ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2698
Committed: Fri Apr 7 22:05:48 2006 UTC (18 years, 3 months ago) by tim
Content type: application/x-tex
File size: 25552 byte(s)
Log Message:
adding Geometric Properties

File Contents

# Content
1 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2
3 \section{\label{introSection:classicalMechanics}Classical
4 Mechanics}
5
6 Closely related to Classical Mechanics, Molecular Dynamics
7 simulations are carried out by integrating the equations of motion
8 for a given system of particles. There are three fundamental ideas
9 behind classical mechanics. Firstly, One can determine the state of
10 a mechanical system at any time of interest; Secondly, all the
11 mechanical properties of the system at that time can be determined
12 by combining the knowledge of the properties of the system with the
13 specification of this state; Finally, the specification of the state
14 when further combine with the laws of mechanics will also be
15 sufficient to predict the future behavior of the system.
16
17 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 The discovery of Newton's three laws of mechanics which govern the
19 motion of particles is the foundation of the classical mechanics.
20 Newton¡¯s first law defines a class of inertial frames. Inertial
21 frames are reference frames where a particle not interacting with
22 other bodies will move with constant speed in the same direction.
23 With respect to inertial frames Newton¡¯s second law has the form
24 \begin{equation}
25 F = \frac {dp}{dt} = \frac {mv}{dt}
26 \label{introEquation:newtonSecondLaw}
27 \end{equation}
28 A point mass interacting with other bodies moves with the
29 acceleration along the direction of the force acting on it. Let
30 $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 Newton¡¯s third law states that
33 \begin{equation}
34 F_ij = -F_ji
35 \label{introEquation:newtonThirdLaw}
36 \end{equation}
37
38 Conservation laws of Newtonian Mechanics play very important roles
39 in solving mechanics problems. The linear momentum of a particle is
40 conserved if it is free or it experiences no force. The second
41 conservation theorem concerns the angular momentum of a particle.
42 The angular momentum $L$ of a particle with respect to an origin
43 from which $r$ is measured is defined to be
44 \begin{equation}
45 L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 \end{equation}
47 The torque $\tau$ with respect to the same origin is defined to be
48 \begin{equation}
49 N \equiv r \times F \label{introEquation:torqueDefinition}
50 \end{equation}
51 Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 \[
53 \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 \dot p)
55 \]
56 since
57 \[
58 \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 \]
60 thus,
61 \begin{equation}
62 \dot L = r \times \dot p = N
63 \end{equation}
64 If there are no external torques acting on a body, the angular
65 momentum of it is conserved. The last conservation theorem state
66 that if all forces are conservative, Energy
67 \begin{equation}E = T + V \label{introEquation:energyConservation}
68 \end{equation}
69 is conserved. All of these conserved quantities are
70 important factors to determine the quality of numerical integration
71 scheme for rigid body \cite{Dullweber1997}.
72
73 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74
75 Newtonian Mechanics suffers from two important limitations: it
76 describes their motion in special cartesian coordinate systems.
77 Another limitation of Newtonian mechanics becomes obvious when we
78 try to describe systems with large numbers of particles. It becomes
79 very difficult to predict the properties of the system by carrying
80 out calculations involving the each individual interaction between
81 all the particles, even if we know all of the details of the
82 interaction. In order to overcome some of the practical difficulties
83 which arise in attempts to apply Newton's equation to complex
84 system, alternative procedures may be developed.
85
86 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 Principle}
88
89 Hamilton introduced the dynamical principle upon which it is
90 possible to base all of mechanics and, indeed, most of classical
91 physics. Hamilton's Principle may be stated as follow,
92
93 The actual trajectory, along which a dynamical system may move from
94 one point to another within a specified time, is derived by finding
95 the path which minimizes the time integral of the difference between
96 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 \begin{equation}
98 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 \label{introEquation:halmitonianPrinciple1}
100 \end{equation}
101
102 For simple mechanical systems, where the forces acting on the
103 different part are derivable from a potential and the velocities are
104 small compared with that of light, the Lagrangian function $L$ can
105 be define as the difference between the kinetic energy of the system
106 and its potential energy,
107 \begin{equation}
108 L \equiv K - U = L(q_i ,\dot q_i ) ,
109 \label{introEquation:lagrangianDef}
110 \end{equation}
111 then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 \begin{equation}
113 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 \label{introEquation:halmitonianPrinciple2}
115 \end{equation}
116
117 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 Equations of Motion in Lagrangian Mechanics}
119
120 for a holonomic system of $f$ degrees of freedom, the equations of
121 motion in the Lagrangian form is
122 \begin{equation}
123 \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 \label{introEquation:eqMotionLagrangian}
126 \end{equation}
127 where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 generalized velocity.
129
130 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131
132 Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 classical mechanics. If the potential energy of a system is
135 independent of generalized velocities, the generalized momenta can
136 be defined as
137 \begin{equation}
138 p_i = \frac{\partial L}{\partial \dot q_i}
139 \label{introEquation:generalizedMomenta}
140 \end{equation}
141 The Lagrange equations of motion are then expressed by
142 \begin{equation}
143 p_i = \frac{{\partial L}}{{\partial q_i }}
144 \label{introEquation:generalizedMomentaDot}
145 \end{equation}
146
147 With the help of the generalized momenta, we may now define a new
148 quantity $H$ by the equation
149 \begin{equation}
150 H = \sum\limits_k {p_k \dot q_k } - L ,
151 \label{introEquation:hamiltonianDefByLagrangian}
152 \end{equation}
153 where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154 $L$ is the Lagrangian function for the system.
155
156 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 one can obtain
158 \begin{equation}
159 dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160 \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161 L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162 L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 \end{equation}
164 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165 second and fourth terms in the parentheses cancel. Therefore,
166 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 \begin{equation}
168 dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169 \right)} - \frac{{\partial L}}{{\partial t}}dt
170 \label{introEquation:diffHamiltonian2}
171 \end{equation}
172 By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 find
174 \begin{equation}
175 \frac{{\partial H}}{{\partial p_k }} = q_k
176 \label{introEquation:motionHamiltonianCoordinate}
177 \end{equation}
178 \begin{equation}
179 \frac{{\partial H}}{{\partial q_k }} = - p_k
180 \label{introEquation:motionHamiltonianMomentum}
181 \end{equation}
182 and
183 \begin{equation}
184 \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185 t}}
186 \label{introEquation:motionHamiltonianTime}
187 \end{equation}
188
189 Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 equation of motion. Due to their symmetrical formula, they are also
192 known as the canonical equations of motions \cite{Goldstein01}.
193
194 An important difference between Lagrangian approach and the
195 Hamiltonian approach is that the Lagrangian is considered to be a
196 function of the generalized velocities $\dot q_i$ and the
197 generalized coordinates $q_i$, while the Hamiltonian is considered
198 to be a function of the generalized momenta $p_i$ and the conjugate
199 generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 appropriate for application to statistical mechanics and quantum
201 mechanics, since it treats the coordinate and its time derivative as
202 independent variables and it only works with 1st-order differential
203 equations\cite{Marion90}.
204
205 In Newtonian Mechanics, a system described by conservative forces
206 conserves the total energy \ref{introEquation:energyConservation}.
207 It follows that Hamilton's equations of motion conserve the total
208 Hamiltonian.
209 \begin{equation}
210 \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212 }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213 H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 \end{equation}
217
218 \section{\label{introSection:statisticalMechanics}Statistical
219 Mechanics}
220
221 The thermodynamic behaviors and properties of Molecular Dynamics
222 simulation are governed by the principle of Statistical Mechanics.
223 The following section will give a brief introduction to some of the
224 Statistical Mechanics concepts presented in this dissertation.
225
226 \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227
228 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
229
230 Various thermodynamic properties can be calculated from Molecular
231 Dynamics simulation. By comparing experimental values with the
232 calculated properties, one can determine the accuracy of the
233 simulation and the quality of the underlying model. However, both of
234 experiment and computer simulation are usually performed during a
235 certain time interval and the measurements are averaged over a
236 period of them which is different from the average behavior of
237 many-body system in Statistical Mechanics. Fortunately, Ergodic
238 Hypothesis is proposed to make a connection between time average and
239 ensemble average. It states that time average and average over the
240 statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
241 \begin{equation}
242 \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
243 \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
244 {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
245 \end{equation}
246 where $\langle A \rangle_t$ is an equilibrium value of a physical
247 quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
248 function. If an observation is averaged over a sufficiently long
249 time (longer than relaxation time), all accessible microstates in
250 phase space are assumed to be equally probed, giving a properly
251 weighted statistical average. This allows the researcher freedom of
252 choice when deciding how best to measure a given observable. In case
253 an ensemble averaged approach sounds most reasonable, the Monte
254 Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
255 system lends itself to a time averaging approach, the Molecular
256 Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
257 will be the best choice\cite{Frenkel1996}.
258
259 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
260 A variety of numerical integrators were proposed to simulate the
261 motions. They usually begin with an initial conditionals and move
262 the objects in the direction governed by the differential equations.
263 However, most of them ignore the hidden physical law contained
264 within the equations. Since 1990, geometric integrators, which
265 preserve various phase-flow invariants such as symplectic structure,
266 volume and time reversal symmetry, are developed to address this
267 issue. The velocity verlet method, which happens to be a simple
268 example of symplectic integrator, continues to gain its popularity
269 in molecular dynamics community. This fact can be partly explained
270 by its geometric nature.
271
272 \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
273 A \emph{manifold} is an abstract mathematical space. It locally
274 looks like Euclidean space, but when viewed globally, it may have
275 more complicate structure. A good example of manifold is the surface
276 of Earth. It seems to be flat locally, but it is round if viewed as
277 a whole. A \emph{differentiable manifold} (also known as
278 \emph{smooth manifold}) is a manifold with an open cover in which
279 the covering neighborhoods are all smoothly isomorphic to one
280 another. In other words,it is possible to apply calculus on
281 \emph{differentiable manifold}. A \emph{symplectic manifold} is
282 defined as a pair $(M, \omega)$ which consisting of a
283 \emph{differentiable manifold} $M$ and a close, non-degenerated,
284 bilinear symplectic form, $\omega$. A symplectic form on a vector
285 space $V$ is a function $\omega(x, y)$ which satisfies
286 $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
287 \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
288 $\omega(x, x) = 0$. Cross product operation in vector field is an
289 example of symplectic form.
290
291 One of the motivations to study \emph{symplectic manifold} in
292 Hamiltonian Mechanics is that a symplectic manifold can represent
293 all possible configurations of the system and the phase space of the
294 system can be described by it's cotangent bundle. Every symplectic
295 manifold is even dimensional. For instance, in Hamilton equations,
296 coordinate and momentum always appear in pairs.
297
298 Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
299 \[
300 f : M \rightarrow N
301 \]
302 is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303 the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304 Canonical transformation is an example of symplectomorphism in
305 classical mechanics.
306
307 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
308
309 For a ordinary differential system defined as
310 \begin{equation}
311 \dot x = f(x)
312 \end{equation}
313 where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
314 \begin{equation}
315 f(r) = J\nabla _x H(r)
316 \end{equation}
317 $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318 matrix
319 \begin{equation}
320 J = \left( {\begin{array}{*{20}c}
321 0 & I \\
322 { - I} & 0 \\
323 \end{array}} \right)
324 \label{introEquation:canonicalMatrix}
325 \end{equation}
326 where $I$ is an identity matrix. Using this notation, Hamiltonian
327 system can be rewritten as,
328 \begin{equation}
329 \frac{d}{{dt}}x = J\nabla _x H(x)
330 \label{introEquation:compactHamiltonian}
331 \end{equation}In this case, $f$ is
332 called a \emph{Hamiltonian vector field}.
333
334 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
335 \begin{equation}
336 \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
337 \end{equation}
338 The most obvious change being that matrix $J$ now depends on $x$.
339 The free rigid body is an example of Poisson system (actually a
340 Lie-Poisson system) with Hamiltonian function of angular kinetic
341 energy.
342 \begin{equation}
343 J(\pi ) = \left( {\begin{array}{*{20}c}
344 0 & {\pi _3 } & { - \pi _2 } \\
345 { - \pi _3 } & 0 & {\pi _1 } \\
346 {\pi _2 } & { - \pi _1 } & 0 \\
347 \end{array}} \right)
348 \end{equation}
349
350 \begin{equation}
351 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 \end{equation}
354
355 \subsection{\label{introSection:geometricProperties}Geometric Properties}
356 Let $x(t)$ be the exact solution of the ODE system,
357 \begin{equation}
358 \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
359 \end{equation}
360 The exact flow(solution) $\varphi_\tau$ is defined by
361 \[
362 x(t+\tau) =\varphi_\tau(x(t))
363 \]
364 where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365 space to itself. In most cases, it is not easy to find the exact
366 flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 which is usually called integrator. The order of an integrator
368 $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 order $p$,
370 \begin{equation}
371 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
372 \end{equation}
373
374 The hidden geometric properties of ODE and its flow play important
375 roles in numerical studies. The flow of a Hamiltonian vector field
376 on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
377 the flow of Hamiltonian vector field, $\varphi$ is a
378 \emph{symplectic} flow if it satisfies,
379 \begin{equation}
380 d \varphi^T J d \varphi = J.
381 \end{equation}
382 According to Liouville's theorem, the symplectic volume is invariant
383 under a Hamiltonian flow, which is the basis for classical
384 statistical mechanics. As to the Poisson system,
385 \begin{equation}
386 d\varphi ^T Jd\varphi = J \circ \varphi
387 \end{equation}
388 is the property must be preserved by the integrator. It is possible
389 to construct a \emph{volume-preserving} flow for a source free($
390 \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi =
391 1$. Changing the variables $y = h(x)$ in a
392 ODE\ref{introEquation:ODE} will result in a new system,
393 \[
394 \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
395 \]
396 The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
397 In other words, the flow of this vector field is reversible if and
398 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $. When
399 designing any numerical methods, one should always try to preserve
400 the structural properties of the original ODE and its flow.
401
402 \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
403
404 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
405
406 As a special discipline of molecular modeling, Molecular dynamics
407 has proven to be a powerful tool for studying the functions of
408 biological systems, providing structural, thermodynamic and
409 dynamical information.
410
411 \subsection{\label{introSec:mdInit}Initialization}
412
413 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
414
415 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
416
417 A rigid body is a body in which the distance between any two given
418 points of a rigid body remains constant regardless of external
419 forces exerted on it. A rigid body therefore conserves its shape
420 during its motion.
421
422 Applications of dynamics of rigid bodies.
423
424 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
425
426 \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
427
428 \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
429
430 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
431
432 \section{\label{introSection:correlationFunctions}Correlation Functions}
433
434 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
435
436 \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
437
438 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
439
440 \begin{equation}
441 H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
442 \label{introEquation:bathGLE}
443 \end{equation}
444 where $H_B$ is harmonic bath Hamiltonian,
445 \[
446 H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
447 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
448 \]
449 and $\Delta U$ is bilinear system-bath coupling,
450 \[
451 \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
452 \]
453 Completing the square,
454 \[
455 H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
456 {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
457 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
458 w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
459 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
460 \]
461 and putting it back into Eq.~\ref{introEquation:bathGLE},
462 \[
463 H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
464 {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
465 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
466 w_\alpha ^2 }}x} \right)^2 } \right\}}
467 \]
468 where
469 \[
470 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
471 }}{{2m_\alpha w_\alpha ^2 }}} x^2
472 \]
473 Since the first two terms of the new Hamiltonian depend only on the
474 system coordinates, we can get the equations of motion for
475 Generalized Langevin Dynamics by Hamilton's equations
476 \ref{introEquation:motionHamiltonianCoordinate,
477 introEquation:motionHamiltonianMomentum},
478 \begin{align}
479 \dot p &= - \frac{{\partial H}}{{\partial x}}
480 &= m\ddot x
481 &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
482 \label{introEq:Lp5}
483 \end{align}
484 , and
485 \begin{align}
486 \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
487 &= m\ddot x_\alpha
488 &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
489 \end{align}
490
491 \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
492
493 \[
494 L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
495 \]
496
497 \[
498 L(x + y) = L(x) + L(y)
499 \]
500
501 \[
502 L(ax) = aL(x)
503 \]
504
505 \[
506 L(\dot x) = pL(x) - px(0)
507 \]
508
509 \[
510 L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
511 \]
512
513 \[
514 L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
515 \]
516
517 Some relatively important transformation,
518 \[
519 L(\cos at) = \frac{p}{{p^2 + a^2 }}
520 \]
521
522 \[
523 L(\sin at) = \frac{a}{{p^2 + a^2 }}
524 \]
525
526 \[
527 L(1) = \frac{1}{p}
528 \]
529
530 First, the bath coordinates,
531 \[
532 p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
533 _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
534 }}L(x)
535 \]
536 \[
537 L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
538 px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
539 \]
540 Then, the system coordinates,
541 \begin{align}
542 mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
543 \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
544 }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
545 (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
546 }}\omega _\alpha ^2 L(x)} \right\}}
547 %
548 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
549 \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
550 - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
551 - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
552 \end{align}
553 Then, the inverse transform,
554
555 \begin{align}
556 m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
557 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
558 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
559 _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
560 - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
561 (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
562 _\alpha }}\sin (\omega _\alpha t)} } \right\}}
563 %
564 &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
565 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
566 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
567 t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
568 {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
569 \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
570 \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
571 (\omega _\alpha t)} \right\}}
572 \end{align}
573
574 \begin{equation}
575 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
576 (t)\dot x(t - \tau )d\tau } + R(t)
577 \label{introEuqation:GeneralizedLangevinDynamics}
578 \end{equation}
579 %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
580 %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
581 \[
582 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
583 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
584 \]
585 For an infinite harmonic bath, we can use the spectral density and
586 an integral over frequencies.
587
588 \[
589 R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
590 - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
591 \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
592 (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
593 \]
594 The random forces depend only on initial conditions.
595
596 \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
597 So we can define a new set of coordinates,
598 \[
599 q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
600 ^2 }}x(0)
601 \]
602 This makes
603 \[
604 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
605 \]
606 And since the $q$ coordinates are harmonic oscillators,
607 \[
608 \begin{array}{l}
609 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
610 \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
611 \end{array}
612 \]
613
614 \begin{align}
615 \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
616 {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
617 (t)q_\beta (0)} \right\rangle } }
618 %
619 &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
620 \right\rangle \cos (\omega _\alpha t)}
621 %
622 &= kT\xi (t)
623 \end{align}
624
625 \begin{equation}
626 \xi (t) = \left\langle {R(t)R(0)} \right\rangle
627 \label{introEquation:secondFluctuationDissipation}
628 \end{equation}
629
630 \section{\label{introSection:hydroynamics}Hydrodynamics}
631
632 \subsection{\label{introSection:frictionTensor} Friction Tensor}
633 \subsection{\label{introSection:analyticalApproach}Analytical
634 Approach}
635
636 \subsection{\label{introSection:approximationApproach}Approximation
637 Approach}
638
639 \subsection{\label{introSection:centersRigidBody}Centers of Rigid
640 Body}