ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2693 by tim, Wed Apr 5 03:44:32 2006 UTC vs.
Revision 2730 by tim, Mon Apr 24 18:49:32 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
4
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
3   \section{\label{introSection:classicalMechanics}Classical
4   Mechanics}
5  
# Line 22 | Line 15 | sufficient to predict the future behavior of the syste
15   sufficient to predict the future behavior of the system.
16  
17   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 + The discovery of Newton's three laws of mechanics which govern the
19 + motion of particles is the foundation of the classical mechanics.
20 + Newton¡¯s first law defines a class of inertial frames. Inertial
21 + frames are reference frames where a particle not interacting with
22 + other bodies will move with constant speed in the same direction.
23 + With respect to inertial frames Newton¡¯s second law has the form
24 + \begin{equation}
25 + F = \frac {dp}{dt} = \frac {mv}{dt}
26 + \label{introEquation:newtonSecondLaw}
27 + \end{equation}
28 + A point mass interacting with other bodies moves with the
29 + acceleration along the direction of the force acting on it. Let
30 + $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 + $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 + Newton¡¯s third law states that
33 + \begin{equation}
34 + F_{ij} = -F_{ji}
35 + \label{introEquation:newtonThirdLaw}
36 + \end{equation}
37  
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + N \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = N
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, Energy
67 + \begin{equation}E = T + V \label{introEquation:energyConservation}
68 + \end{equation}
69 + is conserved. All of these conserved quantities are
70 + important factors to determine the quality of numerical integration
71 + scheme for rigid body \cite{Dullweber1997}.
72 +
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
75   Newtonian Mechanics suffers from two important limitations: it
# Line 36 | Line 83 | system, alternative procedures may be developed.
83   which arise in attempts to apply Newton's equation to complex
84   system, alternative procedures may be developed.
85  
86 < \subsection{\label{introSection:halmiltonPrinciple}Hamilton's
86 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87   Principle}
88  
89   Hamilton introduced the dynamical principle upon which it is
# Line 46 | Line 93 | the kinetic, $K$, and potential energies, $U$.
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$.
96 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 67 | Line 114 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
114   \label{introEquation:halmitonianPrinciple2}
115   \end{equation}
116  
117 < \subsection{\label{introSection:equationOfMotionLagrangian}The
117 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 142 | Line 189 | known as the canonical equations of motions.
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions.
192 > known as the canonical equations of motions \cite{Goldstein01}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 153 | Line 200 | equations.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations.
203 > equations\cite{Marion90}.
204  
205 < \subsection{\label{introSection:poissonBrackets}Poisson Brackets}
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209 > \begin{equation}
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 > \end{equation}
217  
160 \subsection{\label{introSection:canonicalTransformation}Canonical
161 Transformation}
162
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221 < The thermodynamic behaviors and properties  of Molecular Dynamics
221 > The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection::ensemble}Ensemble}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 >
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381  
382 + Liouville's theorem states that the distribution function is
383 + constant along any trajectory in phase space. In classical
384 + statistical mechanics, since the number of particles in the system
385 + is huge, we may be able to believe the system is stationary,
386 + \begin{equation}
387 + \frac{{\partial \rho }}{{\partial t}} = 0.
388 + \label{introEquation:stationary}
389 + \end{equation}
390 + In such stationary system, the density of distribution $\rho$ can be
391 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 + distribution,
393 + \begin{equation}
394 + \rho  \propto e^{ - \beta H}
395 + \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 +
463 + Various thermodynamic properties can be calculated from Molecular
464 + Dynamics simulation. By comparing experimental values with the
465 + calculated properties, one can determine the accuracy of the
466 + simulation and the quality of the underlying model. However, both of
467 + experiment and computer simulation are usually performed during a
468 + certain time interval and the measurements are averaged over a
469 + period of them which is different from the average behavior of
470 + many-body system in Statistical Mechanics. Fortunately, Ergodic
471 + Hypothesis is proposed to make a connection between time average and
472 + ensemble average. It states that time average and average over the
473 + statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474 + \begin{equation}
475 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 + \end{equation}
479 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 + distribution function. If an observation is averaged over a
482 + sufficiently long time (longer than relaxation time), all accessible
483 + microstates in phase space are assumed to be equally probed, giving
484 + a properly weighted statistical average. This allows the researcher
485 + freedom of choice when deciding how best to measure a given
486 + observable. In case an ensemble averaged approach sounds most
487 + reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 + utilized. Or if the system lends itself to a time averaging
489 + approach, the Molecular Dynamics techniques in
490 + Sec.~\ref{introSection:molecularDynamics} will be the best
491 + choice\cite{Frenkel1996}.
492 +
493 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 + A variety of numerical integrators were proposed to simulate the
495 + motions. They usually begin with an initial conditionals and move
496 + the objects in the direction governed by the differential equations.
497 + However, most of them ignore the hidden physical law contained
498 + within the equations. Since 1990, geometric integrators, which
499 + preserve various phase-flow invariants such as symplectic structure,
500 + volume and time reversal symmetry, are developed to address this
501 + issue. The velocity verlet method, which happens to be a simple
502 + example of symplectic integrator, continues to gain its popularity
503 + in molecular dynamics community. This fact can be partly explained
504 + by its geometric nature.
505 +
506 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 + A \emph{manifold} is an abstract mathematical space. It locally
508 + looks like Euclidean space, but when viewed globally, it may have
509 + more complicate structure. A good example of manifold is the surface
510 + of Earth. It seems to be flat locally, but it is round if viewed as
511 + a whole. A \emph{differentiable manifold} (also known as
512 + \emph{smooth manifold}) is a manifold with an open cover in which
513 + the covering neighborhoods are all smoothly isomorphic to one
514 + another. In other words,it is possible to apply calculus on
515 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 + defined as a pair $(M, \omega)$ which consisting of a
517 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 + bilinear symplectic form, $\omega$. A symplectic form on a vector
519 + space $V$ is a function $\omega(x, y)$ which satisfies
520 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 + $\omega(x, x) = 0$. Cross product operation in vector field is an
523 + example of symplectic form.
524 +
525 + One of the motivations to study \emph{symplectic manifold} in
526 + Hamiltonian Mechanics is that a symplectic manifold can represent
527 + all possible configurations of the system and the phase space of the
528 + system can be described by it's cotangent bundle. Every symplectic
529 + manifold is even dimensional. For instance, in Hamilton equations,
530 + coordinate and momentum always appear in pairs.
531 +
532 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 + \[
534 + f : M \rightarrow N
535 + \]
536 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 + Canonical transformation is an example of symplectomorphism in
539 + classical mechanics.
540 +
541 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 +
543 + For a ordinary differential system defined as
544 + \begin{equation}
545 + \dot x = f(x)
546 + \end{equation}
547 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 + \begin{equation}
549 + f(r) = J\nabla _x H(r).
550 + \end{equation}
551 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 + matrix
553 + \begin{equation}
554 + J = \left( {\begin{array}{*{20}c}
555 +   0 & I  \\
556 +   { - I} & 0  \\
557 + \end{array}} \right)
558 + \label{introEquation:canonicalMatrix}
559 + \end{equation}
560 + where $I$ is an identity matrix. Using this notation, Hamiltonian
561 + system can be rewritten as,
562 + \begin{equation}
563 + \frac{d}{{dt}}x = J\nabla _x H(x)
564 + \label{introEquation:compactHamiltonian}
565 + \end{equation}In this case, $f$ is
566 + called a \emph{Hamiltonian vector field}.
567 +
568 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 + \begin{equation}
570 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 + \end{equation}
572 + The most obvious change being that matrix $J$ now depends on $x$.
573 +
574 + \subsection{\label{introSection:exactFlow}Exact Flow}
575 +
576 + Let $x(t)$ be the exact solution of the ODE system,
577 + \begin{equation}
578 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579 + \end{equation}
580 + The exact flow(solution) $\varphi_\tau$ is defined by
581 + \[
582 + x(t+\tau) =\varphi_\tau(x(t))
583 + \]
584 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 + space to itself. The flow has the continuous group property,
586 + \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611 + \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615 + The hidden geometric properties of ODE and its flow play important
616 + roles in numerical studies. Many of them can be found in systems
617 + which occur naturally in applications.
618 +
619 + Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 + a \emph{symplectic} flow if it satisfies,
621 + \begin{equation}
622 + {\varphi '}^T J \varphi ' = J.
623 + \end{equation}
624 + According to Liouville's theorem, the symplectic volume is invariant
625 + under a Hamiltonian flow, which is the basis for classical
626 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 + field on a symplectic manifold can be shown to be a
628 + symplectomorphism. As to the Poisson system,
629 + \begin{equation}
630 + {\varphi '}^T J \varphi ' = J \circ \varphi
631 + \end{equation}
632 + is the property must be preserved by the integrator.
633 +
634 + It is possible to construct a \emph{volume-preserving} flow for a
635 + source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 + \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 + be volume-preserving.
638 +
639 + Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 + will result in a new system,
641 + \[
642 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643 + \]
644 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645 + In other words, the flow of this vector field is reversible if and
646 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647 +
648 + A \emph{first integral}, or conserved quantity of a general
649 + differential function is a function $ G:R^{2d}  \to R^d $ which is
650 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 + \[
652 + \frac{{dG(x(t))}}{{dt}} = 0.
653 + \]
654 + Using chain rule, one may obtain,
655 + \[
656 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 + \]
658 + which is the condition for conserving \emph{first integral}. For a
659 + canonical Hamiltonian system, the time evolution of an arbitrary
660 + smooth function $G$ is given by,
661 + \begin{equation}
662 + \begin{array}{c}
663 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 + \end{array}
666 + \label{introEquation:firstIntegral1}
667 + \end{equation}
668 + Using poisson bracket notion, Equation
669 + \ref{introEquation:firstIntegral1} can be rewritten as
670 + \[
671 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 + \]
673 + Therefore, the sufficient condition for $G$ to be the \emph{first
674 + integral} of a Hamiltonian system is
675 + \[
676 + \left\{ {G,H} \right\} = 0.
677 + \]
678 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 + 0$.
681 +
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 + A lot of well established and very effective numerical methods have
688 + been successful precisely because of their symplecticities even
689 + though this fact was not recognized when they were first
690 + constructed. The most famous example is leapfrog methods in
691 + molecular dynamics. In general, symplectic integrators can be
692 + constructed using one of four different methods.
693 + \begin{enumerate}
694 + \item Generating functions
695 + \item Variational methods
696 + \item Runge-Kutta methods
697 + \item Splitting methods
698 + \end{enumerate}
699 +
700 + Generating function tends to lead to methods which are cumbersome
701 + and difficult to use. In dissipative systems, variational methods
702 + can capture the decay of energy accurately. Since their
703 + geometrically unstable nature against non-Hamiltonian perturbations,
704 + ordinary implicit Runge-Kutta methods are not suitable for
705 + Hamiltonian system. Recently, various high-order explicit
706 + Runge--Kutta methods have been developed to overcome this
707 + instability. However, due to computational penalty involved in
708 + implementing the Runge-Kutta methods, they do not attract too much
709 + attention from Molecular Dynamics community. Instead, splitting have
710 + been widely accepted since they exploit natural decompositions of
711 + the system\cite{Tuckerman92}.
712 +
713 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 +
715 + The main idea behind splitting methods is to decompose the discrete
716 + $\varphi_h$ as a composition of simpler flows,
717 + \begin{equation}
718 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 + \varphi _{h_n }
720 + \label{introEquation:FlowDecomposition}
721 + \end{equation}
722 + where each of the sub-flow is chosen such that each represent a
723 + simpler integration of the system.
724 +
725 + Suppose that a Hamiltonian system takes the form,
726 + \[
727 + H = H_1 + H_2.
728 + \]
729 + Here, $H_1$ and $H_2$ may represent different physical processes of
730 + the system. For instance, they may relate to kinetic and potential
731 + energy respectively, which is a natural decomposition of the
732 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 + order is then given by the Lie-Trotter formula
735 + \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 + '\phi ' = \phi '^T J\phi ' = J,
748 + \label{introEquation:SymplecticFlowComposition}
749 + \end{equation}
750 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 + splitting in this context automatically generates a symplectic map.
752 +
753 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 + introduces local errors proportional to $h^2$, while Strang
755 + splitting gives a second-order decomposition,
756 + \begin{equation}
757 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 + \end{equation}
760 + which has a local error proportional to $h^3$. Sprang splitting's
761 + popularity in molecular simulation community attribute to its
762 + symmetric property,
763 + \begin{equation}
764 + \varphi _h^{ - 1} = \varphi _{ - h}.
765 + \label{introEquation:timeReversible}
766 + \end{equation}
767 +
768 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 + The classical equation for a system consisting of interacting
770 + particles can be written in Hamiltonian form,
771 + \[
772 + H = T + V
773 + \]
774 + where $T$ is the kinetic energy and $V$ is the potential energy.
775 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 + obtains the following:
777 + \begin{align}
778 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 + \label{introEquation:Lp10a} \\%
781 + %
782 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 + \label{introEquation:Lp10b}
785 + \end{align}
786 + where $F(t)$ is the force at time $t$. This integration scheme is
787 + known as \emph{velocity verlet} which is
788 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 + time-reversible(\ref{introEquation:timeReversible}) and
790 + volume-preserving (\ref{introEquation:volumePreserving}). These
791 + geometric properties attribute to its long-time stability and its
792 + popularity in the community. However, the most commonly used
793 + velocity verlet integration scheme is written as below,
794 + \begin{align}
795 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 + %
798 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 +    \label{introEquation:Lp9b}\\%
800 + %
801 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 + \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808 +
809 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 +
811 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 +
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet2}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 + \[
845 + [X,Y] = XY - YX .
846 + \]
847 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 + can obtain
849 + \begin{equation}
850 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 + \ldots )
854 + \end{equation}
855 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 + error of Spring splitting is proportional to $h^3$. The same
857 + procedure can be applied to general splitting,  of the form
858 + \begin{equation}
859 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 + \end{equation}
862 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 + order method. Yoshida proposed an elegant way to compose higher
864 + order methods based on symmetric splitting. Given a symmetric second
865 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 + method can be constructed by composing,
867 + \[
868 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 + \]
871 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 + \begin{equation}
875 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 + \end{equation}
878 + , if the weights are chosen as
879 + \[
880 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 + \]
883 +
884 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885 +
886 + As one of the principal tools of molecular modeling, Molecular
887 + dynamics has proven to be a powerful tool for studying the functions
888 + of biological systems, providing structural, thermodynamic and
889 + dynamical information. The basic idea of molecular dynamics is that
890 + macroscopic properties are related to microscopic behavior and
891 + microscopic behavior can be calculated from the trajectories in
892 + simulations. For instance, instantaneous temperature of an
893 + Hamiltonian system of $N$ particle can be measured by
894 + \[
895 + T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 + \]
897 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 + the boltzman constant.
900 +
901 + A typical molecular dynamics run consists of three essential steps:
902 + \begin{enumerate}
903 +  \item Initialization
904 +    \begin{enumerate}
905 +    \item Preliminary preparation
906 +    \item Minimization
907 +    \item Heating
908 +    \item Equilibration
909 +    \end{enumerate}
910 +  \item Production
911 +  \item Analysis
912 + \end{enumerate}
913 + These three individual steps will be covered in the following
914 + sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 + initialization of a simulation. Sec.~\ref{introSec:production} will
916 + discusses issues in production run. Sec.~\ref{introSection:Analysis}
917 + provides the theoretical tools for trajectory analysis.
918 +
919 + \subsection{\label{introSec:initialSystemSettings}Initialization}
920 +
921 + \subsubsection{Preliminary preparation}
922 +
923 + When selecting the starting structure of a molecule for molecular
924 + simulation, one may retrieve its Cartesian coordinates from public
925 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
926 + thousands of crystal structures of molecules are discovered every
927 + year, many more remain unknown due to the difficulties of
928 + purification and crystallization. Even for the molecule with known
929 + structure, some important information is missing. For example, the
930 + missing hydrogen atom which acts as donor in hydrogen bonding must
931 + be added. Moreover, in order to include electrostatic interaction,
932 + one may need to specify the partial charges for individual atoms.
933 + Under some circumstances, we may even need to prepare the system in
934 + a special setup. For instance, when studying transport phenomenon in
935 + membrane system, we may prepare the lipids in bilayer structure
936 + instead of placing lipids randomly in solvent, since we are not
937 + interested in self-aggregation and it takes a long time to happen.
938 +
939 + \subsubsection{Minimization}
940 +
941 + It is quite possible that some of molecules in the system from
942 + preliminary preparation may be overlapped with each other. This
943 + close proximity leads to high potential energy which consequently
944 + jeopardizes any molecular dynamics simulations. To remove these
945 + steric overlaps, one typically performs energy minimization to find
946 + a more reasonable conformation. Several energy minimization methods
947 + have been developed to exploit the energy surface and to locate the
948 + local minimum. While converging slowly near the minimum, steepest
949 + descent method is extremely robust when systems are far from
950 + harmonic. Thus, it is often used to refine structure from
951 + crystallographic data. Relied on the gradient or hessian, advanced
952 + methods like conjugate gradient and Newton-Raphson converge rapidly
953 + to a local minimum, while become unstable if the energy surface is
954 + far from quadratic. Another factor must be taken into account, when
955 + choosing energy minimization method, is the size of the system.
956 + Steepest descent and conjugate gradient can deal with models of any
957 + size. Because of the limit of computation power to calculate hessian
958 + matrix and insufficient storage capacity to store them, most
959 + Newton-Raphson methods can not be used with very large models.
960 +
961 + \subsubsection{Heating}
962 +
963 + Typically, Heating is performed by assigning random velocities
964 + according to a Gaussian distribution for a temperature. Beginning at
965 + a lower temperature and gradually increasing the temperature by
966 + assigning greater random velocities, we end up with setting the
967 + temperature of the system to a final temperature at which the
968 + simulation will be conducted. In heating phase, we should also keep
969 + the system from drifting or rotating as a whole. Equivalently, the
970 + net linear momentum and angular momentum of the system should be
971 + shifted to zero.
972 +
973 + \subsubsection{Equilibration}
974 +
975 + The purpose of equilibration is to allow the system to evolve
976 + spontaneously for a period of time and reach equilibrium. The
977 + procedure is continued until various statistical properties, such as
978 + temperature, pressure, energy, volume and other structural
979 + properties \textit{etc}, become independent of time. Strictly
980 + speaking, minimization and heating are not necessary, provided the
981 + equilibration process is long enough. However, these steps can serve
982 + as a means to arrive at an equilibrated structure in an effective
983 + way.
984 +
985 + \subsection{\label{introSection:production}Production}
986 +
987 + Production run is the most important steps of the simulation, in
988 + which the equilibrated structure is used as a starting point and the
989 + motions of the molecules are collected for later analysis. In order
990 + to capture the macroscopic properties of the system, the molecular
991 + dynamics simulation must be performed in correct and efficient way.
992 +
993 + The most expensive part of a molecular dynamics simulation is the
994 + calculation of non-bonded forces, such as van der Waals force and
995 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
996 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
997 + which making large simulations prohibitive in the absence of any
998 + computation saving techniques.
999 +
1000 + A natural approach to avoid system size issue is to represent the
1001 + bulk behavior by a finite number of the particles. However, this
1002 + approach will suffer from the surface effect. To offset this,
1003 + \textit{Periodic boundary condition} is developed to simulate bulk
1004 + properties with a relatively small number of particles. In this
1005 + method, the simulation box is replicated throughout space to form an
1006 + infinite lattice. During the simulation, when a particle moves in
1007 + the primary cell, its image in other cells move in exactly the same
1008 + direction with exactly the same orientation. Thus, as a particle
1009 + leaves the primary cell, one of its images will enter through the
1010 + opposite face.
1011 + %\begin{figure}
1012 + %\centering
1013 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1014 + %\caption[An illustration of periodic boundary conditions]{A 2-D
1015 + %illustration of periodic boundary conditions. As one particle leaves
1016 + %the right of the simulation box, an image of it enters the left.}
1017 + %\label{introFig:pbc}
1018 + %\end{figure}
1019 +
1020 + %cutoff and minimum image convention
1021 + Another important technique to improve the efficiency of force
1022 + evaluation is to apply cutoff where particles farther than a
1023 + predetermined distance, are not included in the calculation
1024 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1025 + discontinuity in the potential energy curve. Fortunately, one can
1026 + shift the potential to ensure the potential curve go smoothly to
1027 + zero at the cutoff radius. Cutoff strategy works pretty well for
1028 + Lennard-Jones interaction because of its short range nature.
1029 + However, simply truncating the electrostatic interaction with the
1030 + use of cutoff has been shown to lead to severe artifacts in
1031 + simulations. Ewald summation, in which the slowly conditionally
1032 + convergent Coulomb potential is transformed into direct and
1033 + reciprocal sums with rapid and absolute convergence, has proved to
1034 + minimize the periodicity artifacts in liquid simulations. Taking the
1035 + advantages of the fast Fourier transform (FFT) for calculating
1036 + discrete Fourier transforms, the particle mesh-based methods are
1037 + accelerated from $O(N^{3/2})$ to $O(N logN)$. An alternative
1038 + approach is \emph{fast multipole method}, which treats Coulombic
1039 + interaction exactly at short range, and approximate the potential at
1040 + long range through multipolar expansion. In spite of their wide
1041 + acceptances at the molecular simulation community, these two methods
1042 + are hard to be implemented correctly and efficiently. Instead, we
1043 + use a damped and charge-neutralized Coulomb potential method
1044 + developed by Wolf and his coworkers. The shifted Coulomb potential
1045 + for particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1046 + \begin{equation}
1047 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1048 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1049 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1050 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1051 + \end{equation}
1052 + where $\alpha$ is the convergence parameter. Due to the lack of
1053 + inherent periodicity and rapid convergence,this method is extremely
1054 + efficient and easy to implement.
1055 + %\begin{figure}
1056 + %\centering
1057 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1058 + %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1059 + %\label{introFigure:shiftedCoulomb}
1060 + %\end{figure}
1061 +
1062 + %multiple time step
1063 +
1064 + \subsection{\label{introSection:Analysis} Analysis}
1065 +
1066 + Recently, advanced visualization technique are widely applied to
1067 + monitor the motions of molecules. Although the dynamics of the
1068 + system can be described qualitatively from animation, quantitative
1069 + trajectory analysis are more appreciable. According to the
1070 + principles of Statistical Mechanics,
1071 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1072 + thermodynamics properties, analyze fluctuations of structural
1073 + parameters, and investigate time-dependent processes of the molecule
1074 + from the trajectories.
1075 +
1076 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1077 +
1078 + Thermodynamics properties, which can be expressed in terms of some
1079 + function of the coordinates and momenta of all particles in the
1080 + system, can be directly computed from molecular dynamics. The usual
1081 + way to measure the pressure is based on virial theorem of Clausius
1082 + which states that the virial is equal to $-3Nk_BT$. For a system
1083 + with forces between particles, the total virial, $W$, contains the
1084 + contribution from external pressure and interaction between the
1085 + particles:
1086 + \[
1087 + W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1088 + f_{ij} } } \right\rangle
1089 + \]
1090 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1091 + distance $r_{ij}$. Thus, the expression for the pressure is given
1092 + by:
1093 + \begin{equation}
1094 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1095 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1096 + \end{equation}
1097 +
1098 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1099 +
1100 + Structural Properties of a simple fluid can be described by a set of
1101 + distribution functions. Among these functions,\emph{pair
1102 + distribution function}, also known as \emph{radial distribution
1103 + function}, is of most fundamental importance to liquid-state theory.
1104 + Pair distribution function can be gathered by Fourier transforming
1105 + raw data from a series of neutron diffraction experiments and
1106 + integrating over the surface factor \cite{Powles73}. The experiment
1107 + result can serve as a criterion to justify the correctness of the
1108 + theory. Moreover, various equilibrium thermodynamic and structural
1109 + properties can also be expressed in terms of radial distribution
1110 + function \cite{allen87:csl}.
1111 +
1112 + A pair distribution functions $g(r)$ gives the probability that a
1113 + particle $i$ will be located at a distance $r$ from a another
1114 + particle $j$ in the system
1115 + \[
1116 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1117 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1118 + \]
1119 + Note that the delta function can be replaced by a histogram in
1120 + computer simulation. Figure
1121 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1122 + distribution function for the liquid argon system. The occurrence of
1123 + several peaks in the plot of $g(r)$ suggests that it is more likely
1124 + to find particles at certain radial values than at others. This is a
1125 + result of the attractive interaction at such distances. Because of
1126 + the strong repulsive forces at short distance, the probability of
1127 + locating particles at distances less than about 2.5{\AA} from each
1128 + other is essentially zero.
1129 +
1130 + %\begin{figure}
1131 + %\centering
1132 + %\includegraphics[width=\linewidth]{pdf.eps}
1133 + %\caption[Pair distribution function for the liquid argon
1134 + %]{Pair distribution function for the liquid argon}
1135 + %\label{introFigure:pairDistributionFunction}
1136 + %\end{figure}
1137 +
1138 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1139 + Properties}
1140 +
1141 + Time-dependent properties are usually calculated using \emph{time
1142 + correlation function}, which correlates random variables $A$ and $B$
1143 + at two different time
1144 + \begin{equation}
1145 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1146 + \label{introEquation:timeCorrelationFunction}
1147 + \end{equation}
1148 + If $A$ and $B$ refer to same variable, this kind of correlation
1149 + function is called \emph{auto correlation function}. One example of
1150 + auto correlation function is velocity auto-correlation function
1151 + which is directly related to transport properties of molecular
1152 + liquids:
1153 + \[
1154 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1155 + \right\rangle } dt
1156 + \]
1157 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1158 + function which is averaging over time origins and over all the
1159 + atoms, dipole autocorrelation are calculated for the entire system.
1160 + The dipole autocorrelation function is given by:
1161 + \[
1162 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1163 + \right\rangle
1164 + \]
1165 + Here $u_{tot}$ is the net dipole of the entire system and is given
1166 + by
1167 + \[
1168 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1169 + \]
1170 + In principle, many time correlation functions can be related with
1171 + Fourier transforms of the infrared, Raman, and inelastic neutron
1172 + scattering spectra of molecular liquids. In practice, one can
1173 + extract the IR spectrum from the intensity of dipole fluctuation at
1174 + each frequency using the following relationship:
1175 + \[
1176 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1177 + i2\pi vt} dt}
1178 + \]
1179 +
1180   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1181  
1182 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1182 > Rigid bodies are frequently involved in the modeling of different
1183 > areas, from engineering, physics, to chemistry. For example,
1184 > missiles and vehicle are usually modeled by rigid bodies.  The
1185 > movement of the objects in 3D gaming engine or other physics
1186 > simulator is governed by the rigid body dynamics. In molecular
1187 > simulation, rigid body is used to simplify the model in
1188 > protein-protein docking study{\cite{Gray03}}.
1189  
1190 + It is very important to develop stable and efficient methods to
1191 + integrate the equations of motion of orientational degrees of
1192 + freedom. Euler angles are the nature choice to describe the
1193 + rotational degrees of freedom. However, due to its singularity, the
1194 + numerical integration of corresponding equations of motion is very
1195 + inefficient and inaccurate. Although an alternative integrator using
1196 + different sets of Euler angles can overcome this difficulty\cite{},
1197 + the computational penalty and the lost of angular momentum
1198 + conservation still remain. A singularity free representation
1199 + utilizing quaternions was developed by Evans in 1977. Unfortunately,
1200 + this approach suffer from the nonseparable Hamiltonian resulted from
1201 + quaternion representation, which prevents the symplectic algorithm
1202 + to be utilized. Another different approach is to apply holonomic
1203 + constraints to the atoms belonging to the rigid body. Each atom
1204 + moves independently under the normal forces deriving from potential
1205 + energy and constraint forces which are used to guarantee the
1206 + rigidness. However, due to their iterative nature, SHAKE and Rattle
1207 + algorithm converge very slowly when the number of constraint
1208 + increases.
1209 +
1210 + The break through in geometric literature suggests that, in order to
1211 + develop a long-term integration scheme, one should preserve the
1212 + symplectic structure of the flow. Introducing conjugate momentum to
1213 + rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1214 + symplectic integrator, RSHAKE, was proposed to evolve the
1215 + Hamiltonian system in a constraint manifold by iteratively
1216 + satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1217 + method using quaternion representation was developed by Omelyan.
1218 + However, both of these methods are iterative and inefficient. In
1219 + this section, we will present a symplectic Lie-Poisson integrator
1220 + for rigid body developed by Dullweber and his
1221 + coworkers\cite{Dullweber1997} in depth.
1222 +
1223 + \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1224 + The motion of the rigid body is Hamiltonian with the Hamiltonian
1225 + function
1226 + \begin{equation}
1227 + H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1228 + V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1229 + \label{introEquation:RBHamiltonian}
1230 + \end{equation}
1231 + Here, $q$ and $Q$  are the position and rotation matrix for the
1232 + rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1233 + $J$, a diagonal matrix, is defined by
1234 + \[
1235 + I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1236 + \]
1237 + where $I_{ii}$ is the diagonal element of the inertia tensor. This
1238 + constrained Hamiltonian equation subjects to a holonomic constraint,
1239 + \begin{equation}
1240 + Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1241 + \end{equation}
1242 + which is used to ensure rotation matrix's orthogonality.
1243 + Differentiating \ref{introEquation:orthogonalConstraint} and using
1244 + Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1245 + \begin{equation}
1246 + Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1247 + \label{introEquation:RBFirstOrderConstraint}
1248 + \end{equation}
1249 +
1250 + Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1251 + \ref{introEquation:motionHamiltonianMomentum}), one can write down
1252 + the equations of motion,
1253 + \[
1254 + \begin{array}{c}
1255 + \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1256 + \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1257 + \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1258 + \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1259 + \end{array}
1260 + \]
1261 +
1262 + In general, there are two ways to satisfy the holonomic constraints.
1263 + We can use constraint force provided by lagrange multiplier on the
1264 + normal manifold to keep the motion on constraint space. Or we can
1265 + simply evolve the system in constraint manifold. The two method are
1266 + proved to be equivalent. The holonomic constraint and equations of
1267 + motions define a constraint manifold for rigid body
1268 + \[
1269 + M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1270 + \right\}.
1271 + \]
1272 +
1273 + Unfortunately, this constraint manifold is not the cotangent bundle
1274 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1275 + transformation, the cotangent space and the phase space are
1276 + diffeomorphic. Introducing
1277 + \[
1278 + \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1279 + \]
1280 + the mechanical system subject to a holonomic constraint manifold $M$
1281 + can be re-formulated as a Hamiltonian system on the cotangent space
1282 + \[
1283 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1284 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1285 + \]
1286 +
1287 + For a body fixed vector $X_i$ with respect to the center of mass of
1288 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1289 + given as
1290 + \begin{equation}
1291 + X_i^{lab} = Q X_i + q.
1292 + \end{equation}
1293 + Therefore, potential energy $V(q,Q)$ is defined by
1294 + \[
1295 + V(q,Q) = V(Q X_0 + q).
1296 + \]
1297 + Hence, the force and torque are given by
1298 + \[
1299 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1300 + \]
1301 + and
1302 + \[
1303 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1304 + \]
1305 + respectively.
1306 +
1307 + As a common choice to describe the rotation dynamics of the rigid
1308 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1309 + rewrite the equations of motion,
1310 + \begin{equation}
1311 + \begin{array}{l}
1312 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1313 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1314 + \end{array}
1315 + \label{introEqaution:RBMotionPI}
1316 + \end{equation}
1317 + , as well as holonomic constraints,
1318 + \[
1319 + \begin{array}{l}
1320 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1321 + Q^T Q = 1 \\
1322 + \end{array}
1323 + \]
1324 +
1325 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1326 + so(3)^ \star$, the hat-map isomorphism,
1327 + \begin{equation}
1328 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1329 + {\begin{array}{*{20}c}
1330 +   0 & { - v_3 } & {v_2 }  \\
1331 +   {v_3 } & 0 & { - v_1 }  \\
1332 +   { - v_2 } & {v_1 } & 0  \\
1333 + \end{array}} \right),
1334 + \label{introEquation:hatmapIsomorphism}
1335 + \end{equation}
1336 + will let us associate the matrix products with traditional vector
1337 + operations
1338 + \[
1339 + \hat vu = v \times u
1340 + \]
1341 +
1342 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1343 + matrix,
1344 + \begin{equation}
1345 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1346 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1347 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1348 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1349 + \end{equation}
1350 + Since $\Lambda$ is symmetric, the last term of Equation
1351 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1352 + multiplier $\Lambda$ is absent from the equations of motion. This
1353 + unique property eliminate the requirement of iterations which can
1354 + not be avoided in other methods\cite{}.
1355 +
1356 + Applying hat-map isomorphism, we obtain the equation of motion for
1357 + angular momentum on body frame
1358 + \begin{equation}
1359 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1360 + F_i (r,Q)} \right) \times X_i }.
1361 + \label{introEquation:bodyAngularMotion}
1362 + \end{equation}
1363 + In the same manner, the equation of motion for rotation matrix is
1364 + given by
1365 + \[
1366 + \dot Q = Qskew(I^{ - 1} \pi )
1367 + \]
1368 +
1369 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1370 + Lie-Poisson Integrator for Free Rigid Body}
1371 +
1372 + If there is not external forces exerted on the rigid body, the only
1373 + contribution to the rotational is from the kinetic potential (the
1374 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1375 + rigid body is an example of Lie-Poisson system with Hamiltonian
1376 + function
1377 + \begin{equation}
1378 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1379 + \label{introEquation:rotationalKineticRB}
1380 + \end{equation}
1381 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1382 + Lie-Poisson structure matrix,
1383 + \begin{equation}
1384 + J(\pi ) = \left( {\begin{array}{*{20}c}
1385 +   0 & {\pi _3 } & { - \pi _2 }  \\
1386 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1387 +   {\pi _2 } & { - \pi _1 } & 0  \\
1388 + \end{array}} \right)
1389 + \end{equation}
1390 + Thus, the dynamics of free rigid body is governed by
1391 + \begin{equation}
1392 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1393 + \end{equation}
1394 +
1395 + One may notice that each $T_i^r$ in Equation
1396 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1397 + instance, the equations of motion due to $T_1^r$ are given by
1398 + \begin{equation}
1399 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1400 + \label{introEqaution:RBMotionSingleTerm}
1401 + \end{equation}
1402 + where
1403 + \[ R_1  = \left( {\begin{array}{*{20}c}
1404 +   0 & 0 & 0  \\
1405 +   0 & 0 & {\pi _1 }  \\
1406 +   0 & { - \pi _1 } & 0  \\
1407 + \end{array}} \right).
1408 + \]
1409 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1410 + \[
1411 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1412 + Q(0)e^{\Delta tR_1 }
1413 + \]
1414 + with
1415 + \[
1416 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1417 +   0 & 0 & 0  \\
1418 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1419 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1420 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1421 + \]
1422 + To reduce the cost of computing expensive functions in $e^{\Delta
1423 + tR_1 }$, we can use Cayley transformation,
1424 + \[
1425 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1426 + )
1427 + \]
1428 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1429 + manner.
1430 +
1431 + In order to construct a second-order symplectic method, we split the
1432 + angular kinetic Hamiltonian function can into five terms
1433 + \[
1434 + T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1435 + ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1436 + (\pi _1 )
1437 + \].
1438 + Concatenating flows corresponding to these five terms, we can obtain
1439 + an symplectic integrator,
1440 + \[
1441 + \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1442 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1443 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1444 + _1 }.
1445 + \]
1446 +
1447 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1448 + $F(\pi )$ and $G(\pi )$ is defined by
1449 + \[
1450 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1451 + )
1452 + \]
1453 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1454 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1455 + conserved quantity in Poisson system. We can easily verify that the
1456 + norm of the angular momentum, $\parallel \pi
1457 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1458 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1459 + then by the chain rule
1460 + \[
1461 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1462 + }}{2})\pi
1463 + \]
1464 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1465 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1466 + Lie-Poisson integrator is found to be extremely efficient and stable
1467 + which can be explained by the fact the small angle approximation is
1468 + used and the norm of the angular momentum is conserved.
1469 +
1470 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1471 + Splitting for Rigid Body}
1472 +
1473 + The Hamiltonian of rigid body can be separated in terms of kinetic
1474 + energy and potential energy,
1475 + \[
1476 + H = T(p,\pi ) + V(q,Q)
1477 + \]
1478 + The equations of motion corresponding to potential energy and
1479 + kinetic energy are listed in the below table,
1480 + \begin{center}
1481 + \begin{tabular}{|l|l|}
1482 +  \hline
1483 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1484 +  Potential & Kinetic \\
1485 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1486 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1487 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1488 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1489 +  \hline
1490 + \end{tabular}
1491 + \end{center}
1492 + A second-order symplectic method is now obtained by the composition
1493 + of the flow maps,
1494 + \[
1495 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1496 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1497 + \]
1498 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1499 + sub-flows which corresponding to force and torque respectively,
1500 + \[
1501 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1502 + _{\Delta t/2,\tau }.
1503 + \]
1504 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1505 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1506 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1507 +
1508 + Furthermore, kinetic potential can be separated to translational
1509 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1510 + \begin{equation}
1511 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1512 + \end{equation}
1513 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1514 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1515 + corresponding flow maps are given by
1516 + \[
1517 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1518 + _{\Delta t,T^r }.
1519 + \]
1520 + Finally, we obtain the overall symplectic flow maps for free moving
1521 + rigid body
1522 + \begin{equation}
1523 + \begin{array}{c}
1524 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1525 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1526 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1527 + \end{array}
1528 + \label{introEquation:overallRBFlowMaps}
1529 + \end{equation}
1530 +
1531   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1532 + As an alternative to newtonian dynamics, Langevin dynamics, which
1533 + mimics a simple heat bath with stochastic and dissipative forces,
1534 + has been applied in a variety of studies. This section will review
1535 + the theory of Langevin dynamics simulation. A brief derivation of
1536 + generalized Langevin equation will be given first. Follow that, we
1537 + will discuss the physical meaning of the terms appearing in the
1538 + equation as well as the calculation of friction tensor from
1539 + hydrodynamics theory.
1540  
1541 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1541 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1542  
1543 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
1543 > Harmonic bath model, in which an effective set of harmonic
1544 > oscillators are used to mimic the effect of a linearly responding
1545 > environment, has been widely used in quantum chemistry and
1546 > statistical mechanics. One of the successful applications of
1547 > Harmonic bath model is the derivation of Deriving Generalized
1548 > Langevin Dynamics. Lets consider a system, in which the degree of
1549 > freedom $x$ is assumed to couple to the bath linearly, giving a
1550 > Hamiltonian of the form
1551 > \begin{equation}
1552 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1553 > \label{introEquation:bathGLE}.
1554 > \end{equation}
1555 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1556 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1557 > \[
1558 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1559 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1560 > \right\}}
1561 > \]
1562 > where the index $\alpha$ runs over all the bath degrees of freedom,
1563 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1564 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1565 > coupling,
1566 > \[
1567 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1568 > \]
1569 > where $g_\alpha$ are the coupling constants between the bath and the
1570 > coordinate $x$. Introducing
1571 > \[
1572 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1573 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1574 > \] and combining the last two terms in Equation
1575 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1576 > Hamiltonian as
1577 > \[
1578 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1579 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1580 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1581 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1582 > \]
1583 > Since the first two terms of the new Hamiltonian depend only on the
1584 > system coordinates, we can get the equations of motion for
1585 > Generalized Langevin Dynamics by Hamilton's equations
1586 > \ref{introEquation:motionHamiltonianCoordinate,
1587 > introEquation:motionHamiltonianMomentum},
1588 > \begin{equation}
1589 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1590 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1591 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1592 > \label{introEquation:coorMotionGLE}
1593 > \end{equation}
1594 > and
1595 > \begin{equation}
1596 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1597 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1598 > \label{introEquation:bathMotionGLE}
1599 > \end{equation}
1600 >
1601 > In order to derive an equation for $x$, the dynamics of the bath
1602 > variables $x_\alpha$ must be solved exactly first. As an integral
1603 > transform which is particularly useful in solving linear ordinary
1604 > differential equations, Laplace transform is the appropriate tool to
1605 > solve this problem. The basic idea is to transform the difficult
1606 > differential equations into simple algebra problems which can be
1607 > solved easily. Then applying inverse Laplace transform, also known
1608 > as the Bromwich integral, we can retrieve the solutions of the
1609 > original problems.
1610 >
1611 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1612 > transform of f(t) is a new function defined as
1613 > \[
1614 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1615 > \]
1616 > where  $p$ is real and  $L$ is called the Laplace Transform
1617 > Operator. Below are some important properties of Laplace transform
1618 > \begin{equation}
1619 > \begin{array}{c}
1620 > L(x + y) = L(x) + L(y) \\
1621 > L(ax) = aL(x) \\
1622 > L(\dot x) = pL(x) - px(0) \\
1623 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1624 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1625 > \end{array}
1626 > \end{equation}
1627 >
1628 > Applying Laplace transform to the bath coordinates, we obtain
1629 > \[
1630 > \begin{array}{c}
1631 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1632 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1633 > \end{array}
1634 > \]
1635 > By the same way, the system coordinates become
1636 > \[
1637 > \begin{array}{c}
1638 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1639 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1640 > \end{array}
1641 > \]
1642 >
1643 > With the help of some relatively important inverse Laplace
1644 > transformations:
1645 > \[
1646 > \begin{array}{c}
1647 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1648 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1649 > L(1) = \frac{1}{p} \\
1650 > \end{array}
1651 > \]
1652 > , we obtain
1653 > \begin{align}
1654 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1655 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1656 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1657 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1658 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1659 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1660 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1661 > %
1662 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1663 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1664 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1665 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1666 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1667 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1668 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1669 > (\omega _\alpha  t)} \right\}}
1670 > \end{align}
1671 >
1672 > Introducing a \emph{dynamic friction kernel}
1673 > \begin{equation}
1674 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1675 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1676 > \label{introEquation:dynamicFrictionKernelDefinition}
1677 > \end{equation}
1678 > and \emph{a random force}
1679 > \begin{equation}
1680 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1681 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1682 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1683 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1684 > \label{introEquation:randomForceDefinition}
1685 > \end{equation}
1686 > the equation of motion can be rewritten as
1687 > \begin{equation}
1688 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1689 > (t)\dot x(t - \tau )d\tau }  + R(t)
1690 > \label{introEuqation:GeneralizedLangevinDynamics}
1691 > \end{equation}
1692 > which is known as the \emph{generalized Langevin equation}.
1693 >
1694 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1695 >
1696 > One may notice that $R(t)$ depends only on initial conditions, which
1697 > implies it is completely deterministic within the context of a
1698 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1699 > uncorrelated to $x$ and $\dot x$,
1700 > \[
1701 > \begin{array}{l}
1702 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1703 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1704 > \end{array}
1705 > \]
1706 > This property is what we expect from a truly random process. As long
1707 > as the model, which is gaussian distribution in general, chosen for
1708 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1709 > still remains.
1710 >
1711 > %dynamic friction kernel
1712 > The convolution integral
1713 > \[
1714 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1715 > \]
1716 > depends on the entire history of the evolution of $x$, which implies
1717 > that the bath retains memory of previous motions. In other words,
1718 > the bath requires a finite time to respond to change in the motion
1719 > of the system. For a sluggish bath which responds slowly to changes
1720 > in the system coordinate, we may regard $\xi(t)$ as a constant
1721 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1722 > \[
1723 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1724 > \]
1725 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1726 > \[
1727 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1728 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1729 > \]
1730 > which can be used to describe dynamic caging effect. The other
1731 > extreme is the bath that responds infinitely quickly to motions in
1732 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1733 > time:
1734 > \[
1735 > \xi (t) = 2\xi _0 \delta (t)
1736 > \]
1737 > Hence, the convolution integral becomes
1738 > \[
1739 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1740 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1741 > \]
1742 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1743 > \begin{equation}
1744 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1745 > x(t) + R(t) \label{introEquation:LangevinEquation}
1746 > \end{equation}
1747 > which is known as the Langevin equation. The static friction
1748 > coefficient $\xi _0$ can either be calculated from spectral density
1749 > or be determined by Stokes' law for regular shaped particles.A
1750 > briefly review on calculating friction tensor for arbitrary shaped
1751 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1752 >
1753 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1754 >
1755 > Defining a new set of coordinates,
1756 > \[
1757 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1758 > ^2 }}x(0)
1759 > \],
1760 > we can rewrite $R(T)$ as
1761 > \[
1762 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1763 > \]
1764 > And since the $q$ coordinates are harmonic oscillators,
1765 > \[
1766 > \begin{array}{c}
1767 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1768 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1769 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1770 > \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1771 >  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1772 >  = kT\xi (t) \\
1773 > \end{array}
1774 > \]
1775 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1776 > \begin{equation}
1777 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1778 > \label{introEquation:secondFluctuationDissipation}.
1779 > \end{equation}
1780 > In effect, it acts as a constraint on the possible ways in which one
1781 > can model the random force and friction kernel.
1782 >
1783 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1784 > Theoretically, the friction kernel can be determined using velocity
1785 > autocorrelation function. However, this approach become impractical
1786 > when the system become more and more complicate. Instead, various
1787 > approaches based on hydrodynamics have been developed to calculate
1788 > the friction coefficients. The friction effect is isotropic in
1789 > Equation, \zeta can be taken as a scalar. In general, friction
1790 > tensor \Xi is a $6\times 6$ matrix given by
1791 > \[
1792 > \Xi  = \left( {\begin{array}{*{20}c}
1793 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1794 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1795 > \end{array}} \right).
1796 > \]
1797 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1798 > tensor and rotational resistance (friction) tensor respectively,
1799 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1800 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1801 > particle moves in a fluid, it may experience friction force or
1802 > torque along the opposite direction of the velocity or angular
1803 > velocity,
1804 > \[
1805 > \left( \begin{array}{l}
1806 > F_R  \\
1807 > \tau _R  \\
1808 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1809 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1810 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1811 > \end{array}} \right)\left( \begin{array}{l}
1812 > v \\
1813 > w \\
1814 > \end{array} \right)
1815 > \]
1816 > where $F_r$ is the friction force and $\tau _R$ is the friction
1817 > toque.
1818 >
1819 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1820 >
1821 > For a spherical particle, the translational and rotational friction
1822 > constant can be calculated from Stoke's law,
1823 > \[
1824 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1825 >   {6\pi \eta R} & 0 & 0  \\
1826 >   0 & {6\pi \eta R} & 0  \\
1827 >   0 & 0 & {6\pi \eta R}  \\
1828 > \end{array}} \right)
1829 > \]
1830 > and
1831 > \[
1832 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1833 >   {8\pi \eta R^3 } & 0 & 0  \\
1834 >   0 & {8\pi \eta R^3 } & 0  \\
1835 >   0 & 0 & {8\pi \eta R^3 }  \\
1836 > \end{array}} \right)
1837 > \]
1838 > where $\eta$ is the viscosity of the solvent and $R$ is the
1839 > hydrodynamics radius.
1840 >
1841 > Other non-spherical shape, such as cylinder and ellipsoid
1842 > \textit{etc}, are widely used as reference for developing new
1843 > hydrodynamics theory, because their properties can be calculated
1844 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1845 > also called a triaxial ellipsoid, which is given in Cartesian
1846 > coordinates by
1847 > \[
1848 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1849 > }} = 1
1850 > \]
1851 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1852 > due to the complexity of the elliptic integral, only the ellipsoid
1853 > with the restriction of two axes having to be equal, \textit{i.e.}
1854 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1855 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1856 > \[
1857 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1858 > } }}{b},
1859 > \]
1860 > and oblate,
1861 > \[
1862 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1863 > }}{a}
1864 > \],
1865 > one can write down the translational and rotational resistance
1866 > tensors
1867 > \[
1868 > \begin{array}{l}
1869 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1870 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1871 > \end{array},
1872 > \]
1873 > and
1874 > \[
1875 > \begin{array}{l}
1876 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1877 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1878 > \end{array}.
1879 > \]
1880 >
1881 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1882 >
1883 > Unlike spherical and other regular shaped molecules, there is not
1884 > analytical solution for friction tensor of any arbitrary shaped
1885 > rigid molecules. The ellipsoid of revolution model and general
1886 > triaxial ellipsoid model have been used to approximate the
1887 > hydrodynamic properties of rigid bodies. However, since the mapping
1888 > from all possible ellipsoidal space, $r$-space, to all possible
1889 > combination of rotational diffusion coefficients, $D$-space is not
1890 > unique\cite{Wegener79} as well as the intrinsic coupling between
1891 > translational and rotational motion of rigid body\cite{}, general
1892 > ellipsoid is not always suitable for modeling arbitrarily shaped
1893 > rigid molecule. A number of studies have been devoted to determine
1894 > the friction tensor for irregularly shaped rigid bodies using more
1895 > advanced method\cite{} where the molecule of interest was modeled by
1896 > combinations of spheres(beads)\cite{} and the hydrodynamics
1897 > properties of the molecule can be calculated using the hydrodynamic
1898 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1899 > immersed in a continuous medium. Due to hydrodynamics interaction,
1900 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1901 > unperturbed velocity $v_i$,
1902 > \[
1903 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1904 > \]
1905 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1906 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1907 > proportional to its ``net'' velocity
1908 > \begin{equation}
1909 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1910 > \label{introEquation:tensorExpression}
1911 > \end{equation}
1912 > This equation is the basis for deriving the hydrodynamic tensor. In
1913 > 1930, Oseen and Burgers gave a simple solution to Equation
1914 > \ref{introEquation:tensorExpression}
1915 > \begin{equation}
1916 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1917 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1918 > \label{introEquation:oseenTensor}
1919 > \end{equation}
1920 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1921 > A second order expression for element of different size was
1922 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1923 > la Torre and Bloomfield,
1924 > \begin{equation}
1925 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1926 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1927 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1928 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1929 > \label{introEquation:RPTensorNonOverlapped}
1930 > \end{equation}
1931 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1932 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1933 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1934 > overlapping beads with the same radius, $\sigma$, is given by
1935 > \begin{equation}
1936 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1937 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1938 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1939 > \label{introEquation:RPTensorOverlapped}
1940 > \end{equation}
1941 >
1942 > To calculate the resistance tensor at an arbitrary origin $O$, we
1943 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1944 > $B_{ij}$ blocks
1945 > \begin{equation}
1946 > B = \left( {\begin{array}{*{20}c}
1947 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1948 >    \vdots  &  \ddots  &  \vdots   \\
1949 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1950 > \end{array}} \right),
1951 > \end{equation}
1952 > where $B_{ij}$ is given by
1953 > \[
1954 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1955 > )T_{ij}
1956 > \]
1957 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1958 > $B$, we obtain
1959 >
1960 > \[
1961 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1962 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1963 >    \vdots  &  \ddots  &  \vdots   \\
1964 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1965 > \end{array}} \right)
1966 > \]
1967 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1968 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1969 > \[
1970 > U_i  = \left( {\begin{array}{*{20}c}
1971 >   0 & { - z_i } & {y_i }  \\
1972 >   {z_i } & 0 & { - x_i }  \\
1973 >   { - y_i } & {x_i } & 0  \\
1974 > \end{array}} \right)
1975 > \]
1976 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1977 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1978 > arbitrary origin $O$ can be written as
1979 > \begin{equation}
1980 > \begin{array}{l}
1981 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1982 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1983 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1984 > \end{array}
1985 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1986 > \end{equation}
1987 >
1988 > The resistance tensor depends on the origin to which they refer. The
1989 > proper location for applying friction force is the center of
1990 > resistance (reaction), at which the trace of rotational resistance
1991 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1992 > resistance is defined as an unique point of the rigid body at which
1993 > the translation-rotation coupling tensor are symmetric,
1994 > \begin{equation}
1995 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1996 > \label{introEquation:definitionCR}
1997 > \end{equation}
1998 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1999 > we can easily find out that the translational resistance tensor is
2000 > origin independent, while the rotational resistance tensor and
2001 > translation-rotation coupling resistance tensor depend on the
2002 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2003 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2004 > obtain the resistance tensor at $P$ by
2005 > \begin{equation}
2006 > \begin{array}{l}
2007 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2008 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2009 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2010 > \end{array}
2011 > \label{introEquation:resistanceTensorTransformation}
2012 > \end{equation}
2013 > where
2014 > \[
2015 > U_{OP}  = \left( {\begin{array}{*{20}c}
2016 >   0 & { - z_{OP} } & {y_{OP} }  \\
2017 >   {z_i } & 0 & { - x_{OP} }  \\
2018 >   { - y_{OP} } & {x_{OP} } & 0  \\
2019 > \end{array}} \right)
2020 > \]
2021 > Using Equations \ref{introEquation:definitionCR} and
2022 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2023 > the position of center of resistance,
2024 > \[
2025 > \left( \begin{array}{l}
2026 > x_{OR}  \\
2027 > y_{OR}  \\
2028 > z_{OR}  \\
2029 > \end{array} \right) = \left( {\begin{array}{*{20}c}
2030 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2031 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2032 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2033 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2034 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2035 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2036 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2037 > \end{array} \right).
2038 > \]
2039 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2040 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines