ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2789 by tim, Mon Jun 5 21:00:46 2006 UTC vs.
Revision 2797 by tim, Tue Jun 6 02:12:34 2006 UTC

# Line 861 | Line 861 | Careful choice of coefficient $a_1 \ldot b_m$ will lea
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866   order methods based on symmetric splitting\cite{Yoshida1990}. Given
867   a symmetric second order base method $ \varphi _h^{(2)} $, a
# Line 1256 | Line 1256 | the equations of motion,
1256   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258   the equations of motion,
1259 \[
1260 \begin{array}{c}
1261 \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 \end{array}
1266 \]
1259  
1260 + \begin{eqnarray}
1261 + \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 + \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 + \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 + \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1265 + \end{eqnarray}
1266 +
1267   In general, there are two ways to satisfy the holonomic constraints.
1268   We can use constraint force provided by lagrange multiplier on the
1269   normal manifold to keep the motion on constraint space. Or we can
# Line 1344 | Line 1343 | operations
1343   \[
1344   \hat vu = v \times u
1345   \]
1347
1346   Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1347   matrix,
1348   \begin{equation}
1349 < (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1349 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ {\bullet  ^T}
1350   ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1351   - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1352   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
# Line 1657 | Line 1655 | m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}}
1655   \]
1656   , we obtain
1657   \begin{eqnarray*}
1658 < m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1658 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1659   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1660   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1661 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1662 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1663 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1664 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1665 < %
1666 < & = & \mbox{} - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1661 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1662 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1663 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1664 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1665 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1666 > \end{eqnarray*}
1667 > \begin{eqnarray*}
1668 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1669   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1670   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1671 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1672 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1673 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1674 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1675 < (\omega _\alpha  t)} \right\}}
1671 > t)\dot x(t - \tau )d} \tau }  \\
1672 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1673 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1674 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1675 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1676   \end{eqnarray*}
1677
1677   Introducing a \emph{dynamic friction kernel}
1678   \begin{equation}
1679   \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
# Line 2012 | Line 2011 | obtain the resistance tensor at $P$ by
2011   \begin{array}{l}
2012   \Xi _P^{tt}  = \Xi _O^{tt}  \\
2013   \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2014 < \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2014 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{{tr} ^{^T }}  \\
2015   \end{array}
2016   \label{introEquation:resistanceTensorTransformation}
2017   \end{equation}
# Line 2027 | Line 2026 | the position of center of resistance,
2026   Using Equations \ref{introEquation:definitionCR} and
2027   \ref{introEquation:resistanceTensorTransformation}, one can locate
2028   the position of center of resistance,
2030 \[
2031 \left( \begin{array}{l}
2032 x_{OR}  \\
2033 y_{OR}  \\
2034 z_{OR}  \\
2035 \end{array} \right) = \left( {\begin{array}{*{20}c}
2036   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2037   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2038   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2039 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2040 (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2041 (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2042 (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2043 \end{array} \right).
2044 \]
2045
2046
2029   \begin{eqnarray*}
2030   \left( \begin{array}{l}
2031   x_{OR}  \\

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines