > H = T(p,\pi ) + V(q,Q)
1293   \]
1294 + The equations of motion corresponding to potential energy and
1295 + kinetic energy are listed in the below table,
1296 + \begin{center}
1297 + \begin{tabular}{|l|l|}
1298 +  \hline
1299 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1300 +  Potential & Kinetic \\
1301 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1302 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1303 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1304 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1305 +  \hline
1306 + \end{tabular}
1307 + \end{center}
1308 + A second-order symplectic method is now obtained by the composition
1309 + of the flow maps,
1310   \[
1311 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1312 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1311 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1312 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1313   \]
1314 < Then, the system coordinates,
1315 < \begin{align}
1316 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1317 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1318 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1319 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1320 < }}\omega _\alpha ^2 L(x)} \right\}}
1321 < %
1322 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1008 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1009 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1010 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1011 < \end{align}
1012 < Then, the inverse transform,
1314 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1315 > sub-flows which corresponding to force and torque respectively,
1316 > \[
1317 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1318 > _{\Delta t/2,\tau }.
1319 > \]
1320 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1321 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1322 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1323  
1324 + Furthermore, kinetic potential can be separated to translational
1325 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1326 + \begin{equation}
1327 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1328 + \end{equation}
1329 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1330 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1331 + corresponding flow maps are given by
1332 + \[
1333 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1334 + _{\Delta t,T^r }.
1335 + \]
1336 + Finally, we obtain the overall symplectic flow maps for free moving
1337 + rigid body
1338 + \begin{equation}
1339 + \begin{array}{c}
1340 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1341 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1342 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1343 + \end{array}
1344 + \label{introEquation:overallRBFlowMaps}
1345 + \end{equation}
1346 +
1347 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1348 + As an alternative to newtonian dynamics, Langevin dynamics, which
1349 + mimics a simple heat bath with stochastic and dissipative forces,
1350 + has been applied in a variety of studies. This section will review
1351 + the theory of Langevin dynamics simulation. A brief derivation of
1352 + generalized Langevin equation will be given first. Follow that, we
1353 + will discuss the physical meaning of the terms appearing in the
1354 + equation as well as the calculation of friction tensor from
1355 + hydrodynamics theory.
1356 +
1357 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1358 +
1359 + Harmonic bath model, in which an effective set of harmonic
1360 + oscillators are used to mimic the effect of a linearly responding
1361 + environment, has been widely used in quantum chemistry and
1362 + statistical mechanics. One of the successful applications of
1363 + Harmonic bath model is the derivation of Deriving Generalized
1364 + Langevin Dynamics. Lets consider a system, in which the degree of
1365 + freedom $x$ is assumed to couple to the bath linearly, giving a
1366 + Hamiltonian of the form
1367 + \begin{equation}
1368 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1369 + \label{introEquation:bathGLE}.
1370 + \end{equation}
1371 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1372 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1373 + \[
1374 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1376 + \right\}}
1377 + \]
1378 + where the index $\alpha$ runs over all the bath degrees of freedom,
1379 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1380 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1381 + coupling,
1382 + \[
1383 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1384 + \]
1385 + where $g_\alpha$ are the coupling constants between the bath and the
1386 + coordinate $x$. Introducing
1387 + \[
1388 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1389 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1390 + \] and combining the last two terms in Equation
1391 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1392 + Hamiltonian as
1393 + \[
1394 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1395 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1396 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1397 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1398 + \]
1399 + Since the first two terms of the new Hamiltonian depend only on the
1400 + system coordinates, we can get the equations of motion for
1401 + Generalized Langevin Dynamics by Hamilton's equations
1402 + \ref{introEquation:motionHamiltonianCoordinate,
1403 + introEquation:motionHamiltonianMomentum},
1404 + \begin{equation}
1405 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1406 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1407 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1408 + \label{introEquation:coorMotionGLE}
1409 + \end{equation}
1410 + and
1411 + \begin{equation}
1412 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1413 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1414 + \label{introEquation:bathMotionGLE}
1415 + \end{equation}
1416 +
1417 + In order to derive an equation for $x$, the dynamics of the bath
1418 + variables $x_\alpha$ must be solved exactly first. As an integral
1419 + transform which is particularly useful in solving linear ordinary
1420 + differential equations, Laplace transform is the appropriate tool to
1421 + solve this problem. The basic idea is to transform the difficult
1422 + differential equations into simple algebra problems which can be
1423 + solved easily. Then applying inverse Laplace transform, also known
1424 + as the Bromwich integral, we can retrieve the solutions of the
1425 + original problems.
1426 +
1427 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1428 + transform of f(t) is a new function defined as
1429 + \[
1430 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1431 + \]
1432 + where  $p$ is real and  $L$ is called the Laplace Transform
1433 + Operator. Below are some important properties of Laplace transform
1434 + \begin{equation}
1435 + \begin{array}{c}
1436 + L(x + y) = L(x) + L(y) \\
1437 + L(ax) = aL(x) \\
1438 + L(\dot x) = pL(x) - px(0) \\
1439 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1440 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1441 + \end{array}
1442 + \end{equation}
1443 +
1444 + Applying Laplace transform to the bath coordinates, we obtain
1445 + \[
1446 + \begin{array}{c}
1447 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1448 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1449 + \end{array}
1450 + \]
1451 + By the same way, the system coordinates become
1452 + \[
1453 + \begin{array}{c}
1454 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1455 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1456 + \end{array}
1457 + \]
1458 +
1459 + With the help of some relatively important inverse Laplace
1460 + transformations:
1461 + \[
1462 + \begin{array}{c}
1463 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1464 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1465 + L(1) = \frac{1}{p} \\
1466 + \end{array}
1467 + \]
1468 + , we obtain
1469   \begin{align}
1470   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1471   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 1030 | Line 1485 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1485   (\omega _\alpha  t)} \right\}}
1486   \end{align}
1487  
1488 + Introducing a \emph{dynamic friction kernel}
1489   \begin{equation}
1490 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1491 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1492 + \label{introEquation:dynamicFrictionKernelDefinition}
1493 + \end{equation}
1494 + and \emph{a random force}
1495 + \begin{equation}
1496 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1497 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1498 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1499 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1500 + \label{introEquation:randomForceDefinition}
1501 + \end{equation}
1502 + the equation of motion can be rewritten as
1503 + \begin{equation}
1504   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1505   (t)\dot x(t - \tau )d\tau }  + R(t)
1506   \label{introEuqation:GeneralizedLangevinDynamics}
1507   \end{equation}
1508 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1509 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1508 > which is known as the \emph{generalized Langevin equation}.
1509 >
1510 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1511 >
1512 > One may notice that $R(t)$ depends only on initial conditions, which
1513 > implies it is completely deterministic within the context of a
1514 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1515 > uncorrelated to $x$ and $\dot x$,
1516   \[
1517 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1518 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1517 > \begin{array}{l}
1518 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1519 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1520 > \end{array}
1521   \]
1522 < For an infinite harmonic bath, we can use the spectral density and
1523 < an integral over frequencies.
1522 > This property is what we expect from a truly random process. As long
1523 > as the model, which is gaussian distribution in general, chosen for
1524 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1525 > still remains.
1526  
1527 + %dynamic friction kernel
1528 + The convolution integral
1529   \[
1530 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1049 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1050 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1051 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1530 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1531   \]
1532 < The random forces depend only on initial conditions.
1532 > depends on the entire history of the evolution of $x$, which implies
1533 > that the bath retains memory of previous motions. In other words,
1534 > the bath requires a finite time to respond to change in the motion
1535 > of the system. For a sluggish bath which responds slowly to changes
1536 > in the system coordinate, we may regard $\xi(t)$ as a constant
1537 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1538 > \[
1539 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1540 > \]
1541 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1542 > \[
1543 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1544 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1545 > \]
1546 > which can be used to describe dynamic caging effect. The other
1547 > extreme is the bath that responds infinitely quickly to motions in
1548 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1549 > time:
1550 > \[
1551 > \xi (t) = 2\xi _0 \delta (t)
1552 > \]
1553 > Hence, the convolution integral becomes
1554 > \[
1555 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1556 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1557 > \]
1558 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1559 > \begin{equation}
1560 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1561 > x(t) + R(t) \label{introEquation:LangevinEquation}
1562 > \end{equation}
1563 > which is known as the Langevin equation. The static friction
1564 > coefficient $\xi _0$ can either be calculated from spectral density
1565 > or be determined by Stokes' law for regular shaped particles.A
1566 > briefly review on calculating friction tensor for arbitrary shaped
1567 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1568  
1569   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1570 < So we can define a new set of coordinates,
1570 >
1571 > Defining a new set of coordinates,
1572   \[
1573   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1574   ^2 }}x(0)
1575 < \]
1576 < This makes
1575 > \],
1576 > we can rewrite $R(T)$ as
1577   \[
1578 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1578 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1579   \]
1580   And since the $q$ coordinates are harmonic oscillators,
1581   \[
1582 < \begin{array}{l}
1582 > \begin{array}{c}
1583 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1584   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1585   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1586 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1587 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1588 +  = kT\xi (t) \\
1589   \end{array}
1590   \]
1591 <
1073 < \begin{align}
1074 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1075 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1076 < (t)q_\beta  (0)} \right\rangle } }
1077 < %
1078 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1079 < \right\rangle \cos (\omega _\alpha  t)}
1080 < %
1081 < &= kT\xi (t)
1082 < \end{align}
1083 <
1591 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1592   \begin{equation}
1593   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1594 < \label{introEquation:secondFluctuationDissipation}
1594 > \label{introEquation:secondFluctuationDissipation}.
1595   \end{equation}
1596 + In effect, it acts as a constraint on the possible ways in which one
1597 + can model the random force and friction kernel.
1598  
1089 \section{\label{introSection:hydroynamics}Hydrodynamics}
1090
1599   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1600 < \subsection{\label{introSection:analyticalApproach}Analytical
1601 < Approach}
1600 > Theoretically, the friction kernel can be determined using velocity
1601 > autocorrelation function. However, this approach become impractical
1602 > when the system become more and more complicate. Instead, various
1603 > approaches based on hydrodynamics have been developed to calculate
1604 > the friction coefficients. The friction effect is isotropic in
1605 > Equation, \zeta can be taken as a scalar. In general, friction
1606 > tensor \Xi is a $6\times 6$ matrix given by
1607 > \[
1608 > \Xi  = \left( {\begin{array}{*{20}c}
1609 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1610 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1611 > \end{array}} \right).
1612 > \]
1613 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1614 > tensor and rotational resistance (friction) tensor respectively,
1615 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1616 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1617 > particle moves in a fluid, it may experience friction force or
1618 > torque along the opposite direction of the velocity or angular
1619 > velocity,
1620 > \[
1621 > \left( \begin{array}{l}
1622 > F_R  \\
1623 > \tau _R  \\
1624 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1625 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1626 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1627 > \end{array}} \right)\left( \begin{array}{l}
1628 > v \\
1629 > w \\
1630 > \end{array} \right)
1631 > \]
1632 > where $F_r$ is the friction force and $\tau _R$ is the friction
1633 > toque.
1634  
1635 < \subsection{\label{introSection:approximationApproach}Approximation
1096 < Approach}
1635 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1636  
1637 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1638 < Body}
1637 > For a spherical particle, the translational and rotational friction
1638 > constant can be calculated from Stoke's law,
1639 > \[
1640 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1641 >   {6\pi \eta R} & 0 & 0  \\
1642 >   0 & {6\pi \eta R} & 0  \\
1643 >   0 & 0 & {6\pi \eta R}  \\
1644 > \end{array}} \right)
1645 > \]
1646 > and
1647 > \[
1648 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1649 >   {8\pi \eta R^3 } & 0 & 0  \\
1650 >   0 & {8\pi \eta R^3 } & 0  \\
1651 >   0 & 0 & {8\pi \eta R^3 }  \\
1652 > \end{array}} \right)
1653 > \]
1654 > where $\eta$ is the viscosity of the solvent and $R$ is the
1655 > hydrodynamics radius.
1656 >
1657 > Other non-spherical shape, such as cylinder and ellipsoid
1658 > \textit{etc}, are widely used as reference for developing new
1659 > hydrodynamics theory, because their properties can be calculated
1660 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1661 > also called a triaxial ellipsoid, which is given in Cartesian
1662 > coordinates by
1663 > \[
1664 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1665 > }} = 1
1666 > \]
1667 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1668 > due to the complexity of the elliptic integral, only the ellipsoid
1669 > with the restriction of two axes having to be equal, \textit{i.e.}
1670 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1671 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1672 > \[
1673 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1674 > } }}{b},
1675 > \]
1676 > and oblate,
1677 > \[
1678 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1679 > }}{a}
1680 > \],
1681 > one can write down the translational and rotational resistance
1682 > tensors
1683 > \[
1684 > \begin{array}{l}
1685 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1686 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1687 > \end{array},
1688 > \]
1689 > and
1690 > \[
1691 > \begin{array}{l}
1692 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1693 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1694 > \end{array}.
1695 > \]
1696 >
1697 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1698 >
1699 > Unlike spherical and other regular shaped molecules, there is not
1700 > analytical solution for friction tensor of any arbitrary shaped
1701 > rigid molecules. The ellipsoid of revolution model and general
1702 > triaxial ellipsoid model have been used to approximate the
1703 > hydrodynamic properties of rigid bodies. However, since the mapping
1704 > from all possible ellipsoidal space, $r$-space, to all possible
1705 > combination of rotational diffusion coefficients, $D$-space is not
1706 > unique\cite{Wegener79} as well as the intrinsic coupling between
1707 > translational and rotational motion of rigid body\cite{}, general
1708 > ellipsoid is not always suitable for modeling arbitrarily shaped
1709 > rigid molecule. A number of studies have been devoted to determine
1710 > the friction tensor for irregularly shaped rigid bodies using more
1711 > advanced method\cite{} where the molecule of interest was modeled by
1712 > combinations of spheres(beads)\cite{} and the hydrodynamics
1713 > properties of the molecule can be calculated using the hydrodynamic
1714 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1715 > immersed in a continuous medium. Due to hydrodynamics interaction,
1716 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1717 > unperturbed velocity $v_i$,
1718 > \[
1719 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1720 > \]
1721 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1722 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1723 > proportional to its ``net'' velocity
1724 > \begin{equation}
1725 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1726 > \label{introEquation:tensorExpression}
1727 > \end{equation}
1728 > This equation is the basis for deriving the hydrodynamic tensor. In
1729 > 1930, Oseen and Burgers gave a simple solution to Equation
1730 > \ref{introEquation:tensorExpression}
1731 > \begin{equation}
1732 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1733 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1734 > \label{introEquation:oseenTensor}
1735 > \end{equation}
1736 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1737 > A second order expression for element of different size was
1738 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1739 > la Torre and Bloomfield,
1740 > \begin{equation}
1741 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1742 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1743 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1744 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1745 > \label{introEquation:RPTensorNonOverlapped}
1746 > \end{equation}
1747 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1748 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1749 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1750 > overlapping beads with the same radius, $\sigma$, is given by
1751 > \begin{equation}
1752 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1753 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1754 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1755 > \label{introEquation:RPTensorOverlapped}
1756 > \end{equation}
1757 >
1758 > To calculate the resistance tensor at an arbitrary origin $O$, we
1759 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1760 > $B_{ij}$ blocks
1761 > \begin{equation}
1762 > B = \left( {\begin{array}{*{20}c}
1763 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1764 >    \vdots  &  \ddots  &  \vdots   \\
1765 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1766 > \end{array}} \right),
1767 > \end{equation}
1768 > where $B_{ij}$ is given by
1769 > \[
1770 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1771 > )T_{ij}
1772 > \]
1773 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1774 > $B$, we obtain
1775 >
1776 > \[
1777 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1778 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1779 >    \vdots  &  \ddots  &  \vdots   \\
1780 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1781 > \end{array}} \right)
1782 > \]
1783 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1784 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1785 > \[
1786 > U_i  = \left( {\begin{array}{*{20}c}
1787 >   0 & { - z_i } & {y_i }  \\
1788 >   {z_i } & 0 & { - x_i }  \\
1789 >   { - y_i } & {x_i } & 0  \\
1790 > \end{array}} \right)
1791 > \]
1792 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1793 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1794 > arbitrary origin $O$ can be written as
1795 > \begin{equation}
1796 > \begin{array}{l}
1797 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1798 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1799 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1800 > \end{array}
1801 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1802 > \end{equation}
1803 >
1804 > The resistance tensor depends on the origin to which they refer. The
1805 > proper location for applying friction force is the center of
1806 > resistance (reaction), at which the trace of rotational resistance
1807 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1808 > resistance is defined as an unique point of the rigid body at which
1809 > the translation-rotation coupling tensor are symmetric,
1810 > \begin{equation}
1811 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1812 > \label{introEquation:definitionCR}
1813 > \end{equation}
1814 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1815 > we can easily find out that the translational resistance tensor is
1816 > origin independent, while the rotational resistance tensor and
1817 > translation-rotation coupling resistance tensor depend on the
1818 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1819 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1820 > obtain the resistance tensor at $P$ by
1821 > \begin{equation}
1822 > \begin{array}{l}
1823 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1824 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1825 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1826 > \end{array}
1827 > \label{introEquation:resistanceTensorTransformation}
1828 > \end{equation}
1829 > where
1830 > \[
1831 > U_{OP}  = \left( {\begin{array}{*{20}c}
1832 >   0 & { - z_{OP} } & {y_{OP} }  \\
1833 >   {z_i } & 0 & { - x_{OP} }  \\
1834 >   { - y_{OP} } & {x_{OP} } & 0  \\
1835 > \end{array}} \right)
1836 > \]
1837 > Using Equations \ref{introEquation:definitionCR} and
1838 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1839 > the position of center of resistance,
1840 > \[
1841 > \left( \begin{array}{l}
1842 > x_{OR}  \\
1843 > y_{OR}  \\
1844 > z_{OR}  \\
1845 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1846 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1847 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1848 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1849 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1850 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1851 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1852 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1853 > \end{array} \right).
1854 > \]
1855 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1856 > joining center of resistance $R$ and origin $O$.
1857 >
1858 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines