ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2790 by tim, Mon Jun 5 21:11:51 2006 UTC vs.
Revision 2797 by tim, Tue Jun 6 02:12:34 2006 UTC

# Line 861 | Line 861 | Careful choice of coefficient $a_1 \ldot b_m$ will lea
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866   order methods based on symmetric splitting\cite{Yoshida1990}. Given
867   a symmetric second order base method $ \varphi _h^{(2)} $, a
# Line 1256 | Line 1256 | the equations of motion,
1256   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258   the equations of motion,
1259 < \[
1260 < \begin{array}{c}
1261 < \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 < \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 < \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 < \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 < \end{array}
1266 < \]
1259 >
1260 > \begin{eqnarray}
1261 > \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1265 > \end{eqnarray}
1266  
1267   In general, there are two ways to satisfy the holonomic constraints.
1268   We can use constraint force provided by lagrange multiplier on the
# Line 1344 | Line 1343 | operations
1343   \[
1344   \hat vu = v \times u
1345   \]
1347
1346   Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1347   matrix,
1348   \begin{equation}
1349 < (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1349 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ {\bullet  ^T}
1350   ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1351   - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1352   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
# Line 1657 | Line 1655 | m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}}
1655   \]
1656   , we obtain
1657   \begin{eqnarray*}
1658 < m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} -
1658 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1659   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1660   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1661 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1662 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1663 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1664 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1665 < %
1666 < & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1661 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1662 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1663 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1664 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1665 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1666 > \end{eqnarray*}
1667 > \begin{eqnarray*}
1668 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1669   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1670   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1671 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1672 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1673 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1674 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1675 < (\omega _\alpha  t)} \right\}}
1671 > t)\dot x(t - \tau )d} \tau }  \\
1672 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1673 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1674 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1675 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1676   \end{eqnarray*}
1677   Introducing a \emph{dynamic friction kernel}
1678   \begin{equation}
# Line 2011 | Line 2011 | obtain the resistance tensor at $P$ by
2011   \begin{array}{l}
2012   \Xi _P^{tt}  = \Xi _O^{tt}  \\
2013   \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2014 < \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2014 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{{tr} ^{^T }}  \\
2015   \end{array}
2016   \label{introEquation:resistanceTensorTransformation}
2017   \end{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines