ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC vs.
Revision 2696 by tim, Thu Apr 6 22:06:50 2006 UTC

# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 + In Newtonian Mechanics, a system described by conservative forces
206 + conserves the total energy \ref{introEquation:energyConservation}.
207 + It follows that Hamilton's equations of motion conserve the total
208 + Hamiltonian.
209 + \begin{equation}
210 + \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 + H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 + }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 + H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 + \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 + q_i }}} \right) = 0}
216 + \label{introEquation:conserveHalmitonian}
217 + \end{equation}
218 +
219   When studying Hamiltonian system, it is more convenient to use
220   notation
221   \begin{equation}
# Line 221 | Line 237 | can be rewritten as,
237   \label{introEquation:compactHamiltonian}
238   \end{equation}
239  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 %Transformation}
226
240   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
241  
242 < \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
242 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
243 > A \emph{manifold} is an abstract mathematical space. It locally
244 > looks like Euclidean space, but when viewed globally, it may have
245 > more complicate structure. A good example of manifold is the surface
246 > of Earth. It seems to be flat locally, but it is round if viewed as
247 > a whole. A \emph{differentiable manifold} (also known as
248 > \emph{smooth manifold}) is a manifold with an open cover in which
249 > the covering neighborhoods are all smoothly isomorphic to one
250 > another. In other words,it is possible to apply calculus on
251 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
252 > defined as a pair $(M, \omega)$ consisting of a \emph{differentiable
253 > manifold} $M$ and a close, non-degenerated, bilinear symplectic
254 > form, $\omega$. One of the motivation to study \emph{symplectic
255 > manifold} in Hamiltonian Mechanics is that a symplectic manifold can
256 > represent all possible configurations of the system and the phase
257 > space of the system can be described by it's cotangent bundle. Every
258 > symplectic manifold is even dimensional. For instance, in Hamilton
259 > equations, coordinate and momentum always appear in pairs.
260  
261 + A \emph{symplectomorphism} is also known as a \emph{canonical
262 + transformation}.
263 +
264 + Any real-valued differentiable function H on a symplectic manifold
265 + can serve as an energy function or Hamiltonian. Associated to any
266 + Hamiltonian is a Hamiltonian vector field; the integral curves of
267 + the Hamiltonian vector field are solutions to the Hamilton-Jacobi
268 + equations. The Hamiltonian vector field defines a flow on the
269 + symplectic manifold, called a Hamiltonian flow or symplectomorphism.
270 + By Liouville's theorem, Hamiltonian flows preserve the volume form
271 + on the phase space.
272 +
273   \subsection{\label{Construction of Symplectic Methods}}
274  
275   \section{\label{introSection:statisticalMechanics}Statistical
# Line 238 | Line 280 | Statistical Mechanics concepts presented in this disse
280   The following section will give a brief introduction to some of the
281   Statistical Mechanics concepts presented in this dissertation.
282  
283 < \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
283 > \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
284  
285   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
286  
# Line 269 | Line 311 | will be the best choice.
311   Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
312   system lends itself to a time averaging approach, the Molecular
313   Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
314 < will be the best choice.
314 > will be the best choice\cite{Frenkel1996}.
315  
316   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
317  
# Line 303 | Line 345 | Applications of dynamics of rigid bodies.
345  
346   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
347  
348 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
349 +
350   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
351  
352 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
352 > \begin{equation}
353 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
354 > \label{introEquation:bathGLE}
355 > \end{equation}
356 > where $H_B$ is harmonic bath Hamiltonian,
357 > \[
358 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
359 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
360 > \]
361 > and $\Delta U$ is bilinear system-bath coupling,
362 > \[
363 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
364 > \]
365 > Completing the square,
366 > \[
367 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
368 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
369 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
370 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
371 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
372 > \]
373 > and putting it back into Eq.~\ref{introEquation:bathGLE},
374 > \[
375 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
376 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
377 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
378 > w_\alpha ^2 }}x} \right)^2 } \right\}}
379 > \]
380 > where
381 > \[
382 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
383 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
384 > \]
385 > Since the first two terms of the new Hamiltonian depend only on the
386 > system coordinates, we can get the equations of motion for
387 > Generalized Langevin Dynamics by Hamilton's equations
388 > \ref{introEquation:motionHamiltonianCoordinate,
389 > introEquation:motionHamiltonianMomentum},
390 > \begin{align}
391 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
392 >       &= m\ddot x
393 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
394 > \label{introEq:Lp5}
395 > \end{align}
396 > , and
397 > \begin{align}
398 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
399 >                &= m\ddot x_\alpha
400 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
401 > \end{align}
402 >
403 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
404 >
405 > \[
406 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
407 > \]
408 >
409 > \[
410 > L(x + y) = L(x) + L(y)
411 > \]
412 >
413 > \[
414 > L(ax) = aL(x)
415 > \]
416 >
417 > \[
418 > L(\dot x) = pL(x) - px(0)
419 > \]
420 >
421 > \[
422 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
423 > \]
424 >
425 > \[
426 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
427 > \]
428 >
429 > Some relatively important transformation,
430 > \[
431 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
432 > \]
433 >
434 > \[
435 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
436 > \]
437 >
438 > \[
439 > L(1) = \frac{1}{p}
440 > \]
441 >
442 > First, the bath coordinates,
443 > \[
444 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
445 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
446 > }}L(x)
447 > \]
448 > \[
449 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
450 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
451 > \]
452 > Then, the system coordinates,
453 > \begin{align}
454 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
455 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
456 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
457 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
458 > }}\omega _\alpha ^2 L(x)} \right\}}
459 > %
460 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
461 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
462 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
463 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
464 > \end{align}
465 > Then, the inverse transform,
466 >
467 > \begin{align}
468 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
469 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
470 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
471 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
472 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
473 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
474 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
475 > %
476 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
477 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
478 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
479 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
480 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
481 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
482 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
483 > (\omega _\alpha  t)} \right\}}
484 > \end{align}
485 >
486 > \begin{equation}
487 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
488 > (t)\dot x(t - \tau )d\tau }  + R(t)
489 > \label{introEuqation:GeneralizedLangevinDynamics}
490 > \end{equation}
491 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
492 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
493 > \[
494 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
495 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
496 > \]
497 > For an infinite harmonic bath, we can use the spectral density and
498 > an integral over frequencies.
499 >
500 > \[
501 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
502 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
503 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
504 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
505 > \]
506 > The random forces depend only on initial conditions.
507 >
508 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
509 > So we can define a new set of coordinates,
510 > \[
511 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
512 > ^2 }}x(0)
513 > \]
514 > This makes
515 > \[
516 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
517 > \]
518 > And since the $q$ coordinates are harmonic oscillators,
519 > \[
520 > \begin{array}{l}
521 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
522 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
523 > \end{array}
524 > \]
525 >
526 > \begin{align}
527 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
528 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
529 > (t)q_\beta  (0)} \right\rangle } }
530 > %
531 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
532 > \right\rangle \cos (\omega _\alpha  t)}
533 > %
534 > &= kT\xi (t)
535 > \end{align}
536 >
537 > \begin{equation}
538 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
539 > \label{introEquation:secondFluctuationDissipation}
540 > \end{equation}
541 >
542 > \section{\label{introSection:hydroynamics}Hydrodynamics}
543 >
544 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
545 > \subsection{\label{introSection:analyticalApproach}Analytical
546 > Approach}
547 >
548 > \subsection{\label{introSection:approximationApproach}Approximation
549 > Approach}
550 >
551 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
552 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines