ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC vs.
Revision 2698 by tim, Fri Apr 7 22:05:48 2006 UTC

# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209   \begin{equation}
210 < r = r(q,p)^T
211 < \end{equation}
212 < and to introduce a $2n \times 2n$ canonical structure matrix $J$,
213 < \begin{equation}
214 < J = \left( {\begin{array}{*{20}c}
215 <   0 & I  \\
212 <   { - I} & 0  \\
213 < \end{array}} \right)
214 < \label{introEquation:canonicalMatrix}
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
216 where $I$ is a $n \times n$ identity matrix and $J$ is a
217 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
218 can be rewritten as,
219 \begin{equation}
220 \frac{d}{{dt}}r = J\nabla _r H(r)
221 \label{introEquation:compactHamiltonian}
222 \end{equation}
217  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 %Transformation}
226
227 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228
229 \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230
231 \subsection{\label{Construction of Symplectic Methods}}
232
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
# Line 238 | Line 223 | Statistical Mechanics concepts presented in this disse
223   The following section will give a brief introduction to some of the
224   Statistical Mechanics concepts presented in this dissertation.
225  
226 < \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
226 > \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227  
228   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
229  
# Line 269 | Line 254 | will be the best choice.
254   Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
255   system lends itself to a time averaging approach, the Molecular
256   Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
257 < will be the best choice.
257 > will be the best choice\cite{Frenkel1996}.
258 >
259 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
260 > A variety of numerical integrators were proposed to simulate the
261 > motions. They usually begin with an initial conditionals and move
262 > the objects in the direction governed by the differential equations.
263 > However, most of them ignore the hidden physical law contained
264 > within the equations. Since 1990, geometric integrators, which
265 > preserve various phase-flow invariants such as symplectic structure,
266 > volume and time reversal symmetry, are developed to address this
267 > issue. The velocity verlet method, which happens to be a simple
268 > example of symplectic integrator, continues to gain its popularity
269 > in molecular dynamics community. This fact can be partly explained
270 > by its geometric nature.
271 >
272 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
273 > A \emph{manifold} is an abstract mathematical space. It locally
274 > looks like Euclidean space, but when viewed globally, it may have
275 > more complicate structure. A good example of manifold is the surface
276 > of Earth. It seems to be flat locally, but it is round if viewed as
277 > a whole. A \emph{differentiable manifold} (also known as
278 > \emph{smooth manifold}) is a manifold with an open cover in which
279 > the covering neighborhoods are all smoothly isomorphic to one
280 > another. In other words,it is possible to apply calculus on
281 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
282 > defined as a pair $(M, \omega)$ which consisting of a
283 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
284 > bilinear symplectic form, $\omega$. A symplectic form on a vector
285 > space $V$ is a function $\omega(x, y)$ which satisfies
286 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
287 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
288 > $\omega(x, x) = 0$. Cross product operation in vector field is an
289 > example of symplectic form.
290 >
291 > One of the motivations to study \emph{symplectic manifold} in
292 > Hamiltonian Mechanics is that a symplectic manifold can represent
293 > all possible configurations of the system and the phase space of the
294 > system can be described by it's cotangent bundle. Every symplectic
295 > manifold is even dimensional. For instance, in Hamilton equations,
296 > coordinate and momentum always appear in pairs.
297 >
298 > Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
299 > \[
300 > f : M \rightarrow N
301 > \]
302 > is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
303 > the \emph{pullback} of $\eta$ under f is equal to $\omega$.
304 > Canonical transformation is an example of symplectomorphism in
305 > classical mechanics.
306 >
307 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
308  
309 + For a ordinary differential system defined as
310 + \begin{equation}
311 + \dot x = f(x)
312 + \end{equation}
313 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
314 + \begin{equation}
315 + f(r) = J\nabla _x H(r)
316 + \end{equation}
317 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
318 + matrix
319 + \begin{equation}
320 + J = \left( {\begin{array}{*{20}c}
321 +   0 & I  \\
322 +   { - I} & 0  \\
323 + \end{array}} \right)
324 + \label{introEquation:canonicalMatrix}
325 + \end{equation}
326 + where $I$ is an identity matrix. Using this notation, Hamiltonian
327 + system can be rewritten as,
328 + \begin{equation}
329 + \frac{d}{{dt}}x = J\nabla _x H(x)
330 + \label{introEquation:compactHamiltonian}
331 + \end{equation}In this case, $f$ is
332 + called a \emph{Hamiltonian vector field}.
333 +
334 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
335 + \begin{equation}
336 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
337 + \end{equation}
338 + The most obvious change being that matrix $J$ now depends on $x$.
339 + The free rigid body is an example of Poisson system (actually a
340 + Lie-Poisson system) with Hamiltonian function of angular kinetic
341 + energy.
342 + \begin{equation}
343 + J(\pi ) = \left( {\begin{array}{*{20}c}
344 +   0 & {\pi _3 } & { - \pi _2 }  \\
345 +   { - \pi _3 } & 0 & {\pi _1 }  \\
346 +   {\pi _2 } & { - \pi _1 } & 0  \\
347 + \end{array}} \right)
348 + \end{equation}
349 +
350 + \begin{equation}
351 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 + \end{equation}
354 +
355 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
356 + Let $x(t)$ be the exact solution of the ODE system,
357 + \begin{equation}
358 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
359 + \end{equation}
360 + The exact flow(solution) $\varphi_\tau$ is defined by
361 + \[
362 + x(t+\tau) =\varphi_\tau(x(t))
363 + \]
364 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
365 + space to itself. In most cases, it is not easy to find the exact
366 + flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 + which is usually called integrator. The order of an integrator
368 + $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 + order $p$,
370 + \begin{equation}
371 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
372 + \end{equation}
373 +
374 + The hidden geometric properties of ODE and its flow play important
375 + roles in numerical studies. The flow of a Hamiltonian vector field
376 + on a symplectic manifold is a symplectomorphism. Let $\varphi$ be
377 + the flow of Hamiltonian vector field, $\varphi$ is a
378 + \emph{symplectic} flow if it satisfies,
379 + \begin{equation}
380 + d \varphi^T J d \varphi = J.
381 + \end{equation}
382 + According to Liouville's theorem, the symplectic volume is invariant
383 + under a Hamiltonian flow, which is the basis for classical
384 + statistical mechanics. As to the Poisson system,
385 + \begin{equation}
386 + d\varphi ^T Jd\varphi  = J \circ \varphi
387 + \end{equation}
388 + is the property must be preserved by the integrator. It is possible
389 + to construct a \emph{volume-preserving} flow for a source free($
390 + \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
391 + 1$. Changing the variables $y = h(x)$ in a
392 + ODE\ref{introEquation:ODE} will result in a new system,
393 + \[
394 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
395 + \]
396 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
397 + In other words, the flow of this vector field is reversible if and
398 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 + designing any numerical methods, one should always try to preserve
400 + the structural properties of the original ODE and its flow.
401 +
402 + \subsection{\label{introSection:splittingAndComposition}Splitting and Composition Methods}
403 +
404   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
405  
406   As a special discipline of molecular modeling, Molecular dynamics
# Line 303 | Line 433 | Applications of dynamics of rigid bodies.
433  
434   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
435  
436 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
437 +
438   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
439  
440 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
440 > \begin{equation}
441 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
442 > \label{introEquation:bathGLE}
443 > \end{equation}
444 > where $H_B$ is harmonic bath Hamiltonian,
445 > \[
446 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
447 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
448 > \]
449 > and $\Delta U$ is bilinear system-bath coupling,
450 > \[
451 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
452 > \]
453 > Completing the square,
454 > \[
455 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
456 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
457 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
458 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
459 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
460 > \]
461 > and putting it back into Eq.~\ref{introEquation:bathGLE},
462 > \[
463 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
464 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
465 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
466 > w_\alpha ^2 }}x} \right)^2 } \right\}}
467 > \]
468 > where
469 > \[
470 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
471 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
472 > \]
473 > Since the first two terms of the new Hamiltonian depend only on the
474 > system coordinates, we can get the equations of motion for
475 > Generalized Langevin Dynamics by Hamilton's equations
476 > \ref{introEquation:motionHamiltonianCoordinate,
477 > introEquation:motionHamiltonianMomentum},
478 > \begin{align}
479 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
480 >       &= m\ddot x
481 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
482 > \label{introEq:Lp5}
483 > \end{align}
484 > , and
485 > \begin{align}
486 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
487 >                &= m\ddot x_\alpha
488 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
489 > \end{align}
490 >
491 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
492 >
493 > \[
494 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
495 > \]
496 >
497 > \[
498 > L(x + y) = L(x) + L(y)
499 > \]
500 >
501 > \[
502 > L(ax) = aL(x)
503 > \]
504 >
505 > \[
506 > L(\dot x) = pL(x) - px(0)
507 > \]
508 >
509 > \[
510 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
511 > \]
512 >
513 > \[
514 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
515 > \]
516 >
517 > Some relatively important transformation,
518 > \[
519 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
520 > \]
521 >
522 > \[
523 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
524 > \]
525 >
526 > \[
527 > L(1) = \frac{1}{p}
528 > \]
529 >
530 > First, the bath coordinates,
531 > \[
532 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
533 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
534 > }}L(x)
535 > \]
536 > \[
537 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
538 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
539 > \]
540 > Then, the system coordinates,
541 > \begin{align}
542 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
543 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
544 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
545 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
546 > }}\omega _\alpha ^2 L(x)} \right\}}
547 > %
548 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
549 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
550 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
551 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
552 > \end{align}
553 > Then, the inverse transform,
554 >
555 > \begin{align}
556 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
557 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
558 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
559 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
560 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
561 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
562 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
563 > %
564 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
565 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
566 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
567 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
568 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
569 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
570 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
571 > (\omega _\alpha  t)} \right\}}
572 > \end{align}
573 >
574 > \begin{equation}
575 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
576 > (t)\dot x(t - \tau )d\tau }  + R(t)
577 > \label{introEuqation:GeneralizedLangevinDynamics}
578 > \end{equation}
579 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
580 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
581 > \[
582 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
583 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
584 > \]
585 > For an infinite harmonic bath, we can use the spectral density and
586 > an integral over frequencies.
587 >
588 > \[
589 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
590 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
591 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
592 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
593 > \]
594 > The random forces depend only on initial conditions.
595 >
596 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
597 > So we can define a new set of coordinates,
598 > \[
599 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
600 > ^2 }}x(0)
601 > \]
602 > This makes
603 > \[
604 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
605 > \]
606 > And since the $q$ coordinates are harmonic oscillators,
607 > \[
608 > \begin{array}{l}
609 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
610 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
611 > \end{array}
612 > \]
613 >
614 > \begin{align}
615 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
616 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
617 > (t)q_\beta  (0)} \right\rangle } }
618 > %
619 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
620 > \right\rangle \cos (\omega _\alpha  t)}
621 > %
622 > &= kT\xi (t)
623 > \end{align}
624 >
625 > \begin{equation}
626 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
627 > \label{introEquation:secondFluctuationDissipation}
628 > \end{equation}
629 >
630 > \section{\label{introSection:hydroynamics}Hydrodynamics}
631 >
632 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
633 > \subsection{\label{introSection:analyticalApproach}Analytical
634 > Approach}
635 >
636 > \subsection{\label{introSection:approximationApproach}Approximation
637 > Approach}
638 >
639 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
640 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines