ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2696 by tim, Thu Apr 6 22:06:50 2006 UTC vs.
Revision 2898 by tim, Tue Jun 27 03:22:42 2006 UTC

# Line 6 | Line 6 | behind classical mechanics. Firstly, One can determine
6   Closely related to Classical Mechanics, Molecular Dynamics
7   simulations are carried out by integrating the equations of motion
8   for a given system of particles. There are three fundamental ideas
9 < behind classical mechanics. Firstly, One can determine the state of
9 > behind classical mechanics. Firstly, one can determine the state of
10   a mechanical system at any time of interest; Secondly, all the
11   mechanical properties of the system at that time can be determined
12   by combining the knowledge of the properties of the system with the
# Line 17 | Line 17 | Newton¡¯s first law defines a class of inertial frames
17   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18   The discovery of Newton's three laws of mechanics which govern the
19   motion of particles is the foundation of the classical mechanics.
20 < Newton¡¯s first law defines a class of inertial frames. Inertial
20 > Newton's first law defines a class of inertial frames. Inertial
21   frames are reference frames where a particle not interacting with
22   other bodies will move with constant speed in the same direction.
23 < With respect to inertial frames Newton¡¯s second law has the form
23 > With respect to inertial frames, Newton's second law has the form
24   \begin{equation}
25 < F = \frac {dp}{dt} = \frac {mv}{dt}
25 > F = \frac {dp}{dt} = \frac {mdv}{dt}
26   \label{introEquation:newtonSecondLaw}
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 < Newton¡¯s third law states that
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 > Newton's third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}.
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37
37   Conservation laws of Newtonian Mechanics play very important roles
38   in solving mechanics problems. The linear momentum of a particle is
39   conserved if it is free or it experiences no force. The second
# Line 46 | Line 45 | N \equiv r \times F \label{introEquation:torqueDefinit
45   \end{equation}
46   The torque $\tau$ with respect to the same origin is defined to be
47   \begin{equation}
48 < N \equiv r \times F \label{introEquation:torqueDefinition}
48 > \tau \equiv r \times F \label{introEquation:torqueDefinition}
49   \end{equation}
50   Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
51   \[
# Line 59 | Line 58 | thus,
58   \]
59   thus,
60   \begin{equation}
61 < \dot L = r \times \dot p = N
61 > \dot L = r \times \dot p = \tau
62   \end{equation}
63   If there are no external torques acting on a body, the angular
64   momentum of it is conserved. The last conservation theorem state
# Line 68 | Line 67 | scheme for rigid body \cite{Dullweber1997}.
67   \end{equation}
68   is conserved. All of these conserved quantities are
69   important factors to determine the quality of numerical integration
70 < scheme for rigid body \cite{Dullweber1997}.
70 > schemes for rigid bodies \cite{Dullweber1997}.
71  
72   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
73  
74 < Newtonian Mechanics suffers from two important limitations: it
75 < describes their motion in special cartesian coordinate systems.
76 < Another limitation of Newtonian mechanics becomes obvious when we
77 < try to describe systems with large numbers of particles. It becomes
78 < very difficult to predict the properties of the system by carrying
79 < out calculations involving the each individual interaction between
80 < all the particles, even if we know all of the details of the
82 < interaction. In order to overcome some of the practical difficulties
83 < which arise in attempts to apply Newton's equation to complex
84 < system, alternative procedures may be developed.
74 > Newtonian Mechanics suffers from two important limitations: motions
75 > can only be described in cartesian coordinate systems. Moreover, it
76 > becomes impossible to predict analytically the properties of the
77 > system even if we know all of the details of the interaction. In
78 > order to overcome some of the practical difficulties which arise in
79 > attempts to apply Newton's equation to complex system, approximate
80 > numerical procedures may be developed.
81  
82 < \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
83 < Principle}
82 > \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
83 > Principle}}
84  
85   Hamilton introduced the dynamical principle upon which it is
86 < possible to base all of mechanics and, indeed, most of classical
87 < physics. Hamilton's Principle may be stated as follow,
88 <
89 < The actual trajectory, along which a dynamical system may move from
90 < one point to another within a specified time, is derived by finding
91 < the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
86 > possible to base all of mechanics and most of classical physics.
87 > Hamilton's Principle may be stated as follows: the actual
88 > trajectory, along which a dynamical system may move from one point
89 > to another within a specified time, is derived by finding the path
90 > which minimizes the time integral of the difference between the
91 > kinetic, $K$, and potential energies, $U$.
92   \begin{equation}
93   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
94   \label{introEquation:halmitonianPrinciple1}
95   \end{equation}
101
96   For simple mechanical systems, where the forces acting on the
97 < different part are derivable from a potential and the velocities are
98 < small compared with that of light, the Lagrangian function $L$ can
99 < be define as the difference between the kinetic energy of the system
106 < and its potential energy,
97 > different parts are derivable from a potential, the Lagrangian
98 > function $L$ can be defined as the difference between the kinetic
99 > energy of the system and its potential energy,
100   \begin{equation}
101   L \equiv K - U = L(q_i ,\dot q_i ) ,
102   \label{introEquation:lagrangianDef}
# Line 114 | Line 107 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
107   \label{introEquation:halmitonianPrinciple2}
108   \end{equation}
109  
110 < \subsubsection{\label{introSection:equationOfMotionLagrangian}The
111 < Equations of Motion in Lagrangian Mechanics}
110 > \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
111 > Equations of Motion in Lagrangian Mechanics}}
112  
113 < for a holonomic system of $f$ degrees of freedom, the equations of
114 < motion in the Lagrangian form is
113 > For a system of $f$ degrees of freedom, the equations of motion in
114 > the Lagrangian form is
115   \begin{equation}
116   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
117   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
# Line 132 | Line 125 | independent of generalized velocities, the generalized
125   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
126   introduced by William Rowan Hamilton in 1833 as a re-formulation of
127   classical mechanics. If the potential energy of a system is
128 < independent of generalized velocities, the generalized momenta can
136 < be defined as
128 > independent of velocities, the momenta can be defined as
129   \begin{equation}
130   p_i = \frac{\partial L}{\partial \dot q_i}
131   \label{introEquation:generalizedMomenta}
# Line 143 | Line 135 | p_i  = \frac{{\partial L}}{{\partial q_i }}
135   p_i  = \frac{{\partial L}}{{\partial q_i }}
136   \label{introEquation:generalizedMomentaDot}
137   \end{equation}
146
138   With the help of the generalized momenta, we may now define a new
139   quantity $H$ by the equation
140   \begin{equation}
# Line 151 | Line 142 | $L$ is the Lagrangian function for the system.
142   \label{introEquation:hamiltonianDefByLagrangian}
143   \end{equation}
144   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
145 < $L$ is the Lagrangian function for the system.
146 <
156 < Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 < one can obtain
145 > $L$ is the Lagrangian function for the system. Differentiating
146 > Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
147   \begin{equation}
148   dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
149   \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
# Line 172 | Line 161 | find
161   By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
162   find
163   \begin{equation}
164 < \frac{{\partial H}}{{\partial p_k }} = q_k
164 > \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
165   \label{introEquation:motionHamiltonianCoordinate}
166   \end{equation}
167   \begin{equation}
168 < \frac{{\partial H}}{{\partial q_k }} =  - p_k
168 > \frac{{\partial H}}{{\partial q_k }} =  - \dot {p_k}
169   \label{introEquation:motionHamiltonianMomentum}
170   \end{equation}
171   and
# Line 185 | Line 174 | t}}
174   t}}
175   \label{introEquation:motionHamiltonianTime}
176   \end{equation}
188
177   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
178   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
179   equation of motion. Due to their symmetrical formula, they are also
180 < known as the canonical equations of motions \cite{Goldstein01}.
180 > known as the canonical equations of motions \cite{Goldstein2001}.
181  
182   An important difference between Lagrangian approach and the
183   Hamiltonian approach is that the Lagrangian is considered to be a
184 < function of the generalized velocities $\dot q_i$ and the
185 < generalized coordinates $q_i$, while the Hamiltonian is considered
186 < to be a function of the generalized momenta $p_i$ and the conjugate
187 < generalized coordinate $q_i$. Hamiltonian Mechanics is more
188 < appropriate for application to statistical mechanics and quantum
189 < mechanics, since it treats the coordinate and its time derivative as
190 < independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
184 > function of the generalized velocities $\dot q_i$ and coordinates
185 > $q_i$, while the Hamiltonian is considered to be a function of the
186 > generalized momenta $p_i$ and the conjugate coordinates $q_i$.
187 > Hamiltonian Mechanics is more appropriate for application to
188 > statistical mechanics and quantum mechanics, since it treats the
189 > coordinate and its time derivative as independent variables and it
190 > only works with 1st-order differential equations\cite{Marion1990}.
191  
192   In Newtonian Mechanics, a system described by conservative forces
193   conserves the total energy \ref{introEquation:energyConservation}.
# Line 212 | Line 199 | q_i }}} \right) = 0}
199   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
200   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
201   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
202 < q_i }}} \right) = 0}
216 < \label{introEquation:conserveHalmitonian}
202 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
203   \end{equation}
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
207 < \begin{equation}
208 < r = r(q,p)^T
209 < \end{equation}
210 < and to introduce a $2n \times 2n$ canonical structure matrix $J$,
211 < \begin{equation}
212 < J = \left( {\begin{array}{*{20}c}
213 <   0 & I  \\
214 <   { - I} & 0  \\
215 < \end{array}} \right)
216 < \label{introEquation:canonicalMatrix}
217 < \end{equation}
218 < where $I$ is a $n \times n$ identity matrix and $J$ is a
219 < skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
220 < can be rewritten as,
205 > \section{\label{introSection:statisticalMechanics}Statistical
206 > Mechanics}
207 >
208 > The thermodynamic behaviors and properties of Molecular Dynamics
209 > simulation are governed by the principle of Statistical Mechanics.
210 > The following section will give a brief introduction to some of the
211 > Statistical Mechanics concepts and theorem presented in this
212 > dissertation.
213 >
214 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
215 >
216 > Mathematically, phase space is the space which represents all
217 > possible states. Each possible state of the system corresponds to
218 > one unique point in the phase space. For mechanical systems, the
219 > phase space usually consists of all possible values of position and
220 > momentum variables. Consider a dynamic system of $f$ particles in a
221 > cartesian space, where each of the $6f$ coordinates and momenta is
222 > assigned to one of $6f$ mutually orthogonal axes, the phase space of
223 > this system is a $6f$ dimensional space. A point, $x = (\rightarrow
224 > q_1 , \ldots ,\rightarrow q_f ,\rightarrow p_1 , \ldots ,\rightarrow
225 > p_f )$, with a unique set of values of $6f$ coordinates and momenta
226 > is a phase space vector.
227 > %%%fix me
228 >
229 > In statistical mechanics, the condition of an ensemble at any time
230 > can be regarded as appropriately specified by the density $\rho$
231 > with which representative points are distributed over the phase
232 > space. The density distribution for an ensemble with $f$ degrees of
233 > freedom is defined as,
234   \begin{equation}
235 < \frac{d}{{dt}}r = J\nabla _r H(r)
236 < \label{introEquation:compactHamiltonian}
235 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
236 > \label{introEquation:densityDistribution}
237   \end{equation}
238 + Governed by the principles of mechanics, the phase points change
239 + their locations which would change the density at any time at phase
240 + space. Hence, the density distribution is also to be taken as a
241 + function of the time.
242  
243 < \section{\label{introSection:geometricIntegratos}Geometric Integrators}
243 > The number of systems $\delta N$ at time $t$ can be determined by,
244 > \begin{equation}
245 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
246 > \label{introEquation:deltaN}
247 > \end{equation}
248 > Assuming a large enough population of systems, we can sufficiently
249 > approximate $\delta N$ without introducing discontinuity when we go
250 > from one region in the phase space to another. By integrating over
251 > the whole phase space,
252 > \begin{equation}
253 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
254 > \label{introEquation:totalNumberSystem}
255 > \end{equation}
256 > gives us an expression for the total number of the systems. Hence,
257 > the probability per unit in the phase space can be obtained by,
258 > \begin{equation}
259 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
260 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
261 > \label{introEquation:unitProbability}
262 > \end{equation}
263 > With the help of Eq.~\ref{introEquation:unitProbability} and the
264 > knowledge of the system, it is possible to calculate the average
265 > value of any desired quantity which depends on the coordinates and
266 > momenta of the system. Even when the dynamics of the real system is
267 > complex, or stochastic, or even discontinuous, the average
268 > properties of the ensemble of possibilities as a whole remaining
269 > well defined. For a classical system in thermal equilibrium with its
270 > environment, the ensemble average of a mechanical quantity, $\langle
271 > A(q , p) \rangle_t$, takes the form of an integral over the phase
272 > space of the system,
273 > \begin{equation}
274 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
275 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
276 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
277 > \label{introEquation:ensembelAverage}
278 > \end{equation}
279  
280 < \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
281 < A \emph{manifold} is an abstract mathematical space. It locally
282 < looks like Euclidean space, but when viewed globally, it may have
283 < more complicate structure. A good example of manifold is the surface
284 < of Earth. It seems to be flat locally, but it is round if viewed as
285 < a whole. A \emph{differentiable manifold} (also known as
286 < \emph{smooth manifold}) is a manifold with an open cover in which
287 < the covering neighborhoods are all smoothly isomorphic to one
288 < another. In other words,it is possible to apply calculus on
289 < \emph{differentiable manifold}. A \emph{symplectic manifold} is
290 < defined as a pair $(M, \omega)$ consisting of a \emph{differentiable
291 < manifold} $M$ and a close, non-degenerated, bilinear symplectic
292 < form, $\omega$. One of the motivation to study \emph{symplectic
293 < manifold} in Hamiltonian Mechanics is that a symplectic manifold can
294 < represent all possible configurations of the system and the phase
295 < space of the system can be described by it's cotangent bundle. Every
296 < symplectic manifold is even dimensional. For instance, in Hamilton
297 < equations, coordinate and momentum always appear in pairs.
280 > There are several different types of ensembles with different
281 > statistical characteristics. As a function of macroscopic
282 > parameters, such as temperature \textit{etc}, the partition function
283 > can be used to describe the statistical properties of a system in
284 > thermodynamic equilibrium. As an ensemble of systems, each of which
285 > is known to be thermally isolated and conserve energy, the
286 > Microcanonical ensemble (NVE) has a partition function like,
287 > \begin{equation}
288 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
289 > \end{equation}
290 > A canonical ensemble (NVT)is an ensemble of systems, each of which
291 > can share its energy with a large heat reservoir. The distribution
292 > of the total energy amongst the possible dynamical states is given
293 > by the partition function,
294 > \begin{equation}
295 > \Omega (N,V,T) = e^{ - \beta A}
296 > \label{introEquation:NVTPartition}
297 > \end{equation}
298 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
299 > TS$. Since most experiments are carried out under constant pressure
300 > condition, the isothermal-isobaric ensemble (NPT) plays a very
301 > important role in molecular simulations. The isothermal-isobaric
302 > ensemble allow the system to exchange energy with a heat bath of
303 > temperature $T$ and to change the volume as well. Its partition
304 > function is given as
305 > \begin{equation}
306 > \Delta (N,P,T) =  - e^{\beta G}.
307 > \label{introEquation:NPTPartition}
308 > \end{equation}
309 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
310  
311 < A \emph{symplectomorphism} is also known as a \emph{canonical
312 < transformation}.
311 > \subsection{\label{introSection:liouville}Liouville's theorem}
312 >
313 > Liouville's theorem is the foundation on which statistical mechanics
314 > rests. It describes the time evolution of the phase space
315 > distribution function. In order to calculate the rate of change of
316 > $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
317 > the two faces perpendicular to the $q_1$ axis, which are located at
318 > $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
319 > opposite face is given by the expression,
320 > \begin{equation}
321 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
322 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
323 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
324 > \ldots \delta p_f .
325 > \end{equation}
326 > Summing all over the phase space, we obtain
327 > \begin{equation}
328 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
329 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
330 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
331 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
332 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
333 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
334 > \end{equation}
335 > Differentiating the equations of motion in Hamiltonian formalism
336 > (\ref{introEquation:motionHamiltonianCoordinate},
337 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
338 > \begin{equation}
339 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
340 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
341 > \end{equation}
342 > which cancels the first terms of the right hand side. Furthermore,
343 > dividing $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
344 > p_f $ in both sides, we can write out Liouville's theorem in a
345 > simple form,
346 > \begin{equation}
347 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
348 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
349 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
350 > \label{introEquation:liouvilleTheorem}
351 > \end{equation}
352  
353 < Any real-valued differentiable function H on a symplectic manifold
354 < can serve as an energy function or Hamiltonian. Associated to any
355 < Hamiltonian is a Hamiltonian vector field; the integral curves of
356 < the Hamiltonian vector field are solutions to the Hamilton-Jacobi
357 < equations. The Hamiltonian vector field defines a flow on the
358 < symplectic manifold, called a Hamiltonian flow or symplectomorphism.
359 < By Liouville's theorem, Hamiltonian flows preserve the volume form
360 < on the phase space.
353 > Liouville's theorem states that the distribution function is
354 > constant along any trajectory in phase space. In classical
355 > statistical mechanics, since the number of members in an ensemble is
356 > huge and constant, we can assume the local density has no reason
357 > (other than classical mechanics) to change,
358 > \begin{equation}
359 > \frac{{\partial \rho }}{{\partial t}} = 0.
360 > \label{introEquation:stationary}
361 > \end{equation}
362 > In such stationary system, the density of distribution $\rho$ can be
363 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
364 > distribution,
365 > \begin{equation}
366 > \rho  \propto e^{ - \beta H}
367 > \label{introEquation:densityAndHamiltonian}
368 > \end{equation}
369  
370 < \subsection{\label{Construction of Symplectic Methods}}
370 > \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
371 > Lets consider a region in the phase space,
372 > \begin{equation}
373 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
374 > \end{equation}
375 > If this region is small enough, the density $\rho$ can be regarded
376 > as uniform over the whole integral. Thus, the number of phase points
377 > inside this region is given by,
378 > \begin{equation}
379 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
380 > dp_1 } ..dp_f.
381 > \end{equation}
382  
383 < \section{\label{introSection:statisticalMechanics}Statistical
384 < Mechanics}
383 > \begin{equation}
384 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
385 > \frac{d}{{dt}}(\delta v) = 0.
386 > \end{equation}
387 > With the help of stationary assumption
388 > (\ref{introEquation:stationary}), we obtain the principle of the
389 > \emph{conservation of volume in phase space},
390 > \begin{equation}
391 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
392 > ...dq_f dp_1 } ..dp_f  = 0.
393 > \label{introEquation:volumePreserving}
394 > \end{equation}
395  
396 < The thermodynamic behaviors and properties of Molecular Dynamics
279 < simulation are governed by the principle of Statistical Mechanics.
280 < The following section will give a brief introduction to some of the
281 < Statistical Mechanics concepts presented in this dissertation.
396 > \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
397  
398 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
398 > Liouville's theorem can be expresses in a variety of different forms
399 > which are convenient within different contexts. For any two function
400 > $F$ and $G$ of the coordinates and momenta of a system, the Poisson
401 > bracket ${F, G}$ is defined as
402 > \begin{equation}
403 > \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
404 > F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
405 > \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
406 > q_i }}} \right)}.
407 > \label{introEquation:poissonBracket}
408 > \end{equation}
409 > Substituting equations of motion in Hamiltonian formalism(
410 > Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
411 > Eq.~\ref{introEquation:motionHamiltonianMomentum} ) into
412 > (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
413 > Liouville's theorem using Poisson bracket notion,
414 > \begin{equation}
415 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
416 > {\rho ,H} \right\}.
417 > \label{introEquation:liouvilleTheromInPoissin}
418 > \end{equation}
419 > Moreover, the Liouville operator is defined as
420 > \begin{equation}
421 > iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
422 > p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
423 > H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
424 > \label{introEquation:liouvilleOperator}
425 > \end{equation}
426 > In terms of Liouville operator, Liouville's equation can also be
427 > expressed as
428 > \begin{equation}
429 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
430 > \label{introEquation:liouvilleTheoremInOperator}
431 > \end{equation}
432  
433   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
434  
435   Various thermodynamic properties can be calculated from Molecular
436   Dynamics simulation. By comparing experimental values with the
437   calculated properties, one can determine the accuracy of the
438 < simulation and the quality of the underlying model. However, both of
439 < experiment and computer simulation are usually performed during a
438 > simulation and the quality of the underlying model. However, both
439 > experiments and computer simulations are usually performed during a
440   certain time interval and the measurements are averaged over a
441   period of them which is different from the average behavior of
442 < many-body system in Statistical Mechanics. Fortunately, Ergodic
443 < Hypothesis is proposed to make a connection between time average and
444 < ensemble average. It states that time average and average over the
445 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
442 > many-body system in Statistical Mechanics. Fortunately, the Ergodic
443 > Hypothesis makes a connection between time average and the ensemble
444 > average. It states that the time average and average over the
445 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
446   \begin{equation}
447 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
448 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
449 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
447 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
448 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
449 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
450   \end{equation}
451 < where $\langle A \rangle_t$ is an equilibrium value of a physical
452 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
453 < function. If an observation is averaged over a sufficiently long
454 < time (longer than relaxation time), all accessible microstates in
455 < phase space are assumed to be equally probed, giving a properly
456 < weighted statistical average. This allows the researcher freedom of
457 < choice when deciding how best to measure a given observable. In case
458 < an ensemble averaged approach sounds most reasonable, the Monte
459 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
460 < system lends itself to a time averaging approach, the Molecular
461 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
462 < will be the best choice\cite{Frenkel1996}.
451 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
452 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
453 > distribution function. If an observation is averaged over a
454 > sufficiently long time (longer than relaxation time), all accessible
455 > microstates in phase space are assumed to be equally probed, giving
456 > a properly weighted statistical average. This allows the researcher
457 > freedom of choice when deciding how best to measure a given
458 > observable. In case an ensemble averaged approach sounds most
459 > reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
460 > utilized. Or if the system lends itself to a time averaging
461 > approach, the Molecular Dynamics techniques in
462 > Sec.~\ref{introSection:molecularDynamics} will be the best
463 > choice\cite{Frenkel1996}.
464  
465 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
465 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
466 > A variety of numerical integrators have been proposed to simulate
467 > the motions of atoms in MD simulation. They usually begin with
468 > initial conditionals and move the objects in the direction governed
469 > by the differential equations. However, most of them ignore the
470 > hidden physical laws contained within the equations. Since 1990,
471 > geometric integrators, which preserve various phase-flow invariants
472 > such as symplectic structure, volume and time reversal symmetry, are
473 > developed to address this issue\cite{Dullweber1997, McLachlan1998,
474 > Leimkuhler1999}. The velocity Verlet method, which happens to be a
475 > simple example of symplectic integrator, continues to gain
476 > popularity in the molecular dynamics community. This fact can be
477 > partly explained by its geometric nature.
478  
479 < As a special discipline of molecular modeling, Molecular dynamics
480 < has proven to be a powerful tool for studying the functions of
481 < biological systems, providing structural, thermodynamic and
482 < dynamical information.
479 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
480 > A \emph{manifold} is an abstract mathematical space. It looks
481 > locally like Euclidean space, but when viewed globally, it may have
482 > more complicated structure. A good example of manifold is the
483 > surface of Earth. It seems to be flat locally, but it is round if
484 > viewed as a whole. A \emph{differentiable manifold} (also known as
485 > \emph{smooth manifold}) is a manifold on which it is possible to
486 > apply calculus on \emph{differentiable manifold}. A \emph{symplectic
487 > manifold} is defined as a pair $(M, \omega)$ which consists of a
488 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
489 > bilinear symplectic form, $\omega$. A symplectic form on a vector
490 > space $V$ is a function $\omega(x, y)$ which satisfies
491 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
492 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
493 > $\omega(x, x) = 0$. The cross product operation in vector field is
494 > an example of symplectic form.
495  
496 < \subsection{\label{introSec:mdInit}Initialization}
496 > One of the motivations to study \emph{symplectic manifolds} in
497 > Hamiltonian Mechanics is that a symplectic manifold can represent
498 > all possible configurations of the system and the phase space of the
499 > system can be described by it's cotangent bundle. Every symplectic
500 > manifold is even dimensional. For instance, in Hamilton equations,
501 > coordinate and momentum always appear in pairs.
502  
503 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
503 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
504  
505 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
506 <
507 < A rigid body is a body in which the distance between any two given
508 < points of a rigid body remains constant regardless of external
509 < forces exerted on it. A rigid body therefore conserves its shape
510 < during its motion.
511 <
512 < Applications of dynamics of rigid bodies.
513 <
514 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
515 <
516 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
517 <
518 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
519 <
520 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
521 <
522 < \section{\label{introSection:correlationFunctions}Correlation Functions}
523 <
524 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
505 > For an ordinary differential system defined as
506 > \begin{equation}
507 > \dot x = f(x)
508 > \end{equation}
509 > where $x = x(q,p)^T$, this system is a canonical Hamiltonian, if
510 > \begin{equation}
511 > f(r) = J\nabla _x H(r).
512 > \end{equation}
513 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
514 > matrix
515 > \begin{equation}
516 > J = \left( {\begin{array}{*{20}c}
517 >   0 & I  \\
518 >   { - I} & 0  \\
519 > \end{array}} \right)
520 > \label{introEquation:canonicalMatrix}
521 > \end{equation}
522 > where $I$ is an identity matrix. Using this notation, Hamiltonian
523 > system can be rewritten as,
524 > \begin{equation}
525 > \frac{d}{{dt}}x = J\nabla _x H(x)
526 > \label{introEquation:compactHamiltonian}
527 > \end{equation}In this case, $f$ is
528 > called a \emph{Hamiltonian vector field}.
529  
530 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
530 > Another generalization of Hamiltonian dynamics is Poisson
531 > Dynamics\cite{Olver1986},
532 > \begin{equation}
533 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
534 > \end{equation}
535 > The most obvious change being that matrix $J$ now depends on $x$.
536  
537 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
537 > \subsection{\label{introSection:exactFlow}Exact Flow}
538  
539 + Let $x(t)$ be the exact solution of the ODE system,
540   \begin{equation}
541 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
354 < \label{introEquation:bathGLE}
541 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
542   \end{equation}
543 < where $H_B$ is harmonic bath Hamiltonian,
543 > The exact flow(solution) $\varphi_\tau$ is defined by
544   \[
545 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
359 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
545 > x(t+\tau) =\varphi_\tau(x(t))
546   \]
547 < and $\Delta U$ is bilinear system-bath coupling,
547 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
548 > space to itself. The flow has the continuous group property,
549 > \begin{equation}
550 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
551 > + \tau _2 } .
552 > \end{equation}
553 > In particular,
554 > \begin{equation}
555 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
556 > \end{equation}
557 > Therefore, the exact flow is self-adjoint,
558 > \begin{equation}
559 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
560 > \end{equation}
561 > The exact flow can also be written in terms of the of an operator,
562 > \begin{equation}
563 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
564 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
565 > \label{introEquation:exponentialOperator}
566 > \end{equation}
567 >
568 > In most cases, it is not easy to find the exact flow $\varphi_\tau$.
569 > Instead, we use an approximate map, $\psi_\tau$, which is usually
570 > called integrator. The order of an integrator $\psi_\tau$ is $p$, if
571 > the Taylor series of $\psi_\tau$ agree to order $p$,
572 > \begin{equation}
573 > \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
574 > \end{equation}
575 >
576 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
577 >
578 > The hidden geometric properties\cite{Budd1999, Marsden1998} of an
579 > ODE and its flow play important roles in numerical studies. Many of
580 > them can be found in systems which occur naturally in applications.
581 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
582 > a \emph{symplectic} flow if it satisfies,
583 > \begin{equation}
584 > {\varphi '}^T J \varphi ' = J.
585 > \end{equation}
586 > According to Liouville's theorem, the symplectic volume is invariant
587 > under a Hamiltonian flow, which is the basis for classical
588 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
589 > field on a symplectic manifold can be shown to be a
590 > symplectomorphism. As to the Poisson system,
591 > \begin{equation}
592 > {\varphi '}^T J \varphi ' = J \circ \varphi
593 > \end{equation}
594 > is the property that must be preserved by the integrator. It is
595 > possible to construct a \emph{volume-preserving} flow for a source
596 > free ODE ($ \nabla \cdot f = 0 $), if the flow satisfies $ \det
597 > d\varphi  = 1$. One can show easily that a symplectic flow will be
598 > volume-preserving. Changing the variables $y = h(x)$ in an ODE
599 > (Eq.~\ref{introEquation:ODE}) will result in a new system,
600   \[
601 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
601 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
602   \]
603 < Completing the square,
603 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
604 > In other words, the flow of this vector field is reversible if and
605 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. A
606 > \emph{first integral}, or conserved quantity of a general
607 > differential function is a function $ G:R^{2d}  \to R^d $ which is
608 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
609   \[
610 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
368 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
369 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
370 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
371 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
610 > \frac{{dG(x(t))}}{{dt}} = 0.
611   \]
612 < and putting it back into Eq.~\ref{introEquation:bathGLE},
612 > Using chain rule, one may obtain,
613   \[
614 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
376 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
377 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
378 < w_\alpha ^2 }}x} \right)^2 } \right\}}
614 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
615   \]
616 < where
616 > which is the condition for conserving \emph{first integral}. For a
617 > canonical Hamiltonian system, the time evolution of an arbitrary
618 > smooth function $G$ is given by,
619 > \begin{eqnarray}
620 > \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
621 >                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
622 > \label{introEquation:firstIntegral1}
623 > \end{eqnarray}
624 > Using poisson bracket notion, Equation
625 > \ref{introEquation:firstIntegral1} can be rewritten as
626   \[
627 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
383 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
627 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
628   \]
629 < Since the first two terms of the new Hamiltonian depend only on the
630 < system coordinates, we can get the equations of motion for
387 < Generalized Langevin Dynamics by Hamilton's equations
388 < \ref{introEquation:motionHamiltonianCoordinate,
389 < introEquation:motionHamiltonianMomentum},
390 < \begin{align}
391 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
392 <       &= m\ddot x
393 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
394 < \label{introEq:Lp5}
395 < \end{align}
396 < , and
397 < \begin{align}
398 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
399 <                &= m\ddot x_\alpha
400 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
401 < \end{align}
402 <
403 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
404 <
629 > Therefore, the sufficient condition for $G$ to be the \emph{first
630 > integral} of a Hamiltonian system is
631   \[
632 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
632 > \left\{ {G,H} \right\} = 0.
633   \]
634 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
635 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
636 + 0$. When designing any numerical methods, one should always try to
637 + preserve the structural properties of the original ODE and its flow.
638  
639 < \[
640 < L(x + y) = L(x) + L(y)
641 < \]
639 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
640 > A lot of well established and very effective numerical methods have
641 > been successful precisely because of their symplecticities even
642 > though this fact was not recognized when they were first
643 > constructed. The most famous example is the Verlet-leapfrog method
644 > in molecular dynamics. In general, symplectic integrators can be
645 > constructed using one of four different methods.
646 > \begin{enumerate}
647 > \item Generating functions
648 > \item Variational methods
649 > \item Runge-Kutta methods
650 > \item Splitting methods
651 > \end{enumerate}
652  
653 < \[
654 < L(ax) = aL(x)
655 < \]
653 > Generating function\cite{Channell1990} tends to lead to methods
654 > which are cumbersome and difficult to use. In dissipative systems,
655 > variational methods can capture the decay of energy
656 > accurately\cite{Kane2000}. Since their geometrically unstable nature
657 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
658 > methods are not suitable for Hamiltonian system. Recently, various
659 > high-order explicit Runge-Kutta methods
660 > \cite{Owren1992,Chen2003}have been developed to overcome this
661 > instability. However, due to computational penalty involved in
662 > implementing the Runge-Kutta methods, they have not attracted much
663 > attention from the Molecular Dynamics community. Instead, splitting
664 > methods have been widely accepted since they exploit natural
665 > decompositions of the system\cite{Tuckerman1992, McLachlan1998}.
666  
667 + \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
668 +
669 + The main idea behind splitting methods is to decompose the discrete
670 + $\varphi_h$ as a composition of simpler flows,
671 + \begin{equation}
672 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
673 + \varphi _{h_n }
674 + \label{introEquation:FlowDecomposition}
675 + \end{equation}
676 + where each of the sub-flow is chosen such that each represent a
677 + simpler integration of the system. Suppose that a Hamiltonian system
678 + takes the form,
679   \[
680 < L(\dot x) = pL(x) - px(0)
680 > H = H_1 + H_2.
681   \]
682 + Here, $H_1$ and $H_2$ may represent different physical processes of
683 + the system. For instance, they may relate to kinetic and potential
684 + energy respectively, which is a natural decomposition of the
685 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
686 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
687 + order expression is then given by the Lie-Trotter formula
688 + \begin{equation}
689 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
690 + \label{introEquation:firstOrderSplitting}
691 + \end{equation}
692 + where $\varphi _h$ is the result of applying the corresponding
693 + continuous $\varphi _i$ over a time $h$. By definition, as
694 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
695 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
696 + It is easy to show that any composition of symplectic flows yields a
697 + symplectic map,
698 + \begin{equation}
699 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
700 + '\phi ' = \phi '^T J\phi ' = J,
701 + \label{introEquation:SymplecticFlowComposition}
702 + \end{equation}
703 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
704 + splitting in this context automatically generates a symplectic map.
705  
706 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
707 + introduces local errors proportional to $h^2$, while Strang
708 + splitting gives a second-order decomposition,
709 + \begin{equation}
710 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
711 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
712 + \end{equation}
713 + which has a local error proportional to $h^3$. The Sprang
714 + splitting's popularity in molecular simulation community attribute
715 + to its symmetric property,
716 + \begin{equation}
717 + \varphi _h^{ - 1} = \varphi _{ - h}.
718 + \label{introEquation:timeReversible}
719 + \end{equation}
720 +
721 + \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
722 + The classical equation for a system consisting of interacting
723 + particles can be written in Hamiltonian form,
724   \[
725 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
725 > H = T + V
726   \]
727 + where $T$ is the kinetic energy and $V$ is the potential energy.
728 + Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
729 + obtains the following:
730 + \begin{align}
731 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
732 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
733 + \label{introEquation:Lp10a} \\%
734 + %
735 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
736 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
737 + \label{introEquation:Lp10b}
738 + \end{align}
739 + where $F(t)$ is the force at time $t$. This integration scheme is
740 + known as \emph{velocity verlet} which is
741 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
742 + time-reversible(\ref{introEquation:timeReversible}) and
743 + volume-preserving (\ref{introEquation:volumePreserving}). These
744 + geometric properties attribute to its long-time stability and its
745 + popularity in the community. However, the most commonly used
746 + velocity verlet integration scheme is written as below,
747 + \begin{align}
748 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
749 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
750 + %
751 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
752 +    \label{introEquation:Lp9b}\\%
753 + %
754 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
755 +    \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
756 + \end{align}
757 + From the preceding splitting, one can see that the integration of
758 + the equations of motion would follow:
759 + \begin{enumerate}
760 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
761  
762 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
763 +
764 + \item Evaluate the forces at the new positions, $\mathbf{q}(\Delta t)$, and use the new forces to complete the velocity move.
765 +
766 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
767 + \end{enumerate}
768 +
769 + By simply switching the order of the propagators in the splitting
770 + and composing a new integrator, the \emph{position verlet}
771 + integrator, can be generated,
772 + \begin{align}
773 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
774 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
775 + \label{introEquation:positionVerlet1} \\%
776 + %
777 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
778 + q(\Delta t)} \right]. %
779 + \label{introEquation:positionVerlet2}
780 + \end{align}
781 +
782 + \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
783 +
784 + The Baker-Campbell-Hausdorff formula can be used to determine the
785 + local error of splitting method in terms of the commutator of the
786 + operators(\ref{introEquation:exponentialOperator}) associated with
787 + the sub-flow. For operators $hX$ and $hY$ which are associated with
788 + $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
789 + \begin{equation}
790 + \exp (hX + hY) = \exp (hZ)
791 + \end{equation}
792 + where
793 + \begin{equation}
794 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
795 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
796 + \end{equation}
797 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
798   \[
799 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
799 > [X,Y] = XY - YX .
800   \]
801 <
802 < Some relatively important transformation,
801 > Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
802 > to the Sprang splitting, we can obtain
803 > \begin{eqnarray*}
804 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
805 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
806 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
807 > \end{eqnarray*}
808 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0,\] the dominant local
809 > error of Spring splitting is proportional to $h^3$. The same
810 > procedure can be applied to a general splitting,  of the form
811 > \begin{equation}
812 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
813 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
814 > \end{equation}
815 > A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
816 > order methods. Yoshida proposed an elegant way to compose higher
817 > order methods based on symmetric splitting\cite{Yoshida1990}. Given
818 > a symmetric second order base method $ \varphi _h^{(2)} $, a
819 > fourth-order symmetric method can be constructed by composing,
820   \[
821 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
821 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
822 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
823   \]
824 <
824 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
825 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
826 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
827 > \begin{equation}
828 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
829 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)},
830 > \end{equation}
831 > if the weights are chosen as
832   \[
833 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
833 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
834 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
835   \]
836  
837 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
838 +
839 + As one of the principal tools of molecular modeling, Molecular
840 + dynamics has proven to be a powerful tool for studying the functions
841 + of biological systems, providing structural, thermodynamic and
842 + dynamical information. The basic idea of molecular dynamics is that
843 + macroscopic properties are related to microscopic behavior and
844 + microscopic behavior can be calculated from the trajectories in
845 + simulations. For instance, instantaneous temperature of an
846 + Hamiltonian system of $N$ particle can be measured by
847   \[
848 < L(1) = \frac{1}{p}
848 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
849   \]
850 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
851 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
852 + the boltzman constant.
853  
854 < First, the bath coordinates,
855 < \[
856 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
857 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
858 < }}L(x)
854 > A typical molecular dynamics run consists of three essential steps:
855 > \begin{enumerate}
856 >  \item Initialization
857 >    \begin{enumerate}
858 >    \item Preliminary preparation
859 >    \item Minimization
860 >    \item Heating
861 >    \item Equilibration
862 >    \end{enumerate}
863 >  \item Production
864 >  \item Analysis
865 > \end{enumerate}
866 > These three individual steps will be covered in the following
867 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
868 > initialization of a simulation. Sec.~\ref{introSection:production}
869 > will discusse issues in production run.
870 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
871 > trajectory analysis.
872 >
873 > \subsection{\label{introSec:initialSystemSettings}Initialization}
874 >
875 > \subsubsection{\textbf{Preliminary preparation}}
876 >
877 > When selecting the starting structure of a molecule for molecular
878 > simulation, one may retrieve its Cartesian coordinates from public
879 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
880 > thousands of crystal structures of molecules are discovered every
881 > year, many more remain unknown due to the difficulties of
882 > purification and crystallization. Even for molecules with known
883 > structure, some important information is missing. For example, a
884 > missing hydrogen atom which acts as donor in hydrogen bonding must
885 > be added. Moreover, in order to include electrostatic interaction,
886 > one may need to specify the partial charges for individual atoms.
887 > Under some circumstances, we may even need to prepare the system in
888 > a special configuration. For instance, when studying transport
889 > phenomenon in membrane systems, we may prepare the lipids in a
890 > bilayer structure instead of placing lipids randomly in solvent,
891 > since we are not interested in the slow self-aggregation process.
892 >
893 > \subsubsection{\textbf{Minimization}}
894 >
895 > It is quite possible that some of molecules in the system from
896 > preliminary preparation may be overlapping with each other. This
897 > close proximity leads to high initial potential energy which
898 > consequently jeopardizes any molecular dynamics simulations. To
899 > remove these steric overlaps, one typically performs energy
900 > minimization to find a more reasonable conformation. Several energy
901 > minimization methods have been developed to exploit the energy
902 > surface and to locate the local minimum. While converging slowly
903 > near the minimum, steepest descent method is extremely robust when
904 > systems are strongly anharmonic. Thus, it is often used to refine
905 > structure from crystallographic data. Relied on the gradient or
906 > hessian, advanced methods like Newton-Raphson converge rapidly to a
907 > local minimum, but become unstable if the energy surface is far from
908 > quadratic. Another factor that must be taken into account, when
909 > choosing energy minimization method, is the size of the system.
910 > Steepest descent and conjugate gradient can deal with models of any
911 > size. Because of the limits on computer memory to store the hessian
912 > matrix and the computing power needed to diagonalized these
913 > matrices, most Newton-Raphson methods can not be used with very
914 > large systems.
915 >
916 > \subsubsection{\textbf{Heating}}
917 >
918 > Typically, Heating is performed by assigning random velocities
919 > according to a Maxwell-Boltzman distribution for a desired
920 > temperature. Beginning at a lower temperature and gradually
921 > increasing the temperature by assigning larger random velocities, we
922 > end up with setting the temperature of the system to a final
923 > temperature at which the simulation will be conducted. In heating
924 > phase, we should also keep the system from drifting or rotating as a
925 > whole. To do this, the net linear momentum and angular momentum of
926 > the system is shifted to zero after each resampling from the Maxwell
927 > -Boltzman distribution.
928 >
929 > \subsubsection{\textbf{Equilibration}}
930 >
931 > The purpose of equilibration is to allow the system to evolve
932 > spontaneously for a period of time and reach equilibrium. The
933 > procedure is continued until various statistical properties, such as
934 > temperature, pressure, energy, volume and other structural
935 > properties \textit{etc}, become independent of time. Strictly
936 > speaking, minimization and heating are not necessary, provided the
937 > equilibration process is long enough. However, these steps can serve
938 > as a means to arrive at an equilibrated structure in an effective
939 > way.
940 >
941 > \subsection{\label{introSection:production}Production}
942 >
943 > The production run is the most important step of the simulation, in
944 > which the equilibrated structure is used as a starting point and the
945 > motions of the molecules are collected for later analysis. In order
946 > to capture the macroscopic properties of the system, the molecular
947 > dynamics simulation must be performed by sampling correctly and
948 > efficiently from the relevant thermodynamic ensemble.
949 >
950 > The most expensive part of a molecular dynamics simulation is the
951 > calculation of non-bonded forces, such as van der Waals force and
952 > Coulombic forces \textit{etc}. For a system of $N$ particles, the
953 > complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
954 > which making large simulations prohibitive in the absence of any
955 > algorithmic tricks.
956 >
957 > A natural approach to avoid system size issues is to represent the
958 > bulk behavior by a finite number of the particles. However, this
959 > approach will suffer from the surface effect at the edges of the
960 > simulation. To offset this, \textit{Periodic boundary conditions}
961 > (see Fig.~\ref{introFig:pbc}) is developed to simulate bulk
962 > properties with a relatively small number of particles. In this
963 > method, the simulation box is replicated throughout space to form an
964 > infinite lattice. During the simulation, when a particle moves in
965 > the primary cell, its image in other cells move in exactly the same
966 > direction with exactly the same orientation. Thus, as a particle
967 > leaves the primary cell, one of its images will enter through the
968 > opposite face.
969 > \begin{figure}
970 > \centering
971 > \includegraphics[width=\linewidth]{pbc.eps}
972 > \caption[An illustration of periodic boundary conditions]{A 2-D
973 > illustration of periodic boundary conditions. As one particle leaves
974 > the left of the simulation box, an image of it enters the right.}
975 > \label{introFig:pbc}
976 > \end{figure}
977 >
978 > %cutoff and minimum image convention
979 > Another important technique to improve the efficiency of force
980 > evaluation is to apply spherical cutoff where particles farther than
981 > a predetermined distance are not included in the calculation
982 > \cite{Frenkel1996}. The use of a cutoff radius will cause a
983 > discontinuity in the potential energy curve. Fortunately, one can
984 > shift simple radial potential to ensure the potential curve go
985 > smoothly to zero at the cutoff radius. The cutoff strategy works
986 > well for Lennard-Jones interaction because of its short range
987 > nature. However, simply truncating the electrostatic interaction
988 > with the use of cutoffs has been shown to lead to severe artifacts
989 > in simulations. The Ewald summation, in which the slowly decaying
990 > Coulomb potential is transformed into direct and reciprocal sums
991 > with rapid and absolute convergence, has proved to minimize the
992 > periodicity artifacts in liquid simulations. Taking the advantages
993 > of the fast Fourier transform (FFT) for calculating discrete Fourier
994 > transforms, the particle mesh-based
995 > methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
996 > $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
997 > \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
998 > which treats Coulombic interactions exactly at short range, and
999 > approximate the potential at long range through multipolar
1000 > expansion. In spite of their wide acceptance at the molecular
1001 > simulation community, these two methods are difficult to implement
1002 > correctly and efficiently. Instead, we use a damped and
1003 > charge-neutralized Coulomb potential method developed by Wolf and
1004 > his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
1005 > particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1006 > \begin{equation}
1007 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1008 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1009 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1010 > r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1011 > \end{equation}
1012 > where $\alpha$ is the convergence parameter. Due to the lack of
1013 > inherent periodicity and rapid convergence,this method is extremely
1014 > efficient and easy to implement.
1015 > \begin{figure}
1016 > \centering
1017 > \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1018 > \caption[An illustration of shifted Coulomb potential]{An
1019 > illustration of shifted Coulomb potential.}
1020 > \label{introFigure:shiftedCoulomb}
1021 > \end{figure}
1022 >
1023 > %multiple time step
1024 >
1025 > \subsection{\label{introSection:Analysis} Analysis}
1026 >
1027 > Recently, advanced visualization technique have become applied to
1028 > monitor the motions of molecules. Although the dynamics of the
1029 > system can be described qualitatively from animation, quantitative
1030 > trajectory analysis are more useful. According to the principles of
1031 > Statistical Mechanics, Sec.~\ref{introSection:statisticalMechanics},
1032 > one can compute thermodynamic properties, analyze fluctuations of
1033 > structural parameters, and investigate time-dependent processes of
1034 > the molecule from the trajectories.
1035 >
1036 > \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1037 >
1038 > Thermodynamic properties, which can be expressed in terms of some
1039 > function of the coordinates and momenta of all particles in the
1040 > system, can be directly computed from molecular dynamics. The usual
1041 > way to measure the pressure is based on virial theorem of Clausius
1042 > which states that the virial is equal to $-3Nk_BT$. For a system
1043 > with forces between particles, the total virial, $W$, contains the
1044 > contribution from external pressure and interaction between the
1045 > particles:
1046 > \[
1047 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1048 > f_{ij} } } \right\rangle
1049   \]
1050 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1051 + distance $r_{ij}$. Thus, the expression for the pressure is given
1052 + by:
1053 + \begin{equation}
1054 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1055 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1056 + \end{equation}
1057 +
1058 + \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1059 +
1060 + Structural Properties of a simple fluid can be described by a set of
1061 + distribution functions. Among these functions,the \emph{pair
1062 + distribution function}, also known as \emph{radial distribution
1063 + function}, is of most fundamental importance to liquid theory.
1064 + Experimentally, pair distribution function can be gathered by
1065 + Fourier transforming raw data from a series of neutron diffraction
1066 + experiments and integrating over the surface factor
1067 + \cite{Powles1973}. The experimental results can serve as a criterion
1068 + to justify the correctness of a liquid model. Moreover, various
1069 + equilibrium thermodynamic and structural properties can also be
1070 + expressed in terms of radial distribution function \cite{Allen1987}.
1071 +
1072 + The pair distribution functions $g(r)$ gives the probability that a
1073 + particle $i$ will be located at a distance $r$ from a another
1074 + particle $j$ in the system
1075   \[
1076 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1077 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1076 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1077 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1078 > (r)}{\rho}.
1079   \]
1080 < Then, the system coordinates,
1081 < \begin{align}
1082 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1083 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
456 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
457 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
458 < }}\omega _\alpha ^2 L(x)} \right\}}
459 < %
460 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
461 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
462 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
463 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
464 < \end{align}
465 < Then, the inverse transform,
1080 > Note that the delta function can be replaced by a histogram in
1081 > computer simulation. Peaks in $g(r)$ represent solvent shells, and
1082 > the height of these peaks gradually decreases to 1 as the liquid of
1083 > large distance approaches the bulk density.
1084  
467 \begin{align}
468 m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
469 \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
470 }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
471 _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
472 - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
473 (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
474 _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
475 %
476 &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
477 {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
478 }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
479 t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
480 {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
481 \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
482 \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
483 (\omega _\alpha  t)} \right\}}
484 \end{align}
1085  
1086 + \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1087 + Properties}}
1088 +
1089 + Time-dependent properties are usually calculated using \emph{time
1090 + correlation functions}, which correlate random variables $A$ and $B$
1091 + at two different times,
1092   \begin{equation}
1093 < m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1094 < (t)\dot x(t - \tau )d\tau }  + R(t)
489 < \label{introEuqation:GeneralizedLangevinDynamics}
1093 > C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1094 > \label{introEquation:timeCorrelationFunction}
1095   \end{equation}
1096 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1097 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1096 > If $A$ and $B$ refer to same variable, this kind of correlation
1097 > function is called an \emph{autocorrelation function}. One example
1098 > of an auto correlation function is the velocity auto-correlation
1099 > function which is directly related to transport properties of
1100 > molecular liquids:
1101   \[
1102 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1103 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1102 > D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1103 > \right\rangle } dt
1104   \]
1105 < For an infinite harmonic bath, we can use the spectral density and
1106 < an integral over frequencies.
1105 > where $D$ is diffusion constant. Unlike the velocity autocorrelation
1106 > function, which is averaging over time origins and over all the
1107 > atoms, the dipole autocorrelation functions are calculated for the
1108 > entire system. The dipole autocorrelation function is given by:
1109 > \[
1110 > c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1111 > \right\rangle
1112 > \]
1113 > Here $u_{tot}$ is the net dipole of the entire system and is given
1114 > by
1115 > \[
1116 > u_{tot} (t) = \sum\limits_i {u_i (t)}
1117 > \]
1118 > In principle, many time correlation functions can be related with
1119 > Fourier transforms of the infrared, Raman, and inelastic neutron
1120 > scattering spectra of molecular liquids. In practice, one can
1121 > extract the IR spectrum from the intensity of dipole fluctuation at
1122 > each frequency using the following relationship:
1123 > \[
1124 > \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1125 > i2\pi vt} dt}
1126 > \]
1127  
1128 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1129 +
1130 + Rigid bodies are frequently involved in the modeling of different
1131 + areas, from engineering, physics, to chemistry. For example,
1132 + missiles and vehicle are usually modeled by rigid bodies.  The
1133 + movement of the objects in 3D gaming engine or other physics
1134 + simulator is governed by rigid body dynamics. In molecular
1135 + simulations, rigid bodies are used to simplify protein-protein
1136 + docking studies\cite{Gray2003}.
1137 +
1138 + It is very important to develop stable and efficient methods to
1139 + integrate the equations of motion for orientational degrees of
1140 + freedom. Euler angles are the natural choice to describe the
1141 + rotational degrees of freedom. However, due to $\frac {1}{sin
1142 + \theta}$ singularities, the numerical integration of corresponding
1143 + equations of motion is very inefficient and inaccurate. Although an
1144 + alternative integrator using multiple sets of Euler angles can
1145 + overcome this difficulty\cite{Barojas1973}, the computational
1146 + penalty and the loss of angular momentum conservation still remain.
1147 + A singularity-free representation utilizing quaternions was
1148 + developed by Evans in 1977\cite{Evans1977}. Unfortunately, this
1149 + approach uses a nonseparable Hamiltonian resulting from the
1150 + quaternion representation, which prevents the symplectic algorithm
1151 + to be utilized. Another different approach is to apply holonomic
1152 + constraints to the atoms belonging to the rigid body. Each atom
1153 + moves independently under the normal forces deriving from potential
1154 + energy and constraint forces which are used to guarantee the
1155 + rigidness. However, due to their iterative nature, the SHAKE and
1156 + Rattle algorithms also converge very slowly when the number of
1157 + constraints increases\cite{Ryckaert1977, Andersen1983}.
1158 +
1159 + A break-through in geometric literature suggests that, in order to
1160 + develop a long-term integration scheme, one should preserve the
1161 + symplectic structure of the flow. By introducing a conjugate
1162 + momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1163 + equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1164 + proposed to evolve the Hamiltonian system in a constraint manifold
1165 + by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1166 + An alternative method using the quaternion representation was
1167 + developed by Omelyan\cite{Omelyan1998}. However, both of these
1168 + methods are iterative and inefficient. In this section, we descibe a
1169 + symplectic Lie-Poisson integrator for rigid body developed by
1170 + Dullweber and his coworkers\cite{Dullweber1997} in depth.
1171 +
1172 + \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1173 + The motion of a rigid body is Hamiltonian with the Hamiltonian
1174 + function
1175 + \begin{equation}
1176 + H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1177 + V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1178 + \label{introEquation:RBHamiltonian}
1179 + \end{equation}
1180 + Here, $q$ and $Q$  are the position and rotation matrix for the
1181 + rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1182 + $J$, a diagonal matrix, is defined by
1183   \[
1184 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
502 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
503 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
504 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1184 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1185   \]
1186 < The random forces depend only on initial conditions.
1186 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1187 > constrained Hamiltonian equation is subjected to a holonomic
1188 > constraint,
1189 > \begin{equation}
1190 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1191 > \end{equation}
1192 > which is used to ensure rotation matrix's unitarity. Differentiating
1193 > \ref{introEquation:orthogonalConstraint} and using Equation
1194 > \ref{introEquation:RBMotionMomentum}, one may obtain,
1195 > \begin{equation}
1196 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1197 > \label{introEquation:RBFirstOrderConstraint}
1198 > \end{equation}
1199  
1200 < \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1201 < So we can define a new set of coordinates,
1200 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1201 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1202 > the equations of motion,
1203 >
1204 > \begin{eqnarray}
1205 > \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1206 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1207 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1208 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1209 > \end{eqnarray}
1210 >
1211 > In general, there are two ways to satisfy the holonomic constraints.
1212 > We can use a constraint force provided by a Lagrange multiplier on
1213 > the normal manifold to keep the motion on constraint space. Or we
1214 > can simply evolve the system on the constraint manifold. These two
1215 > methods have been proved to be equivalent. The holonomic constraint
1216 > and equations of motions define a constraint manifold for rigid
1217 > bodies
1218   \[
1219 < q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1220 < ^2 }}x(0)
1219 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1220 > \right\}.
1221   \]
1222 < This makes
1222 >
1223 > Unfortunately, this constraint manifold is not the cotangent bundle
1224 > $T^* SO(3)$ which can be consider as a symplectic manifold on Lie
1225 > rotation group $SO(3)$. However, it turns out that under symplectic
1226 > transformation, the cotangent space and the phase space are
1227 > diffeomorphic. By introducing
1228   \[
1229 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1229 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1230   \]
1231 < And since the $q$ coordinates are harmonic oscillators,
1231 > the mechanical system subject to a holonomic constraint manifold $M$
1232 > can be re-formulated as a Hamiltonian system on the cotangent space
1233   \[
1234 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1235 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1236 + \]
1237 +
1238 + For a body fixed vector $X_i$ with respect to the center of mass of
1239 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1240 + given as
1241 + \begin{equation}
1242 + X_i^{lab} = Q X_i + q.
1243 + \end{equation}
1244 + Therefore, potential energy $V(q,Q)$ is defined by
1245 + \[
1246 + V(q,Q) = V(Q X_0 + q).
1247 + \]
1248 + Hence, the force and torque are given by
1249 + \[
1250 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1251 + \]
1252 + and
1253 + \[
1254 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1255 + \]
1256 + respectively.
1257 +
1258 + As a common choice to describe the rotation dynamics of the rigid
1259 + body, the angular momentum on the body fixed frame $\Pi  = Q^t P$ is
1260 + introduced to rewrite the equations of motion,
1261 + \begin{equation}
1262 + \begin{array}{l}
1263 + \dot \Pi  = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1264 + \dot Q  = Q\Pi {\rm{ }}J^{ - 1}  \\
1265 + \end{array}
1266 + \label{introEqaution:RBMotionPI}
1267 + \end{equation}
1268 + , as well as holonomic constraints,
1269 + \[
1270   \begin{array}{l}
1271 < \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1272 < \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1271 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1272 > Q^T Q = 1 \\
1273   \end{array}
1274   \]
1275  
1276 < \begin{align}
1277 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
528 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
529 < (t)q_\beta  (0)} \right\rangle } }
530 < %
531 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
532 < \right\rangle \cos (\omega _\alpha  t)}
533 < %
534 < &= kT\xi (t)
535 < \end{align}
536 <
1276 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1277 > so(3)^ \star$, the hat-map isomorphism,
1278   \begin{equation}
1279 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1280 < \label{introEquation:secondFluctuationDissipation}
1279 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1280 > {\begin{array}{*{20}c}
1281 >   0 & { - v_3 } & {v_2 }  \\
1282 >   {v_3 } & 0 & { - v_1 }  \\
1283 >   { - v_2 } & {v_1 } & 0  \\
1284 > \end{array}} \right),
1285 > \label{introEquation:hatmapIsomorphism}
1286   \end{equation}
1287 + will let us associate the matrix products with traditional vector
1288 + operations
1289 + \[
1290 + \hat vu = v \times u
1291 + \]
1292 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1293 + matrix,
1294  
1295 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1296 <
1297 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1298 < \subsection{\label{introSection:analyticalApproach}Analytical
1299 < Approach}
1295 > \begin{eqnarray*}
1296 > (\dot \Pi  - \dot \Pi ^T ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{
1297 > }}(J^{ - 1} \Pi  + \Pi J^{ - 1} ) + \sum\limits_i {[Q^T F_i
1298 > (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]}  - (\Lambda  - \Lambda ^T ).
1299 > \label{introEquation:skewMatrixPI}
1300 > \end{eqnarray*}
1301  
1302 < \subsection{\label{introSection:approximationApproach}Approximation
1303 < Approach}
1302 > Since $\Lambda$ is symmetric, the last term of Equation
1303 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1304 > multiplier $\Lambda$ is absent from the equations of motion. This
1305 > unique property eliminates the requirement of iterations which can
1306 > not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1307  
1308 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1309 < Body}
1308 > Applying the hat-map isomorphism, we obtain the equation of motion
1309 > for angular momentum on body frame
1310 > \begin{equation}
1311 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1312 > F_i (r,Q)} \right) \times X_i }.
1313 > \label{introEquation:bodyAngularMotion}
1314 > \end{equation}
1315 > In the same manner, the equation of motion for rotation matrix is
1316 > given by
1317 > \[
1318 > \dot Q = Qskew(I^{ - 1} \pi )
1319 > \]
1320 >
1321 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1322 > Lie-Poisson Integrator for Free Rigid Body}
1323 >
1324 > If there are no external forces exerted on the rigid body, the only
1325 > contribution to the rotational motion is from the kinetic energy
1326 > (the first term of \ref{introEquation:bodyAngularMotion}). The free
1327 > rigid body is an example of a Lie-Poisson system with Hamiltonian
1328 > function
1329 > \begin{equation}
1330 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1331 > \label{introEquation:rotationalKineticRB}
1332 > \end{equation}
1333 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1334 > Lie-Poisson structure matrix,
1335 > \begin{equation}
1336 > J(\pi ) = \left( {\begin{array}{*{20}c}
1337 >   0 & {\pi _3 } & { - \pi _2 }  \\
1338 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1339 >   {\pi _2 } & { - \pi _1 } & 0  \\
1340 > \end{array}} \right)
1341 > \end{equation}
1342 > Thus, the dynamics of free rigid body is governed by
1343 > \begin{equation}
1344 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1345 > \end{equation}
1346 >
1347 > One may notice that each $T_i^r$ in Equation
1348 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1349 > instance, the equations of motion due to $T_1^r$ are given by
1350 > \begin{equation}
1351 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1352 > \label{introEqaution:RBMotionSingleTerm}
1353 > \end{equation}
1354 > where
1355 > \[ R_1  = \left( {\begin{array}{*{20}c}
1356 >   0 & 0 & 0  \\
1357 >   0 & 0 & {\pi _1 }  \\
1358 >   0 & { - \pi _1 } & 0  \\
1359 > \end{array}} \right).
1360 > \]
1361 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1362 > \[
1363 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1364 > Q(0)e^{\Delta tR_1 }
1365 > \]
1366 > with
1367 > \[
1368 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1369 >   0 & 0 & 0  \\
1370 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1371 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1372 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1373 > \]
1374 > To reduce the cost of computing expensive functions in $e^{\Delta
1375 > tR_1 }$, we can use Cayley transformation to obtain a single-aixs
1376 > propagator,
1377 > \[
1378 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1379 > )
1380 > \]
1381 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1382 > manner. In order to construct a second-order symplectic method, we
1383 > split the angular kinetic Hamiltonian function can into five terms
1384 > \[
1385 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1386 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1387 > (\pi _1 ).
1388 > \]
1389 > By concatenating the propagators corresponding to these five terms,
1390 > we can obtain an symplectic integrator,
1391 > \[
1392 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1393 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1394 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1395 > _1 }.
1396 > \]
1397 >
1398 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1399 > $F(\pi )$ and $G(\pi )$ is defined by
1400 > \[
1401 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1402 > )
1403 > \]
1404 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1405 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1406 > conserved quantity in Poisson system. We can easily verify that the
1407 > norm of the angular momentum, $\parallel \pi
1408 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1409 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1410 > then by the chain rule
1411 > \[
1412 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1413 > }}{2})\pi
1414 > \]
1415 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1416 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1417 > Lie-Poisson integrator is found to be both extremely efficient and
1418 > stable. These properties can be explained by the fact the small
1419 > angle approximation is used and the norm of the angular momentum is
1420 > conserved.
1421 >
1422 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1423 > Splitting for Rigid Body}
1424 >
1425 > The Hamiltonian of rigid body can be separated in terms of kinetic
1426 > energy and potential energy,
1427 > \[
1428 > H = T(p,\pi ) + V(q,Q)
1429 > \]
1430 > The equations of motion corresponding to potential energy and
1431 > kinetic energy are listed in the below table,
1432 > \begin{table}
1433 > \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1434 > \begin{center}
1435 > \begin{tabular}{|l|l|}
1436 >  \hline
1437 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1438 >  Potential & Kinetic \\
1439 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1440 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1441 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1442 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1443 >  \hline
1444 > \end{tabular}
1445 > \end{center}
1446 > \end{table}
1447 > A second-order symplectic method is now obtained by the composition
1448 > of the position and velocity propagators,
1449 > \[
1450 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1451 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1452 > \]
1453 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1454 > sub-propagators which corresponding to force and torque
1455 > respectively,
1456 > \[
1457 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1458 > _{\Delta t/2,\tau }.
1459 > \]
1460 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1461 > $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1462 > inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1463 > kinetic energy can be separated to translational kinetic term, $T^t
1464 > (p)$, and rotational kinetic term, $T^r (\pi )$,
1465 > \begin{equation}
1466 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1467 > \end{equation}
1468 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1469 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1470 > corresponding propagators are given by
1471 > \[
1472 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1473 > _{\Delta t,T^r }.
1474 > \]
1475 > Finally, we obtain the overall symplectic propagators for freely
1476 > moving rigid bodies
1477 > \begin{equation}
1478 > \begin{array}{c}
1479 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1480 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1481 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1482 > \end{array}
1483 > \label{introEquation:overallRBFlowMaps}
1484 > \end{equation}
1485 >
1486 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1487 > As an alternative to newtonian dynamics, Langevin dynamics, which
1488 > mimics a simple heat bath with stochastic and dissipative forces,
1489 > has been applied in a variety of studies. This section will review
1490 > the theory of Langevin dynamics. A brief derivation of generalized
1491 > Langevin equation will be given first. Following that, we will
1492 > discuss the physical meaning of the terms appearing in the equation
1493 > as well as the calculation of friction tensor from hydrodynamics
1494 > theory.
1495 >
1496 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1497 >
1498 > A harmonic bath model, in which an effective set of harmonic
1499 > oscillators are used to mimic the effect of a linearly responding
1500 > environment, has been widely used in quantum chemistry and
1501 > statistical mechanics. One of the successful applications of
1502 > Harmonic bath model is the derivation of the Generalized Langevin
1503 > Dynamics (GLE). Lets consider a system, in which the degree of
1504 > freedom $x$ is assumed to couple to the bath linearly, giving a
1505 > Hamiltonian of the form
1506 > \begin{equation}
1507 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1508 > \label{introEquation:bathGLE}.
1509 > \end{equation}
1510 > Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1511 > with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1512 > \[
1513 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1514 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1515 > \right\}}
1516 > \]
1517 > where the index $\alpha$ runs over all the bath degrees of freedom,
1518 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1519 > the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1520 > coupling,
1521 > \[
1522 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1523 > \]
1524 > where $g_\alpha$ are the coupling constants between the bath
1525 > coordinates ($x_ \alpha$) and the system coordinate ($x$).
1526 > Introducing
1527 > \[
1528 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1529 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1530 > \] and combining the last two terms in Equation
1531 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1532 > Hamiltonian as
1533 > \[
1534 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1535 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1536 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1537 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1538 > \]
1539 > Since the first two terms of the new Hamiltonian depend only on the
1540 > system coordinates, we can get the equations of motion for
1541 > Generalized Langevin Dynamics by Hamilton's equations,
1542 > \begin{equation}
1543 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1544 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1545 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1546 > \label{introEquation:coorMotionGLE}
1547 > \end{equation}
1548 > and
1549 > \begin{equation}
1550 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1551 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1552 > \label{introEquation:bathMotionGLE}
1553 > \end{equation}
1554 >
1555 > In order to derive an equation for $x$, the dynamics of the bath
1556 > variables $x_\alpha$ must be solved exactly first. As an integral
1557 > transform which is particularly useful in solving linear ordinary
1558 > differential equations,the Laplace transform is the appropriate tool
1559 > to solve this problem. The basic idea is to transform the difficult
1560 > differential equations into simple algebra problems which can be
1561 > solved easily. Then, by applying the inverse Laplace transform, also
1562 > known as the Bromwich integral, we can retrieve the solutions of the
1563 > original problems.
1564 >
1565 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1566 > transform of f(t) is a new function defined as
1567 > \[
1568 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1569 > \]
1570 > where  $p$ is real and  $L$ is called the Laplace Transform
1571 > Operator. Below are some important properties of Laplace transform
1572 >
1573 > \begin{eqnarray*}
1574 > L(x + y)  & = & L(x) + L(y) \\
1575 > L(ax)     & = & aL(x) \\
1576 > L(\dot x) & = & pL(x) - px(0) \\
1577 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1578 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1579 > \end{eqnarray*}
1580 >
1581 >
1582 > Applying the Laplace transform to the bath coordinates, we obtain
1583 > \begin{eqnarray*}
1584 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1585 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1586 > \end{eqnarray*}
1587 >
1588 > By the same way, the system coordinates become
1589 > \begin{eqnarray*}
1590 > mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1591 >  & & \mbox{} - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1592 > \end{eqnarray*}
1593 >
1594 > With the help of some relatively important inverse Laplace
1595 > transformations:
1596 > \[
1597 > \begin{array}{c}
1598 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1599 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1600 > L(1) = \frac{1}{p} \\
1601 > \end{array}
1602 > \]
1603 > , we obtain
1604 > \begin{eqnarray*}
1605 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1606 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1607 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1608 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1609 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1610 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1611 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1612 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1613 > \end{eqnarray*}
1614 > \begin{eqnarray*}
1615 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1616 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1617 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1618 > t)\dot x(t - \tau )d} \tau }  \\
1619 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1620 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1621 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1622 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1623 > \end{eqnarray*}
1624 > Introducing a \emph{dynamic friction kernel}
1625 > \begin{equation}
1626 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1627 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1628 > \label{introEquation:dynamicFrictionKernelDefinition}
1629 > \end{equation}
1630 > and \emph{a random force}
1631 > \begin{equation}
1632 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1633 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1634 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1635 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1636 > \label{introEquation:randomForceDefinition}
1637 > \end{equation}
1638 > the equation of motion can be rewritten as
1639 > \begin{equation}
1640 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1641 > (t)\dot x(t - \tau )d\tau }  + R(t)
1642 > \label{introEuqation:GeneralizedLangevinDynamics}
1643 > \end{equation}
1644 > which is known as the \emph{generalized Langevin equation}.
1645 >
1646 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1647 >
1648 > One may notice that $R(t)$ depends only on initial conditions, which
1649 > implies it is completely deterministic within the context of a
1650 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1651 > uncorrelated to $x$ and $\dot x$,
1652 > \[
1653 > \begin{array}{l}
1654 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1655 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1656 > \end{array}
1657 > \]
1658 > This property is what we expect from a truly random process. As long
1659 > as the model chosen for $R(t)$ was a gaussian distribution in
1660 > general, the stochastic nature of the GLE still remains.
1661 >
1662 > %dynamic friction kernel
1663 > The convolution integral
1664 > \[
1665 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1666 > \]
1667 > depends on the entire history of the evolution of $x$, which implies
1668 > that the bath retains memory of previous motions. In other words,
1669 > the bath requires a finite time to respond to change in the motion
1670 > of the system. For a sluggish bath which responds slowly to changes
1671 > in the system coordinate, we may regard $\xi(t)$ as a constant
1672 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1673 > \[
1674 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1675 > \]
1676 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1677 > \[
1678 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1679 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1680 > \]
1681 > which can be used to describe the effect of dynamic caging in
1682 > viscous solvents. The other extreme is the bath that responds
1683 > infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1684 > taken as a $delta$ function in time:
1685 > \[
1686 > \xi (t) = 2\xi _0 \delta (t)
1687 > \]
1688 > Hence, the convolution integral becomes
1689 > \[
1690 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1691 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1692 > \]
1693 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1694 > \begin{equation}
1695 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1696 > x(t) + R(t) \label{introEquation:LangevinEquation}
1697 > \end{equation}
1698 > which is known as the Langevin equation. The static friction
1699 > coefficient $\xi _0$ can either be calculated from spectral density
1700 > or be determined by Stokes' law for regular shaped particles. A
1701 > briefly review on calculating friction tensor for arbitrary shaped
1702 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1703 >
1704 > \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1705 >
1706 > Defining a new set of coordinates,
1707 > \[
1708 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1709 > ^2 }}x(0)
1710 > \],
1711 > we can rewrite $R(T)$ as
1712 > \[
1713 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1714 > \]
1715 > And since the $q$ coordinates are harmonic oscillators,
1716 >
1717 > \begin{eqnarray*}
1718 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1719 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1720 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1721 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1722 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1723 >  & = &kT\xi (t) \\
1724 > \end{eqnarray*}
1725 >
1726 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1727 > \begin{equation}
1728 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1729 > \label{introEquation:secondFluctuationDissipation}.
1730 > \end{equation}
1731 > In effect, it acts as a constraint on the possible ways in which one
1732 > can model the random force and friction kernel.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines