ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2693 by tim, Wed Apr 5 03:44:32 2006 UTC vs.
Revision 2938 by tim, Mon Jul 17 15:28:44 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
4
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
3   \section{\label{introSection:classicalMechanics}Classical
4   Mechanics}
5  
6 < Closely related to Classical Mechanics, Molecular Dynamics
7 < simulations are carried out by integrating the equations of motion
8 < for a given system of particles. There are three fundamental ideas
9 < behind classical mechanics. Firstly, One can determine the state of
10 < a mechanical system at any time of interest; Secondly, all the
11 < mechanical properties of the system at that time can be determined
12 < by combining the knowledge of the properties of the system with the
13 < specification of this state; Finally, the specification of the state
14 < when further combine with the laws of mechanics will also be
15 < sufficient to predict the future behavior of the system.
6 > Using equations of motion derived from Classical Mechanics,
7 > Molecular Dynamics simulations are carried out by integrating the
8 > equations of motion for a given system of particles. There are three
9 > fundamental ideas behind classical mechanics. Firstly, one can
10 > determine the state of a mechanical system at any time of interest;
11 > Secondly, all the mechanical properties of the system at that time
12 > can be determined by combining the knowledge of the properties of
13 > the system with the specification of this state; Finally, the
14 > specification of the state when further combined with the laws of
15 > mechanics will also be sufficient to predict the future behavior of
16 > the system.
17  
18   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
19 + The discovery of Newton's three laws of mechanics which govern the
20 + motion of particles is the foundation of the classical mechanics.
21 + Newton's first law defines a class of inertial frames. Inertial
22 + frames are reference frames where a particle not interacting with
23 + other bodies will move with constant speed in the same direction.
24 + With respect to inertial frames, Newton's second law has the form
25 + \begin{equation}
26 + F = \frac {dp}{dt} = \frac {mdv}{dt}
27 + \label{introEquation:newtonSecondLaw}
28 + \end{equation}
29 + A point mass interacting with other bodies moves with the
30 + acceleration along the direction of the force acting on it. Let
31 + $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
32 + $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
33 + Newton's third law states that
34 + \begin{equation}
35 + F_{ij} = -F_{ji}.
36 + \label{introEquation:newtonThirdLaw}
37 + \end{equation}
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + \tau \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = \tau
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, energy is conserved,
67 + \begin{equation}E = T + V. \label{introEquation:energyConservation}
68 + \end{equation}
69 + All of these conserved quantities are important factors to determine
70 + the quality of numerical integration schemes for rigid bodies
71 + \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
75 < Newtonian Mechanics suffers from two important limitations: it
76 < describes their motion in special cartesian coordinate systems.
77 < Another limitation of Newtonian mechanics becomes obvious when we
78 < try to describe systems with large numbers of particles. It becomes
79 < very difficult to predict the properties of the system by carrying
80 < out calculations involving the each individual interaction between
81 < all the particles, even if we know all of the details of the
35 < interaction. In order to overcome some of the practical difficulties
36 < which arise in attempts to apply Newton's equation to complex
37 < system, alternative procedures may be developed.
75 > Newtonian Mechanics suffers from an important limitation: motion can
76 > only be described in cartesian coordinate systems which make it
77 > impossible to predict analytically the properties of the system even
78 > if we know all of the details of the interaction. In order to
79 > overcome some of the practical difficulties which arise in attempts
80 > to apply Newton's equation to complex systems, approximate numerical
81 > procedures may be developed.
82  
83 < \subsection{\label{introSection:halmiltonPrinciple}Hamilton's
84 < Principle}
83 > \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84 > Principle}}
85  
86   Hamilton introduced the dynamical principle upon which it is
87 < possible to base all of mechanics and, indeed, most of classical
88 < physics. Hamilton's Principle may be stated as follow,
89 <
90 < The actual trajectory, along which a dynamical system may move from
91 < one point to another within a specified time, is derived by finding
92 < the path which minimizes the time integral of the difference between
49 < the kinetic, $K$, and potential energies, $U$.
87 > possible to base all of mechanics and most of classical physics.
88 > Hamilton's Principle may be stated as follows: the trajectory, along
89 > which a dynamical system may move from one point to another within a
90 > specified time, is derived by finding the path which minimizes the
91 > time integral of the difference between the kinetic $K$, and
92 > potential energies $U$,
93   \begin{equation}
94 < \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
94 > \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
95   \label{introEquation:halmitonianPrinciple1}
96   \end{equation}
54
97   For simple mechanical systems, where the forces acting on the
98 < different part are derivable from a potential and the velocities are
99 < small compared with that of light, the Lagrangian function $L$ can
100 < be define as the difference between the kinetic energy of the system
59 < and its potential energy,
98 > different parts are derivable from a potential, the Lagrangian
99 > function $L$ can be defined as the difference between the kinetic
100 > energy of the system and its potential energy,
101   \begin{equation}
102 < L \equiv K - U = L(q_i ,\dot q_i ) ,
102 > L \equiv K - U = L(q_i ,\dot q_i ).
103   \label{introEquation:lagrangianDef}
104   \end{equation}
105 < then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
105 > Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
106   \begin{equation}
107 < \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
107 > \delta \int_{t_1 }^{t_2 } {L dt = 0} .
108   \label{introEquation:halmitonianPrinciple2}
109   \end{equation}
110  
111 < \subsection{\label{introSection:equationOfMotionLagrangian}The
112 < Equations of Motion in Lagrangian Mechanics}
111 > \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
112 > Equations of Motion in Lagrangian Mechanics}}
113  
114 < for a holonomic system of $f$ degrees of freedom, the equations of
115 < motion in the Lagrangian form is
114 > For a system of $f$ degrees of freedom, the equations of motion in
115 > the Lagrangian form is
116   \begin{equation}
117   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
118   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
# Line 85 | Line 126 | independent of generalized velocities, the generalized
126   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
127   introduced by William Rowan Hamilton in 1833 as a re-formulation of
128   classical mechanics. If the potential energy of a system is
129 < independent of generalized velocities, the generalized momenta can
89 < be defined as
129 > independent of velocities, the momenta can be defined as
130   \begin{equation}
131   p_i = \frac{\partial L}{\partial \dot q_i}
132   \label{introEquation:generalizedMomenta}
# Line 96 | Line 136 | p_i  = \frac{{\partial L}}{{\partial q_i }}
136   p_i  = \frac{{\partial L}}{{\partial q_i }}
137   \label{introEquation:generalizedMomentaDot}
138   \end{equation}
99
139   With the help of the generalized momenta, we may now define a new
140   quantity $H$ by the equation
141   \begin{equation}
# Line 104 | Line 143 | $L$ is the Lagrangian function for the system.
143   \label{introEquation:hamiltonianDefByLagrangian}
144   \end{equation}
145   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
146 < $L$ is the Lagrangian function for the system.
147 <
109 < Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
110 < one can obtain
146 > $L$ is the Lagrangian function for the system. Differentiating
147 > Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
148   \begin{equation}
149   dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
150   \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
151   L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
152 < L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
152 > L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
153   \end{equation}
154 < Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
155 < second and fourth terms in the parentheses cancel. Therefore,
154 > Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
155 > and fourth terms in the parentheses cancel. Therefore,
156   Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
157   \begin{equation}
158   dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
159 < \right)}  - \frac{{\partial L}}{{\partial t}}dt
159 > \right)}  - \frac{{\partial L}}{{\partial t}}dt .
160   \label{introEquation:diffHamiltonian2}
161   \end{equation}
162   By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
163   find
164   \begin{equation}
165 < \frac{{\partial H}}{{\partial p_k }} = q_k
165 > \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
166   \label{introEquation:motionHamiltonianCoordinate}
167   \end{equation}
168   \begin{equation}
169 < \frac{{\partial H}}{{\partial q_k }} =  - p_k
169 > \frac{{\partial H}}{{\partial q_k }} =  - \dot {p_k}
170   \label{introEquation:motionHamiltonianMomentum}
171   \end{equation}
172   and
# Line 138 | Line 175 | t}}
175   t}}
176   \label{introEquation:motionHamiltonianTime}
177   \end{equation}
178 <
142 < Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
178 > where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
179   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
180   equation of motion. Due to their symmetrical formula, they are also
181 < known as the canonical equations of motions.
181 > known as the canonical equations of motions \cite{Goldstein2001}.
182  
183   An important difference between Lagrangian approach and the
184   Hamiltonian approach is that the Lagrangian is considered to be a
185 < function of the generalized velocities $\dot q_i$ and the
186 < generalized coordinates $q_i$, while the Hamiltonian is considered
187 < to be a function of the generalized momenta $p_i$ and the conjugate
188 < generalized coordinate $q_i$. Hamiltonian Mechanics is more
189 < appropriate for application to statistical mechanics and quantum
190 < mechanics, since it treats the coordinate and its time derivative as
191 < independent variables and it only works with 1st-order differential
192 < equations.
185 > function of the generalized velocities $\dot q_i$ and coordinates
186 > $q_i$, while the Hamiltonian is considered to be a function of the
187 > generalized momenta $p_i$ and the conjugate coordinates $q_i$.
188 > Hamiltonian Mechanics is more appropriate for application to
189 > statistical mechanics and quantum mechanics, since it treats the
190 > coordinate and its time derivative as independent variables and it
191 > only works with 1st-order differential equations\cite{Marion1990}.
192 > In Newtonian Mechanics, a system described by conservative forces
193 > conserves the total energy
194 > (Eq.~\ref{introEquation:energyConservation}). It follows that
195 > Hamilton's equations of motion conserve the total Hamiltonian
196 > \begin{equation}
197 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
198 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
199 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
200 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
201 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
202 > q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
203 > \end{equation}
204  
158 \subsection{\label{introSection:poissonBrackets}Poisson Brackets}
159
160 \subsection{\label{introSection:canonicalTransformation}Canonical
161 Transformation}
162
205   \section{\label{introSection:statisticalMechanics}Statistical
206   Mechanics}
207  
208 < The thermodynamic behaviors and properties  of Molecular Dynamics
208 > The thermodynamic behaviors and properties of Molecular Dynamics
209   simulation are governed by the principle of Statistical Mechanics.
210   The following section will give a brief introduction to some of the
211 < Statistical Mechanics concepts presented in this dissertation.
211 > Statistical Mechanics concepts and theorems presented in this
212 > dissertation.
213  
214 < \subsection{\label{introSection::ensemble}Ensemble}
214 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
215 >
216 > Mathematically, phase space is the space which represents all
217 > possible states of a system. Each possible state of the system
218 > corresponds to one unique point in the phase space. For mechanical
219 > systems, the phase space usually consists of all possible values of
220 > position and momentum variables. Consider a dynamic system of $f$
221 > particles in a cartesian space, where each of the $6f$ coordinates
222 > and momenta is assigned to one of $6f$ mutually orthogonal axes, the
223 > phase space of this system is a $6f$ dimensional space. A point, $x
224 > =
225 > (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226 > \over q} _1 , \ldots
227 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228 > \over q} _f
229 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230 > \over p} _1  \ldots
231 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
232 > \over p} _f )$ , with a unique set of values of $6f$ coordinates and
233 > momenta is a phase space vector.
234 > %%%fix me
235  
236 + In statistical mechanics, the condition of an ensemble at any time
237 + can be regarded as appropriately specified by the density $\rho$
238 + with which representative points are distributed over the phase
239 + space. The density distribution for an ensemble with $f$ degrees of
240 + freedom is defined as,
241 + \begin{equation}
242 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
243 + \label{introEquation:densityDistribution}
244 + \end{equation}
245 + Governed by the principles of mechanics, the phase points change
246 + their locations which changes the density at any time at phase
247 + space. Hence, the density distribution is also to be taken as a
248 + function of the time. The number of systems $\delta N$ at time $t$
249 + can be determined by,
250 + \begin{equation}
251 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
252 + \label{introEquation:deltaN}
253 + \end{equation}
254 + Assuming enough copies of the systems, we can sufficiently
255 + approximate $\delta N$ without introducing discontinuity when we go
256 + from one region in the phase space to another. By integrating over
257 + the whole phase space,
258 + \begin{equation}
259 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
260 + \label{introEquation:totalNumberSystem}
261 + \end{equation}
262 + gives us an expression for the total number of copies. Hence, the
263 + probability per unit volume in the phase space can be obtained by,
264 + \begin{equation}
265 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
266 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
267 + \label{introEquation:unitProbability}
268 + \end{equation}
269 + With the help of Eq.~\ref{introEquation:unitProbability} and the
270 + knowledge of the system, it is possible to calculate the average
271 + value of any desired quantity which depends on the coordinates and
272 + momenta of the system. Even when the dynamics of the real system are
273 + complex, or stochastic, or even discontinuous, the average
274 + properties of the ensemble of possibilities as a whole remain well
275 + defined. For a classical system in thermal equilibrium with its
276 + environment, the ensemble average of a mechanical quantity, $\langle
277 + A(q , p) \rangle_t$, takes the form of an integral over the phase
278 + space of the system,
279 + \begin{equation}
280 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
281 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
282 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
283 + \label{introEquation:ensembelAverage}
284 + \end{equation}
285 +
286 + \subsection{\label{introSection:liouville}Liouville's theorem}
287 +
288 + Liouville's theorem is the foundation on which statistical mechanics
289 + rests. It describes the time evolution of the phase space
290 + distribution function. In order to calculate the rate of change of
291 + $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
292 + the two faces perpendicular to the $q_1$ axis, which are located at
293 + $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
294 + opposite face is given by the expression,
295 + \begin{equation}
296 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
297 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
298 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
299 + \ldots \delta p_f .
300 + \end{equation}
301 + Summing all over the phase space, we obtain
302 + \begin{equation}
303 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
304 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
305 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
306 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
307 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
308 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
309 + \end{equation}
310 + Differentiating the equations of motion in Hamiltonian formalism
311 + (\ref{introEquation:motionHamiltonianCoordinate},
312 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
313 + \begin{equation}
314 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
315 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
316 + \end{equation}
317 + which cancels the first terms of the right hand side. Furthermore,
318 + dividing $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
319 + p_f $ in both sides, we can write out Liouville's theorem in a
320 + simple form,
321 + \begin{equation}
322 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
323 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
324 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
325 + \label{introEquation:liouvilleTheorem}
326 + \end{equation}
327 + Liouville's theorem states that the distribution function is
328 + constant along any trajectory in phase space. In classical
329 + statistical mechanics, since the number of system copies in an
330 + ensemble is huge and constant, we can assume the local density has
331 + no reason (other than classical mechanics) to change,
332 + \begin{equation}
333 + \frac{{\partial \rho }}{{\partial t}} = 0.
334 + \label{introEquation:stationary}
335 + \end{equation}
336 + In such stationary system, the density of distribution $\rho$ can be
337 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
338 + distribution,
339 + \begin{equation}
340 + \rho  \propto e^{ - \beta H}
341 + \label{introEquation:densityAndHamiltonian}
342 + \end{equation}
343 +
344 + \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
345 + Lets consider a region in the phase space,
346 + \begin{equation}
347 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
348 + \end{equation}
349 + If this region is small enough, the density $\rho$ can be regarded
350 + as uniform over the whole integral. Thus, the number of phase points
351 + inside this region is given by,
352 + \begin{equation}
353 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
354 + dp_1 } ..dp_f.
355 + \end{equation}
356 +
357 + \begin{equation}
358 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
359 + \frac{d}{{dt}}(\delta v) = 0.
360 + \end{equation}
361 + With the help of the stationary assumption
362 + (Eq.~\ref{introEquation:stationary}), we obtain the principle of
363 + \emph{conservation of volume in phase space},
364 + \begin{equation}
365 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
366 + ...dq_f dp_1 } ..dp_f  = 0.
367 + \label{introEquation:volumePreserving}
368 + \end{equation}
369 +
370 + \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
371 +
372 + Liouville's theorem can be expressed in a variety of different forms
373 + which are convenient within different contexts. For any two function
374 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
375 + bracket $\{F,G\}$ is defined as
376 + \begin{equation}
377 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
378 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
379 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
380 + q_i }}} \right)}.
381 + \label{introEquation:poissonBracket}
382 + \end{equation}
383 + Substituting equations of motion in Hamiltonian formalism
384 + (Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
385 + Eq.~\ref{introEquation:motionHamiltonianMomentum}) into
386 + (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
387 + Liouville's theorem using Poisson bracket notion,
388 + \begin{equation}
389 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
390 + {\rho ,H} \right\}.
391 + \label{introEquation:liouvilleTheromInPoissin}
392 + \end{equation}
393 + Moreover, the Liouville operator is defined as
394 + \begin{equation}
395 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
396 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
397 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
398 + \label{introEquation:liouvilleOperator}
399 + \end{equation}
400 + In terms of Liouville operator, Liouville's equation can also be
401 + expressed as
402 + \begin{equation}
403 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
404 + \label{introEquation:liouvilleTheoremInOperator}
405 + \end{equation}
406 + which can help define a propagator $\rho (t) = e^{-iLt} \rho (0)$.
407   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
408 +
409 + Various thermodynamic properties can be calculated from Molecular
410 + Dynamics simulation. By comparing experimental values with the
411 + calculated properties, one can determine the accuracy of the
412 + simulation and the quality of the underlying model. However, both
413 + experiments and computer simulations are usually performed during a
414 + certain time interval and the measurements are averaged over a
415 + period of time which is different from the average behavior of
416 + many-body system in Statistical Mechanics. Fortunately, the Ergodic
417 + Hypothesis makes a connection between time average and the ensemble
418 + average. It states that the time average and average over the
419 + statistical ensemble are identical \cite{Frenkel1996, Leach2001}:
420 + \begin{equation}
421 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
422 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
423 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
424 + \end{equation}
425 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
426 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
427 + distribution function. If an observation is averaged over a
428 + sufficiently long time (longer than the relaxation time), all
429 + accessible microstates in phase space are assumed to be equally
430 + probed, giving a properly weighted statistical average. This allows
431 + the researcher freedom of choice when deciding how best to measure a
432 + given observable. In case an ensemble averaged approach sounds most
433 + reasonable, the Monte Carlo methods\cite{Metropolis1949} can be
434 + utilized. Or if the system lends itself to a time averaging
435 + approach, the Molecular Dynamics techniques in
436 + Sec.~\ref{introSection:molecularDynamics} will be the best
437 + choice\cite{Frenkel1996}.
438 +
439 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
440 + A variety of numerical integrators have been proposed to simulate
441 + the motions of atoms in MD simulation. They usually begin with
442 + initial conditions and move the objects in the direction governed
443 + by the differential equations. However, most of them ignore the
444 + hidden physical laws contained within the equations. Since 1990,
445 + geometric integrators, which preserve various phase-flow invariants
446 + such as symplectic structure, volume and time reversal symmetry,
447 + were developed to address this issue\cite{Dullweber1997,
448 + McLachlan1998, Leimkuhler1999}. The velocity Verlet method, which
449 + happens to be a simple example of symplectic integrator, continues
450 + to gain popularity in the molecular dynamics community. This fact
451 + can be partly explained by its geometric nature.
452 +
453 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
454 + A \emph{manifold} is an abstract mathematical space. It looks
455 + locally like Euclidean space, but when viewed globally, it may have
456 + more complicated structure. A good example of manifold is the
457 + surface of Earth. It seems to be flat locally, but it is round if
458 + viewed as a whole. A \emph{differentiable manifold} (also known as
459 + \emph{smooth manifold}) is a manifold on which it is possible to
460 + apply calculus\cite{Hirsch1997}. A \emph{symplectic manifold} is
461 + defined as a pair $(M, \omega)$ which consists of a
462 + \emph{differentiable manifold} $M$ and a close, non-degenerate,
463 + bilinear symplectic form, $\omega$. A symplectic form on a vector
464 + space $V$ is a function $\omega(x, y)$ which satisfies
465 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
466 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
467 + $\omega(x, x) = 0$\cite{McDuff1998}. The cross product operation in
468 + vector field is an example of symplectic form. One of the
469 + motivations to study \emph{symplectic manifolds} in Hamiltonian
470 + Mechanics is that a symplectic manifold can represent all possible
471 + configurations of the system and the phase space of the system can
472 + be described by it's cotangent bundle\cite{Jost2002}. Every
473 + symplectic manifold is even dimensional. For instance, in Hamilton
474 + equations, coordinate and momentum always appear in pairs.
475 +
476 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
477 +
478 + For an ordinary differential system defined as
479 + \begin{equation}
480 + \dot x = f(x)
481 + \end{equation}
482 + where $x = x(q,p)$, this system is a canonical Hamiltonian, if
483 + $f(x) = J\nabla _x H(x)$. Here, $H = H (q, p)$ is Hamiltonian
484 + function and $J$ is the skew-symmetric matrix
485 + \begin{equation}
486 + J = \left( {\begin{array}{*{20}c}
487 +   0 & I  \\
488 +   { - I} & 0  \\
489 + \end{array}} \right)
490 + \label{introEquation:canonicalMatrix}
491 + \end{equation}
492 + where $I$ is an identity matrix. Using this notation, Hamiltonian
493 + system can be rewritten as,
494 + \begin{equation}
495 + \frac{d}{{dt}}x = J\nabla _x H(x).
496 + \label{introEquation:compactHamiltonian}
497 + \end{equation}In this case, $f$ is
498 + called a \emph{Hamiltonian vector field}. Another generalization of
499 + Hamiltonian dynamics is Poisson Dynamics\cite{Olver1986},
500 + \begin{equation}
501 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
502 + \end{equation}
503 + The most obvious change being that matrix $J$ now depends on $x$.
504 +
505 + \subsection{\label{introSection:exactFlow}Exact Propagator}
506 +
507 + Let $x(t)$ be the exact solution of the ODE
508 + system,
509 + \begin{equation}
510 + \frac{{dx}}{{dt}} = f(x), \label{introEquation:ODE}
511 + \end{equation} we can
512 + define its exact propagator $\varphi_\tau$:
513 + \[ x(t+\tau)
514 + =\varphi_\tau(x(t))
515 + \]
516 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
517 + space to itself. The propagator has the continuous group property,
518 + \begin{equation}
519 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
520 + + \tau _2 } .
521 + \end{equation}
522 + In particular,
523 + \begin{equation}
524 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
525 + \end{equation}
526 + Therefore, the exact propagator is self-adjoint,
527 + \begin{equation}
528 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
529 + \end{equation}
530 + The exact propagator can also be written as an operator,
531 + \begin{equation}
532 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
533 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
534 + \label{introEquation:exponentialOperator}
535 + \end{equation}
536 + In most cases, it is not easy to find the exact propagator
537 + $\varphi_\tau$. Instead, we use an approximate map, $\psi_\tau$,
538 + which is usually called an integrator. The order of an integrator
539 + $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
540 + order $p$,
541 + \begin{equation}
542 + \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
543 + \end{equation}
544 +
545 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
546 +
547 + The hidden geometric properties\cite{Budd1999, Marsden1998} of an
548 + ODE and its propagator play important roles in numerical studies.
549 + Many of them can be found in systems which occur naturally in
550 + applications. Let $\varphi$ be the propagator of Hamiltonian vector
551 + field, $\varphi$ is a \emph{symplectic} propagator if it satisfies,
552 + \begin{equation}
553 + {\varphi '}^T J \varphi ' = J.
554 + \end{equation}
555 + According to Liouville's theorem, the symplectic volume is invariant
556 + under a Hamiltonian propagator, which is the basis for classical
557 + statistical mechanics. Furthermore, the propagator of a Hamiltonian
558 + vector field on a symplectic manifold can be shown to be a
559 + symplectomorphism. As to the Poisson system,
560 + \begin{equation}
561 + {\varphi '}^T J \varphi ' = J \circ \varphi
562 + \end{equation}
563 + is the property that must be preserved by the integrator. It is
564 + possible to construct a \emph{volume-preserving} propagator for a
565 + source free ODE ($ \nabla \cdot f = 0 $), if the propagator
566 + satisfies $ \det d\varphi  = 1$. One can show easily that a
567 + symplectic propagator will be volume-preserving. Changing the
568 + variables $y = h(x)$ in an ODE (Eq.~\ref{introEquation:ODE}) will
569 + result in a new system,
570 + \[
571 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
572 + \]
573 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
574 + In other words, the propagator of this vector field is reversible if
575 + and only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. A
576 + conserved quantity of a general differential function is a function
577 + $ G:R^{2d}  \to R^d $ which is constant for all solutions of the ODE
578 + $\frac{{dx}}{{dt}} = f(x)$ ,
579 + \[
580 + \frac{{dG(x(t))}}{{dt}} = 0.
581 + \]
582 + Using the chain rule, one may obtain,
583 + \[
584 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \cdot \nabla G,
585 + \]
586 + which is the condition for conserved quantities. For a canonical
587 + Hamiltonian system, the time evolution of an arbitrary smooth
588 + function $G$ is given by,
589 + \begin{eqnarray}
590 + \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \notag\\
591 +                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)).
592 + \label{introEquation:firstIntegral1}
593 + \end{eqnarray}
594 + Using poisson bracket notion, Eq.~\ref{introEquation:firstIntegral1}
595 + can be rewritten as
596 + \[
597 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
598 + \]
599 + Therefore, the sufficient condition for $G$ to be a conserved
600 + quantity of a Hamiltonian system is $\left\{ {G,H} \right\} = 0.$ As
601 + is well known, the Hamiltonian (or energy) H of a Hamiltonian system
602 + is a conserved quantity, which is due to the fact $\{ H,H\}  = 0$.
603 + When designing any numerical methods, one should always try to
604 + preserve the structural properties of the original ODE and its
605 + propagator.
606 +
607 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
608 + A lot of well established and very effective numerical methods have
609 + been successful precisely because of their symplectic nature even
610 + though this fact was not recognized when they were first
611 + constructed. The most famous example is the Verlet-leapfrog method
612 + in molecular dynamics. In general, symplectic integrators can be
613 + constructed using one of four different methods.
614 + \begin{enumerate}
615 + \item Generating functions
616 + \item Variational methods
617 + \item Runge-Kutta methods
618 + \item Splitting methods
619 + \end{enumerate}
620 + Generating functions\cite{Channell1990} tend to lead to methods
621 + which are cumbersome and difficult to use. In dissipative systems,
622 + variational methods can capture the decay of energy
623 + accurately\cite{Kane2000}. Since they are geometrically unstable
624 + against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
625 + methods are not suitable for Hamiltonian system. Recently, various
626 + high-order explicit Runge-Kutta methods \cite{Owren1992,Chen2003}
627 + have been developed to overcome this instability. However, due to
628 + computational penalty involved in implementing the Runge-Kutta
629 + methods, they have not attracted much attention from the Molecular
630 + Dynamics community. Instead, splitting methods have been widely
631 + accepted since they exploit natural decompositions of the
632 + system\cite{Tuckerman1992, McLachlan1998}.
633 +
634 + \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
635 +
636 + The main idea behind splitting methods is to decompose the discrete
637 + $\varphi_h$ as a composition of simpler propagators,
638 + \begin{equation}
639 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
640 + \varphi _{h_n }
641 + \label{introEquation:FlowDecomposition}
642 + \end{equation}
643 + where each of the sub-propagator is chosen such that each represent
644 + a simpler integration of the system. Suppose that a Hamiltonian
645 + system takes the form,
646 + \[
647 + H = H_1 + H_2.
648 + \]
649 + Here, $H_1$ and $H_2$ may represent different physical processes of
650 + the system. For instance, they may relate to kinetic and potential
651 + energy respectively, which is a natural decomposition of the
652 + problem. If $H_1$ and $H_2$ can be integrated using exact
653 + propagators $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a
654 + simple first order expression is then given by the Lie-Trotter
655 + formula
656 + \begin{equation}
657 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
658 + \label{introEquation:firstOrderSplitting}
659 + \end{equation}
660 + where $\varphi _h$ is the result of applying the corresponding
661 + continuous $\varphi _i$ over a time $h$. By definition, as
662 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
663 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
664 + It is easy to show that any composition of symplectic propagators
665 + yields a symplectic map,
666 + \begin{equation}
667 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
668 + '\phi ' = \phi '^T J\phi ' = J,
669 + \label{introEquation:SymplecticFlowComposition}
670 + \end{equation}
671 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
672 + splitting in this context automatically generates a symplectic map.
673 + The Lie-Trotter
674 + splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
675 + local errors proportional to $h^2$, while the Strang splitting gives
676 + a second-order decomposition,
677 + \begin{equation}
678 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
679 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
680 + \end{equation}
681 + which has a local error proportional to $h^3$. The Strang
682 + splitting's popularity in molecular simulation community attribute
683 + to its symmetric property,
684 + \begin{equation}
685 + \varphi _h^{ - 1} = \varphi _{ - h}.
686 + \label{introEquation:timeReversible}
687 + \end{equation}
688 +
689 + \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
690 + The classical equation for a system consisting of interacting
691 + particles can be written in Hamiltonian form,
692 + \[
693 + H = T + V
694 + \]
695 + where $T$ is the kinetic energy and $V$ is the potential energy.
696 + Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
697 + obtains the following:
698 + \begin{align}
699 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
700 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
701 + \label{introEquation:Lp10a} \\%
702 + %
703 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
704 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
705 + \label{introEquation:Lp10b}
706 + \end{align}
707 + where $F(t)$ is the force at time $t$. This integration scheme is
708 + known as \emph{velocity verlet} which is
709 + symplectic(Eq.~\ref{introEquation:SymplecticFlowComposition}),
710 + time-reversible(Eq.~\ref{introEquation:timeReversible}) and
711 + volume-preserving (Eq.~\ref{introEquation:volumePreserving}). These
712 + geometric properties attribute to its long-time stability and its
713 + popularity in the community. However, the most commonly used
714 + velocity verlet integration scheme is written as below,
715 + \begin{align}
716 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
717 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
718 + %
719 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
720 +    \label{introEquation:Lp9b}\\%
721 + %
722 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
723 +    \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
724 + \end{align}
725 + From the preceding splitting, one can see that the integration of
726 + the equations of motion would follow:
727 + \begin{enumerate}
728 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
729 +
730 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
731 +
732 + \item Evaluate the forces at the new positions, $q(\Delta t)$, and use the new forces to complete the velocity move.
733 +
734 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
735 + \end{enumerate}
736 + By simply switching the order of the propagators in the splitting
737 + and composing a new integrator, the \emph{position verlet}
738 + integrator, can be generated,
739 + \begin{align}
740 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
741 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
742 + \label{introEquation:positionVerlet1} \\%
743 + %
744 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
745 + q(\Delta t)} \right]. %
746 + \label{introEquation:positionVerlet2}
747 + \end{align}
748 +
749 + \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
750 +
751 + The Baker-Campbell-Hausdorff formula can be used to determine the
752 + local error of a splitting method in terms of the commutator of the
753 + operators(Eq.~\ref{introEquation:exponentialOperator}) associated with
754 + the sub-propagator. For operators $hX$ and $hY$ which are associated
755 + with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
756 + \begin{equation}
757 + \exp (hX + hY) = \exp (hZ)
758 + \end{equation}
759 + where
760 + \begin{equation}
761 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
762 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
763 + \end{equation}
764 + Here, $[X,Y]$ is the commutator of operator $X$ and $Y$ given by
765 + \[
766 + [X,Y] = XY - YX .
767 + \]
768 + Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
769 + to the Strang splitting, we can obtain
770 + \begin{eqnarray*}
771 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
772 +                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
773 +                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots
774 +                                   ).
775 + \end{eqnarray*}
776 + Since $ [X,Y] + [Y,X] = 0$ and $ [X,X] = 0$, the dominant local
777 + error of Strang splitting is proportional to $h^3$. The same
778 + procedure can be applied to a general splitting of the form
779 + \begin{equation}
780 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
781 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
782 + \end{equation}
783 + A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
784 + order methods. Yoshida proposed an elegant way to compose higher
785 + order methods based on symmetric splitting\cite{Yoshida1990}. Given
786 + a symmetric second order base method $ \varphi _h^{(2)} $, a
787 + fourth-order symmetric method can be constructed by composing,
788 + \[
789 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
790 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
791 + \]
792 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
793 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
794 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
795 + \begin{equation}
796 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
797 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)},
798 + \end{equation}
799 + if the weights are chosen as
800 + \[
801 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
802 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
803 + \]
804 +
805 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
806 +
807 + As one of the principal tools of molecular modeling, Molecular
808 + dynamics has proven to be a powerful tool for studying the functions
809 + of biological systems, providing structural, thermodynamic and
810 + dynamical information. The basic idea of molecular dynamics is that
811 + macroscopic properties are related to microscopic behavior and
812 + microscopic behavior can be calculated from the trajectories in
813 + simulations. For instance, instantaneous temperature of a
814 + Hamiltonian system of $N$ particles can be measured by
815 + \[
816 + T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
817 + \]
818 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
819 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
820 + the Boltzman constant.
821 +
822 + A typical molecular dynamics run consists of three essential steps:
823 + \begin{enumerate}
824 +  \item Initialization
825 +    \begin{enumerate}
826 +    \item Preliminary preparation
827 +    \item Minimization
828 +    \item Heating
829 +    \item Equilibration
830 +    \end{enumerate}
831 +  \item Production
832 +  \item Analysis
833 + \end{enumerate}
834 + These three individual steps will be covered in the following
835 + sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
836 + initialization of a simulation. Sec.~\ref{introSection:production}
837 + discusses issues of production runs.
838 + Sec.~\ref{introSection:Analysis} provides the theoretical tools for
839 + analysis of trajectories.
840  
841 + \subsection{\label{introSec:initialSystemSettings}Initialization}
842 +
843 + \subsubsection{\textbf{Preliminary preparation}}
844 +
845 + When selecting the starting structure of a molecule for molecular
846 + simulation, one may retrieve its Cartesian coordinates from public
847 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
848 + thousands of crystal structures of molecules are discovered every
849 + year, many more remain unknown due to the difficulties of
850 + purification and crystallization. Even for molecules with known
851 + structures, some important information is missing. For example, a
852 + missing hydrogen atom which acts as donor in hydrogen bonding must
853 + be added. Moreover, in order to include electrostatic interactions,
854 + one may need to specify the partial charges for individual atoms.
855 + Under some circumstances, we may even need to prepare the system in
856 + a special configuration. For instance, when studying transport
857 + phenomenon in membrane systems, we may prepare the lipids in a
858 + bilayer structure instead of placing lipids randomly in solvent,
859 + since we are not interested in the slow self-aggregation process.
860 +
861 + \subsubsection{\textbf{Minimization}}
862 +
863 + It is quite possible that some of molecules in the system from
864 + preliminary preparation may be overlapping with each other. This
865 + close proximity leads to high initial potential energy which
866 + consequently jeopardizes any molecular dynamics simulations. To
867 + remove these steric overlaps, one typically performs energy
868 + minimization to find a more reasonable conformation. Several energy
869 + minimization methods have been developed to exploit the energy
870 + surface and to locate the local minimum. While converging slowly
871 + near the minimum, the steepest descent method is extremely robust when
872 + systems are strongly anharmonic. Thus, it is often used to refine
873 + structures from crystallographic data. Relying on the Hessian,
874 + advanced methods like Newton-Raphson converge rapidly to a local
875 + minimum, but become unstable if the energy surface is far from
876 + quadratic. Another factor that must be taken into account, when
877 + choosing energy minimization method, is the size of the system.
878 + Steepest descent and conjugate gradient can deal with models of any
879 + size. Because of the limits on computer memory to store the hessian
880 + matrix and the computing power needed to diagonalize these matrices,
881 + most Newton-Raphson methods can not be used with very large systems.
882 +
883 + \subsubsection{\textbf{Heating}}
884 +
885 + Typically, heating is performed by assigning random velocities
886 + according to a Maxwell-Boltzman distribution for a desired
887 + temperature. Beginning at a lower temperature and gradually
888 + increasing the temperature by assigning larger random velocities, we
889 + end up setting the temperature of the system to a final temperature
890 + at which the simulation will be conducted. In the heating phase, we
891 + should also keep the system from drifting or rotating as a whole. To
892 + do this, the net linear momentum and angular momentum of the system
893 + is shifted to zero after each resampling from the Maxwell -Boltzman
894 + distribution.
895 +
896 + \subsubsection{\textbf{Equilibration}}
897 +
898 + The purpose of equilibration is to allow the system to evolve
899 + spontaneously for a period of time and reach equilibrium. The
900 + procedure is continued until various statistical properties, such as
901 + temperature, pressure, energy, volume and other structural
902 + properties \textit{etc}, become independent of time. Strictly
903 + speaking, minimization and heating are not necessary, provided the
904 + equilibration process is long enough. However, these steps can serve
905 + as a mean to arrive at an equilibrated structure in an effective
906 + way.
907 +
908 + \subsection{\label{introSection:production}Production}
909 +
910 + The production run is the most important step of the simulation, in
911 + which the equilibrated structure is used as a starting point and the
912 + motions of the molecules are collected for later analysis. In order
913 + to capture the macroscopic properties of the system, the molecular
914 + dynamics simulation must be performed by sampling correctly and
915 + efficiently from the relevant thermodynamic ensemble.
916 +
917 + The most expensive part of a molecular dynamics simulation is the
918 + calculation of non-bonded forces, such as van der Waals force and
919 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
920 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
921 + which makes large simulations prohibitive in the absence of any
922 + algorithmic tricks. A natural approach to avoid system size issues
923 + is to represent the bulk behavior by a finite number of the
924 + particles. However, this approach will suffer from surface effects
925 + at the edges of the simulation. To offset this, \textit{Periodic
926 + boundary conditions} (see Fig.~\ref{introFig:pbc}) were developed to
927 + simulate bulk properties with a relatively small number of
928 + particles. In this method, the simulation box is replicated
929 + throughout space to form an infinite lattice. During the simulation,
930 + when a particle moves in the primary cell, its image in other cells
931 + move in exactly the same direction with exactly the same
932 + orientation. Thus, as a particle leaves the primary cell, one of its
933 + images will enter through the opposite face.
934 + \begin{figure}
935 + \centering
936 + \includegraphics[width=\linewidth]{pbc.eps}
937 + \caption[An illustration of periodic boundary conditions]{A 2-D
938 + illustration of periodic boundary conditions. As one particle leaves
939 + the left of the simulation box, an image of it enters the right.}
940 + \label{introFig:pbc}
941 + \end{figure}
942 +
943 + %cutoff and minimum image convention
944 + Another important technique to improve the efficiency of force
945 + evaluation is to apply spherical cutoffs where particles farther
946 + than a predetermined distance are not included in the calculation
947 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
948 + discontinuity in the potential energy curve. Fortunately, one can
949 + shift a simple radial potential to ensure the potential curve go
950 + smoothly to zero at the cutoff radius. The cutoff strategy works
951 + well for Lennard-Jones interaction because of its short range
952 + nature. However, simply truncating the electrostatic interaction
953 + with the use of cutoffs has been shown to lead to severe artifacts
954 + in simulations. The Ewald summation, in which the slowly decaying
955 + Coulomb potential is transformed into direct and reciprocal sums
956 + with rapid and absolute convergence, has proved to minimize the
957 + periodicity artifacts in liquid simulations. Taking advantage
958 + of fast Fourier transform (FFT) techniques for calculating discrete Fourier
959 + transforms, the particle mesh-based
960 + methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
961 + $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
962 + \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
963 + which treats Coulombic interactions exactly at short range, and
964 + approximate the potential at long range through multipolar
965 + expansion. In spite of their wide acceptance at the molecular
966 + simulation community, these two methods are difficult to implement
967 + correctly and efficiently. Instead, we use a damped and
968 + charge-neutralized Coulomb potential method developed by Wolf and
969 + his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
970 + particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
971 + \begin{equation}
972 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
973 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
974 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
975 + r_{ij})}{r_{ij}}\right\}, \label{introEquation:shiftedCoulomb}
976 + \end{equation}
977 + where $\alpha$ is the convergence parameter. Due to the lack of
978 + inherent periodicity and rapid convergence,this method is extremely
979 + efficient and easy to implement.
980 + \begin{figure}
981 + \centering
982 + \includegraphics[width=\linewidth]{shifted_coulomb.eps}
983 + \caption[An illustration of shifted Coulomb potential]{An
984 + illustration of shifted Coulomb potential.}
985 + \label{introFigure:shiftedCoulomb}
986 + \end{figure}
987 +
988 + %multiple time step
989 +
990 + \subsection{\label{introSection:Analysis} Analysis}
991 +
992 + Recently, advanced visualization techniques have been applied to
993 + monitor the motions of molecules. Although the dynamics of the
994 + system can be described qualitatively from animation, quantitative
995 + trajectory analysis is more useful. According to the principles of
996 + Statistical Mechanics in
997 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
998 + thermodynamic properties, analyze fluctuations of structural
999 + parameters, and investigate time-dependent processes of the molecule
1000 + from the trajectories.
1001 +
1002 + \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1003 +
1004 + Thermodynamic properties, which can be expressed in terms of some
1005 + function of the coordinates and momenta of all particles in the
1006 + system, can be directly computed from molecular dynamics. The usual
1007 + way to measure the pressure is based on virial theorem of Clausius
1008 + which states that the virial is equal to $-3Nk_BT$. For a system
1009 + with forces between particles, the total virial, $W$, contains the
1010 + contribution from external pressure and interaction between the
1011 + particles:
1012 + \[
1013 + W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1014 + f_{ij} } } \right\rangle
1015 + \]
1016 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1017 + distance $r_{ij}$. Thus, the expression for the pressure is given
1018 + by:
1019 + \begin{equation}
1020 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1021 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1022 + \end{equation}
1023 +
1024 + \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1025 +
1026 + Structural Properties of a simple fluid can be described by a set of
1027 + distribution functions. Among these functions,the \emph{pair
1028 + distribution function}, also known as \emph{radial distribution
1029 + function}, is of most fundamental importance to liquid theory.
1030 + Experimentally, pair distribution functions can be gathered by
1031 + Fourier transforming raw data from a series of neutron diffraction
1032 + experiments and integrating over the surface factor
1033 + \cite{Powles1973}. The experimental results can serve as a criterion
1034 + to justify the correctness of a liquid model. Moreover, various
1035 + equilibrium thermodynamic and structural properties can also be
1036 + expressed in terms of the radial distribution function
1037 + \cite{Allen1987}. The pair distribution functions $g(r)$ gives the
1038 + probability that a particle $i$ will be located at a distance $r$
1039 + from a another particle $j$ in the system
1040 + \begin{equation}
1041 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1042 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1043 + (r)}{\rho}.
1044 + \end{equation}
1045 + Note that the delta function can be replaced by a histogram in
1046 + computer simulation. Peaks in $g(r)$ represent solvent shells, and
1047 + the height of these peaks gradually decreases to 1 as the liquid of
1048 + large distance approaches the bulk density.
1049 +
1050 +
1051 + \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1052 + Properties}}
1053 +
1054 + Time-dependent properties are usually calculated using \emph{time
1055 + correlation functions}, which correlate random variables $A$ and $B$
1056 + at two different times,
1057 + \begin{equation}
1058 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1059 + \label{introEquation:timeCorrelationFunction}
1060 + \end{equation}
1061 + If $A$ and $B$ refer to same variable, this kind of correlation
1062 + functions are called \emph{autocorrelation functions}. One typical example is the velocity autocorrelation
1063 + function which is directly related to transport properties of
1064 + molecular liquids:
1065 + \begin{equation}
1066 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1067 + \right\rangle } dt
1068 + \end{equation}
1069 + where $D$ is diffusion constant. Unlike the velocity autocorrelation
1070 + function, which is averaged over time origins and over all the
1071 + atoms, the dipole autocorrelation functions is calculated for the
1072 + entire system. The dipole autocorrelation function is given by:
1073 + \begin{equation}
1074 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1075 + \right\rangle
1076 + \end{equation}
1077 + Here $u_{tot}$ is the net dipole of the entire system and is given
1078 + by
1079 + \begin{equation}
1080 + u_{tot} (t) = \sum\limits_i {u_i (t)}.
1081 + \end{equation}
1082 + In principle, many time correlation functions can be related to
1083 + Fourier transforms of the infrared, Raman, and inelastic neutron
1084 + scattering spectra of molecular liquids. In practice, one can
1085 + extract the IR spectrum from the intensity of the molecular dipole
1086 + fluctuation at each frequency using the following relationship:
1087 + \begin{equation}
1088 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1089 + i2\pi vt} dt}.
1090 + \end{equation}
1091 +
1092   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1093  
1094 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1094 > Rigid bodies are frequently involved in the modeling of different
1095 > areas, including engineering, physics and chemistry. For example,
1096 > missiles and vehicles are usually modeled by rigid bodies.  The
1097 > movement of the objects in 3D gaming engines or other physics
1098 > simulators is governed by rigid body dynamics. In molecular
1099 > simulations, rigid bodies are used to simplify protein-protein
1100 > docking studies\cite{Gray2003}.
1101  
1102 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1102 > It is very important to develop stable and efficient methods to
1103 > integrate the equations of motion for orientational degrees of
1104 > freedom. Euler angles are the natural choice to describe the
1105 > rotational degrees of freedom. However, due to $\frac {1}{sin
1106 > \theta}$ singularities, the numerical integration of corresponding
1107 > equations of these motion is very inefficient and inaccurate.
1108 > Although an alternative integrator using multiple sets of Euler
1109 > angles can overcome this difficulty\cite{Barojas1973}, the
1110 > computational penalty and the loss of angular momentum conservation
1111 > still remain. A singularity-free representation utilizing
1112 > quaternions was developed by Evans in 1977\cite{Evans1977}.
1113 > Unfortunately, this approach used a nonseparable Hamiltonian
1114 > resulting from the quaternion representation, which prevented the
1115 > symplectic algorithm from being utilized. Another different approach
1116 > is to apply holonomic constraints to the atoms belonging to the
1117 > rigid body. Each atom moves independently under the normal forces
1118 > deriving from potential energy and constraint forces which are used
1119 > to guarantee the rigidness. However, due to their iterative nature,
1120 > the SHAKE and Rattle algorithms also converge very slowly when the
1121 > number of constraints increases\cite{Ryckaert1977, Andersen1983}.
1122  
1123 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1123 > A break-through in geometric literature suggests that, in order to
1124 > develop a long-term integration scheme, one should preserve the
1125 > symplectic structure of the propagator. By introducing a conjugate
1126 > momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1127 > equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1128 > proposed to evolve the Hamiltonian system in a constraint manifold
1129 > by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1130 > An alternative method using the quaternion representation was
1131 > developed by Omelyan\cite{Omelyan1998}. However, both of these
1132 > methods are iterative and inefficient. In this section, we descibe a
1133 > symplectic Lie-Poisson integrator for rigid bodies developed by
1134 > Dullweber and his coworkers\cite{Dullweber1997} in depth.
1135  
1136 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
1136 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1137 > The Hamiltonian of a rigid body is given by
1138 > \begin{equation}
1139 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1140 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1141 > \label{introEquation:RBHamiltonian}
1142 > \end{equation}
1143 > Here, $q$ and $Q$  are the position vector and rotation matrix for
1144 > the rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ ,
1145 > and $J$, a diagonal matrix, is defined by
1146 > \[
1147 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1148 > \]
1149 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1150 > constrained Hamiltonian equation is subjected to a holonomic
1151 > constraint,
1152 > \begin{equation}
1153 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1154 > \end{equation}
1155 > which is used to ensure the rotation matrix's unitarity. Using
1156 > Eq.~\ref{introEquation:motionHamiltonianCoordinate} and Eq.~
1157 > \ref{introEquation:motionHamiltonianMomentum}, one can write down
1158 > the equations of motion,
1159 > \begin{eqnarray}
1160 > \frac{{dq}}{{dt}} & = & \frac{p}{m}, \label{introEquation:RBMotionPosition}\\
1161 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q), \label{introEquation:RBMotionMomentum}\\
1162 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1},  \label{introEquation:RBMotionRotation}\\
1163 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1164 > \end{eqnarray}
1165 > Differentiating Eq.~\ref{introEquation:orthogonalConstraint} and
1166 > using Eq.~\ref{introEquation:RBMotionMomentum}, one may obtain,
1167 > \begin{equation}
1168 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1169 > \label{introEquation:RBFirstOrderConstraint}
1170 > \end{equation}
1171 > In general, there are two ways to satisfy the holonomic constraints.
1172 > We can use a constraint force provided by a Lagrange multiplier on
1173 > the normal manifold to keep the motion on the constraint space. Or
1174 > we can simply evolve the system on the constraint manifold. These
1175 > two methods have been proved to be equivalent. The holonomic
1176 > constraint and equations of motions define a constraint manifold for
1177 > rigid bodies
1178 > \[
1179 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1180 > \right\}.
1181 > \]
1182 > Unfortunately, this constraint manifold is not $T^* SO(3)$ which is
1183 > a symplectic manifold on Lie rotation group $SO(3)$. However, it
1184 > turns out that under symplectic transformation, the cotangent space
1185 > and the phase space are diffeomorphic. By introducing
1186 > \[
1187 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1188 > \]
1189 > the mechanical system subjected to a holonomic constraint manifold $M$
1190 > can be re-formulated as a Hamiltonian system on the cotangent space
1191 > \[
1192 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1193 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1194 > \]
1195 > For a body fixed vector $X_i$ with respect to the center of mass of
1196 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1197 > given as
1198 > \begin{equation}
1199 > X_i^{lab} = Q X_i + q.
1200 > \end{equation}
1201 > Therefore, potential energy $V(q,Q)$ is defined by
1202 > \[
1203 > V(q,Q) = V(Q X_0 + q).
1204 > \]
1205 > Hence, the force and torque are given by
1206 > \[
1207 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1208 > \]
1209 > and
1210 > \[
1211 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1212 > \]
1213 > respectively. As a common choice to describe the rotation dynamics
1214 > of the rigid body, the angular momentum on the body fixed frame $\Pi
1215 > = Q^t P$ is introduced to rewrite the equations of motion,
1216 > \begin{equation}
1217 > \begin{array}{l}
1218 > \dot \Pi  = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda,  \\
1219 > \dot Q  = Q\Pi {\rm{ }}J^{ - 1},  \\
1220 > \end{array}
1221 > \label{introEqaution:RBMotionPI}
1222 > \end{equation}
1223 > as well as holonomic constraints $\Pi J^{ - 1}  + J^{ - 1} \Pi ^t  =
1224 > 0$ and $Q^T Q = 1$. For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a
1225 > matrix $\hat v \in so(3)^ \star$, the hat-map isomorphism,
1226 > \begin{equation}
1227 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1228 > {\begin{array}{*{20}c}
1229 >   0 & { - v_3 } & {v_2 }  \\
1230 >   {v_3 } & 0 & { - v_1 }  \\
1231 >   { - v_2 } & {v_1 } & 0  \\
1232 > \end{array}} \right),
1233 > \label{introEquation:hatmapIsomorphism}
1234 > \end{equation}
1235 > will let us associate the matrix products with traditional vector
1236 > operations
1237 > \[
1238 > \hat vu = v \times u.
1239 > \]
1240 > Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1241 > matrix,
1242 > \begin{eqnarray}
1243 > (\dot \Pi  - \dot \Pi ^T )&= &(\Pi  - \Pi ^T )(J^{ - 1} \Pi  + \Pi J^{ - 1} ) \notag \\
1244 > & & + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]}  -
1245 > (\Lambda  - \Lambda ^T ). \label{introEquation:skewMatrixPI}
1246 > \end{eqnarray}
1247 > Since $\Lambda$ is symmetric, the last term of
1248 > Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1249 > Lagrange multiplier $\Lambda$ is absent from the equations of
1250 > motion. This unique property eliminates the requirement of
1251 > iterations which can not be avoided in other methods\cite{Kol1997,
1252 > Omelyan1998}. Applying the hat-map isomorphism, we obtain the
1253 > equation of motion for angular momentum in the body frame
1254 > \begin{equation}
1255 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1256 > F_i (r,Q)} \right) \times X_i }.
1257 > \label{introEquation:bodyAngularMotion}
1258 > \end{equation}
1259 > In the same manner, the equation of motion for rotation matrix is
1260 > given by
1261 > \[
1262 > \dot Q = Qskew(I^{ - 1} \pi ).
1263 > \]
1264 >
1265 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1266 > Lie-Poisson Integrator for Free Rigid Bodies}
1267 >
1268 > If there are no external forces exerted on the rigid body, the only
1269 > contribution to the rotational motion is from the kinetic energy
1270 > (the first term of \ref{introEquation:bodyAngularMotion}). The free
1271 > rigid body is an example of a Lie-Poisson system with Hamiltonian
1272 > function
1273 > \begin{equation}
1274 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1275 > \label{introEquation:rotationalKineticRB}
1276 > \end{equation}
1277 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1278 > Lie-Poisson structure matrix,
1279 > \begin{equation}
1280 > J(\pi ) = \left( {\begin{array}{*{20}c}
1281 >   0 & {\pi _3 } & { - \pi _2 }  \\
1282 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1283 >   {\pi _2 } & { - \pi _1 } & 0  \\
1284 > \end{array}} \right).
1285 > \end{equation}
1286 > Thus, the dynamics of free rigid body is governed by
1287 > \begin{equation}
1288 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi ).
1289 > \end{equation}
1290 > One may notice that each $T_i^r$ in
1291 > Eq.~\ref{introEquation:rotationalKineticRB} can be solved exactly.
1292 > For instance, the equations of motion due to $T_1^r$ are given by
1293 > \begin{equation}
1294 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1295 > \label{introEqaution:RBMotionSingleTerm}
1296 > \end{equation}
1297 > with
1298 > \[ R_1  = \left( {\begin{array}{*{20}c}
1299 >   0 & 0 & 0  \\
1300 >   0 & 0 & {\pi _1 }  \\
1301 >   0 & { - \pi _1 } & 0  \\
1302 > \end{array}} \right).
1303 > \]
1304 > The solutions of Eq.~\ref{introEqaution:RBMotionSingleTerm} is
1305 > \[
1306 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1307 > Q(0)e^{\Delta tR_1 }
1308 > \]
1309 > with
1310 > \[
1311 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1312 >   0 & 0 & 0  \\
1313 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1314 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1315 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1316 > \]
1317 > To reduce the cost of computing expensive functions in $e^{\Delta
1318 > tR_1 }$, we can use the Cayley transformation to obtain a
1319 > single-aixs propagator,
1320 > \begin{eqnarray*}
1321 > e^{\Delta tR_1 }  & \approx & (1 - \Delta tR_1 )^{ - 1} (1 + \Delta
1322 > tR_1 ) \\
1323 > %
1324 > & \approx & \left( \begin{array}{ccc}
1325 > 1 & 0 & 0 \\
1326 > 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}  & -\frac{\theta}{1+
1327 > \theta^2 / 4} \\
1328 > 0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
1329 > \theta^2 / 4}
1330 > \end{array}
1331 > \right).
1332 > \end{eqnarray*}
1333 > The propagators for $T_2^r$ and $T_3^r$ can be found in the same
1334 > manner. In order to construct a second-order symplectic method, we
1335 > split the angular kinetic Hamiltonian function into five terms
1336 > \[
1337 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1338 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1339 > (\pi _1 ).
1340 > \]
1341 > By concatenating the propagators corresponding to these five terms,
1342 > we can obtain an symplectic integrator,
1343 > \[
1344 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1345 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1346 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1347 > _1 }.
1348 > \]
1349 > The non-canonical Lie-Poisson bracket $\{F, G\}$ of two functions $F(\pi )$ and $G(\pi )$ is defined by
1350 > \[
1351 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1352 > ).
1353 > \]
1354 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1355 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1356 > conserved quantity in Poisson system. We can easily verify that the
1357 > norm of the angular momentum, $\parallel \pi
1358 > \parallel$, is a \emph{Casimir}\cite{McLachlan1993}. Let $F(\pi ) = S(\frac{{\parallel
1359 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1360 > then by the chain rule
1361 > \[
1362 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1363 > }}{2})\pi.
1364 > \]
1365 > Thus, $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel
1366 > \pi
1367 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1368 > Lie-Poisson integrator is found to be both extremely efficient and
1369 > stable. These properties can be explained by the fact the small
1370 > angle approximation is used and the norm of the angular momentum is
1371 > conserved.
1372 >
1373 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1374 > Splitting for Rigid Body}
1375 >
1376 > The Hamiltonian of rigid body can be separated in terms of kinetic
1377 > energy and potential energy, $H = T(p,\pi ) + V(q,Q)$. The equations
1378 > of motion corresponding to potential energy and kinetic energy are
1379 > listed in Table~\ref{introTable:rbEquations}.
1380 > \begin{table}
1381 > \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1382 > \label{introTable:rbEquations}
1383 > \begin{center}
1384 > \begin{tabular}{|l|l|}
1385 >  \hline
1386 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1387 >  Potential & Kinetic \\
1388 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1389 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1390 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1391 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1392 >  \hline
1393 > \end{tabular}
1394 > \end{center}
1395 > \end{table}
1396 > A second-order symplectic method is now obtained by the composition
1397 > of the position and velocity propagators,
1398 > \[
1399 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1400 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1401 > \]
1402 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1403 > sub-propagators which corresponding to force and torque
1404 > respectively,
1405 > \[
1406 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1407 > _{\Delta t/2,\tau }.
1408 > \]
1409 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1410 > $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1411 > inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1412 > kinetic energy can be separated to translational kinetic term, $T^t
1413 > (p)$, and rotational kinetic term, $T^r (\pi )$,
1414 > \begin{equation}
1415 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1416 > \end{equation}
1417 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1418 > defined by Eq.~\ref{introEquation:rotationalKineticRB}. Therefore,
1419 > the corresponding propagators are given by
1420 > \[
1421 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1422 > _{\Delta t,T^r }.
1423 > \]
1424 > Finally, we obtain the overall symplectic propagators for freely
1425 > moving rigid bodies
1426 > \begin{eqnarray}
1427 > \varphi _{\Delta t}  &=& \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \notag\\
1428 >  & & \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \notag\\
1429 >  & & \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .
1430 > \label{introEquation:overallRBFlowMaps}
1431 > \end{eqnarray}
1432 >
1433 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1434 > As an alternative to newtonian dynamics, Langevin dynamics, which
1435 > mimics a simple heat bath with stochastic and dissipative forces,
1436 > has been applied in a variety of studies. This section will review
1437 > the theory of Langevin dynamics. A brief derivation of the generalized
1438 > Langevin equation will be given first. Following that, we will
1439 > discuss the physical meaning of the terms appearing in the equation.
1440 >
1441 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1442 >
1443 > A harmonic bath model, in which an effective set of harmonic
1444 > oscillators are used to mimic the effect of a linearly responding
1445 > environment, has been widely used in quantum chemistry and
1446 > statistical mechanics. One of the successful applications of
1447 > Harmonic bath model is the derivation of the Generalized Langevin
1448 > Dynamics (GLE). Consider a system, in which the degree of
1449 > freedom $x$ is assumed to couple to the bath linearly, giving a
1450 > Hamiltonian of the form
1451 > \begin{equation}
1452 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1453 > \label{introEquation:bathGLE}.
1454 > \end{equation}
1455 > Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1456 > with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1457 > \[
1458 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1459 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  x_\alpha ^2 }
1460 > \right\}}
1461 > \]
1462 > where the index $\alpha$ runs over all the bath degrees of freedom,
1463 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1464 > the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1465 > coupling,
1466 > \[
1467 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1468 > \]
1469 > where $g_\alpha$ are the coupling constants between the bath
1470 > coordinates ($x_ \alpha$) and the system coordinate ($x$).
1471 > Introducing
1472 > \[
1473 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1474 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1475 > \]
1476 > and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1477 > \[
1478 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1479 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1480 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1481 > w_\alpha ^2 }}x} \right)^2 } \right\}}.
1482 > \]
1483 > Since the first two terms of the new Hamiltonian depend only on the
1484 > system coordinates, we can get the equations of motion for
1485 > Generalized Langevin Dynamics by Hamilton's equations,
1486 > \begin{equation}
1487 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1488 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1489 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1490 > \label{introEquation:coorMotionGLE}
1491 > \end{equation}
1492 > and
1493 > \begin{equation}
1494 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1495 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1496 > \label{introEquation:bathMotionGLE}
1497 > \end{equation}
1498 > In order to derive an equation for $x$, the dynamics of the bath
1499 > variables $x_\alpha$ must be solved exactly first. As an integral
1500 > transform which is particularly useful in solving linear ordinary
1501 > differential equations,the Laplace transform is the appropriate tool
1502 > to solve this problem. The basic idea is to transform the difficult
1503 > differential equations into simple algebra problems which can be
1504 > solved easily. Then, by applying the inverse Laplace transform, we
1505 > can retrieve the solutions of the original problems. Let $f(t)$ be a
1506 > function defined on $ [0,\infty ) $, the Laplace transform of $f(t)$
1507 > is a new function defined as
1508 > \[
1509 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1510 > \]
1511 > where  $p$ is real and  $L$ is called the Laplace Transform
1512 > Operator. Below are some important properties of the Laplace transform
1513 > \begin{eqnarray*}
1514 > L(x + y)  & = & L(x) + L(y) \\
1515 > L(ax)     & = & aL(x) \\
1516 > L(\dot x) & = & pL(x) - px(0) \\
1517 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1518 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1519 > \end{eqnarray*}
1520 > Applying the Laplace transform to the bath coordinates, we obtain
1521 > \begin{eqnarray*}
1522 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x), \\
1523 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}. \\
1524 > \end{eqnarray*}
1525 > In the same way, the system coordinates become
1526 > \begin{eqnarray*}
1527 > mL(\ddot x) & = &
1528 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1529 >  & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}.
1530 > \end{eqnarray*}
1531 > With the help of some relatively important inverse Laplace
1532 > transformations:
1533 > \[
1534 > \begin{array}{c}
1535 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1536 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1537 > L(1) = \frac{1}{p} \\
1538 > \end{array}
1539 > \]
1540 > we obtain
1541 > \begin{eqnarray*}
1542 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1543 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1544 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1545 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1546 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1547 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1548 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1549 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}\\
1550 > %
1551 > & = & -
1552 > \frac{{\partial W(x)}}{{\partial x}} - \int_0^t {\sum\limits_{\alpha
1553 > = 1}^N {\left( { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha
1554 > ^2 }}} \right)\cos (\omega _\alpha
1555 > t)\dot x(t - \tau )d} \tau }  \\
1556 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1557 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1558 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1559 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1560 > \end{eqnarray*}
1561 > Introducing a \emph{dynamic friction kernel}
1562 > \begin{equation}
1563 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1564 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1565 > \label{introEquation:dynamicFrictionKernelDefinition}
1566 > \end{equation}
1567 > and \emph{a random force}
1568 > \begin{equation}
1569 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1570 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1571 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1572 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1573 > \label{introEquation:randomForceDefinition}
1574 > \end{equation}
1575 > the equation of motion can be rewritten as
1576 > \begin{equation}
1577 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1578 > (t)\dot x(t - \tau )d\tau }  + R(t)
1579 > \label{introEuqation:GeneralizedLangevinDynamics}
1580 > \end{equation}
1581 > which is known as the \emph{generalized Langevin equation} (GLE).
1582 >
1583 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1584 >
1585 > One may notice that $R(t)$ depends only on initial conditions, which
1586 > implies it is completely deterministic within the context of a
1587 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1588 > uncorrelated to $x$ and $\dot x$, $\left\langle {x(t)R(t)}
1589 > \right\rangle  = 0, \left\langle {\dot x(t)R(t)} \right\rangle  =
1590 > 0.$ This property is what we expect from a truly random process. As
1591 > long as the model chosen for $R(t)$ was a gaussian distribution in
1592 > general, the stochastic nature of the GLE still remains.
1593 > %dynamic friction kernel
1594 > The convolution integral
1595 > \[
1596 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1597 > \]
1598 > depends on the entire history of the evolution of $x$, which implies
1599 > that the bath retains memory of previous motions. In other words,
1600 > the bath requires a finite time to respond to change in the motion
1601 > of the system. For a sluggish bath which responds slowly to changes
1602 > in the system coordinate, we may regard $\xi(t)$ as a constant
1603 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1604 > \[
1605 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1606 > \]
1607 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1608 > \[
1609 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1610 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1611 > \]
1612 > which can be used to describe the effect of dynamic caging in
1613 > viscous solvents. The other extreme is the bath that responds
1614 > infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1615 > taken as a $delta$ function in time:
1616 > \[
1617 > \xi (t) = 2\xi _0 \delta (t).
1618 > \]
1619 > Hence, the convolution integral becomes
1620 > \[
1621 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1622 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1623 > \]
1624 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1625 > \begin{equation}
1626 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1627 > x(t) + R(t) \label{introEquation:LangevinEquation}
1628 > \end{equation}
1629 > which is known as the Langevin equation. The static friction
1630 > coefficient $\xi _0$ can either be calculated from spectral density
1631 > or be determined by Stokes' law for regular shaped particles. A
1632 > brief review on calculating friction tensors for arbitrary shaped
1633 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1634 >
1635 > \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1636 >
1637 > Defining a new set of coordinates
1638 > \[
1639 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1640 > ^2 }}x(0),
1641 > \]
1642 > we can rewrite $R(t)$ as
1643 > \[
1644 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1645 > \]
1646 > And since the $q$ coordinates are harmonic oscillators,
1647 > \begin{eqnarray*}
1648 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1649 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1650 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1651 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1652 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1653 >  & = &kT\xi (t)
1654 > \end{eqnarray*}
1655 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1656 > \begin{equation}
1657 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1658 > \label{introEquation:secondFluctuationDissipation},
1659 > \end{equation}
1660 > which acts as a constraint on the possible ways in which one can
1661 > model the random force and friction kernel.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines