ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC vs.
Revision 2702 by tim, Wed Apr 12 03:37:46 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 115 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209   \begin{equation}
210 < r = r(q,p)^T
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
208 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 \begin{equation}
210 J = \left( {\begin{array}{*{20}c}
211   0 & I  \\
212   { - I} & 0  \\
213 \end{array}} \right)
214 \label{introEquation:canonicalMatrix}
215 \end{equation}
216 where $I$ is a $n \times n$ identity matrix and $J$ is a
217 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
218 can be rewritten as,
219 \begin{equation}
220 \frac{d}{{dt}}r = J\nabla _r H(r)
221 \label{introEquation:compactHamiltonian}
222 \end{equation}
217  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 %Transformation}
226
227 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228
229 \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230
231 \subsection{\label{Construction of Symplectic Methods}}
232
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226 >
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS}
319 > \label{introEqaution:NVEPartition}.
320 > \end{equation}
321 > A canonical ensemble(NVT)is an ensemble of systems, each of which
322 > can share its energy with a large heat reservoir. The distribution
323 > of the total energy amongst the possible dynamical states is given
324 > by the partition function,
325 > \begin{equation}
326 > \Omega (N,V,T) = e^{ - \beta A}
327 > \label{introEquation:NVTPartition}
328 > \end{equation}
329 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
330 > TS$. Since most experiment are carried out under constant pressure
331 > condition, isothermal-isobaric ensemble(NPT) play a very important
332 > role in molecular simulation. The isothermal-isobaric ensemble allow
333 > the system to exchange energy with a heat bath of temperature $T$
334 > and to change the volume as well. Its partition function is given as
335 > \begin{equation}
336 > \Delta (N,P,T) =  - e^{\beta G}.
337 > \label{introEquation:NPTPartition}
338 > \end{equation}
339 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
340 >
341 > \subsection{\label{introSection:liouville}Liouville's theorem}
342 >
343 > The Liouville's theorem is the foundation on which statistical
344 > mechanics rests. It describes the time evolution of phase space
345 > distribution function. In order to calculate the rate of change of
346 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
347 > consider the two faces perpendicular to the $q_1$ axis, which are
348 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
349 > leaving the opposite face is given by the expression,
350 > \begin{equation}
351 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
352 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
353 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
354 > \ldots \delta p_f .
355 > \end{equation}
356 > Summing all over the phase space, we obtain
357 > \begin{equation}
358 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
359 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
360 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
361 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
362 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
363 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
364 > \end{equation}
365 > Differentiating the equations of motion in Hamiltonian formalism
366 > (\ref{introEquation:motionHamiltonianCoordinate},
367 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
368 > \begin{equation}
369 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
370 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
371 > \end{equation}
372 > which cancels the first terms of the right hand side. Furthermore,
373 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
374 > p_f $ in both sides, we can write out Liouville's theorem in a
375 > simple form,
376 > \begin{equation}
377 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
378 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
379 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
380 > \label{introEquation:liouvilleTheorem}
381 > \end{equation}
382 >
383 > Liouville's theorem states that the distribution function is
384 > constant along any trajectory in phase space. In classical
385 > statistical mechanics, since the number of particles in the system
386 > is huge, we may be able to believe the system is stationary,
387 > \begin{equation}
388 > \frac{{\partial \rho }}{{\partial t}} = 0.
389 > \label{introEquation:stationary}
390 > \end{equation}
391 > In such stationary system, the density of distribution $\rho$ can be
392 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
393 > distribution,
394 > \begin{equation}
395 > \rho  \propto e^{ - \beta H}
396 > \label{introEquation:densityAndHamiltonian}
397 > \end{equation}
398 >
399 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
400 > Lets consider a region in the phase space,
401 > \begin{equation}
402 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
403 > \end{equation}
404 > If this region is small enough, the density $\rho$ can be regarded
405 > as uniform over the whole phase space. Thus, the number of phase
406 > points inside this region is given by,
407 > \begin{equation}
408 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
409 > dp_1 } ..dp_f.
410 > \end{equation}
411  
412 < \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
412 > \begin{equation}
413 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
414 > \frac{d}{{dt}}(\delta v) = 0.
415 > \end{equation}
416 > With the help of stationary assumption
417 > (\ref{introEquation:stationary}), we obtain the principle of the
418 > \emph{conservation of extension in phase space},
419 > \begin{equation}
420 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
421 > ...dq_f dp_1 } ..dp_f  = 0.
422 > \label{introEquation:volumePreserving}
423 > \end{equation}
424  
425 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
426 +
427 + Liouville's theorem can be expresses in a variety of different forms
428 + which are convenient within different contexts. For any two function
429 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
430 + bracket ${F, G}$ is defined as
431 + \begin{equation}
432 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
433 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
434 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
435 + q_i }}} \right)}.
436 + \label{introEquation:poissonBracket}
437 + \end{equation}
438 + Substituting equations of motion in Hamiltonian formalism(
439 + \ref{introEquation:motionHamiltonianCoordinate} ,
440 + \ref{introEquation:motionHamiltonianMomentum} ) into
441 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
442 + theorem using Poisson bracket notion,
443 + \begin{equation}
444 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
445 + {\rho ,H} \right\}.
446 + \label{introEquation:liouvilleTheromInPoissin}
447 + \end{equation}
448 + Moreover, the Liouville operator is defined as
449 + \begin{equation}
450 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
451 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
452 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
453 + \label{introEquation:liouvilleOperator}
454 + \end{equation}
455 + In terms of Liouville operator, Liouville's equation can also be
456 + expressed as
457 + \begin{equation}
458 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
459 + \label{introEquation:liouvilleTheoremInOperator}
460 + \end{equation}
461 +
462   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
463  
464   Various thermodynamic properties can be calculated from Molecular
# Line 254 | Line 473 | statistical ensemble are identical \cite{Frenkel1996,
473   ensemble average. It states that time average and average over the
474   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
475   \begin{equation}
476 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
478 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
476 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
478 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
479   \end{equation}
480 < where $\langle A \rangle_t$ is an equilibrium value of a physical
481 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
482 < function. If an observation is averaged over a sufficiently long
483 < time (longer than relaxation time), all accessible microstates in
484 < phase space are assumed to be equally probed, giving a properly
485 < weighted statistical average. This allows the researcher freedom of
486 < choice when deciding how best to measure a given observable. In case
487 < an ensemble averaged approach sounds most reasonable, the Monte
488 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
489 < system lends itself to a time averaging approach, the Molecular
490 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
491 < will be the best choice.
480 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
481 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
482 > distribution function. If an observation is averaged over a
483 > sufficiently long time (longer than relaxation time), all accessible
484 > microstates in phase space are assumed to be equally probed, giving
485 > a properly weighted statistical average. This allows the researcher
486 > freedom of choice when deciding how best to measure a given
487 > observable. In case an ensemble averaged approach sounds most
488 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
489 > utilized. Or if the system lends itself to a time averaging
490 > approach, the Molecular Dynamics techniques in
491 > Sec.~\ref{introSection:molecularDynamics} will be the best
492 > choice\cite{Frenkel1996}.
493  
494 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
495 + A variety of numerical integrators were proposed to simulate the
496 + motions. They usually begin with an initial conditionals and move
497 + the objects in the direction governed by the differential equations.
498 + However, most of them ignore the hidden physical law contained
499 + within the equations. Since 1990, geometric integrators, which
500 + preserve various phase-flow invariants such as symplectic structure,
501 + volume and time reversal symmetry, are developed to address this
502 + issue. The velocity verlet method, which happens to be a simple
503 + example of symplectic integrator, continues to gain its popularity
504 + in molecular dynamics community. This fact can be partly explained
505 + by its geometric nature.
506 +
507 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508 + A \emph{manifold} is an abstract mathematical space. It locally
509 + looks like Euclidean space, but when viewed globally, it may have
510 + more complicate structure. A good example of manifold is the surface
511 + of Earth. It seems to be flat locally, but it is round if viewed as
512 + a whole. A \emph{differentiable manifold} (also known as
513 + \emph{smooth manifold}) is a manifold with an open cover in which
514 + the covering neighborhoods are all smoothly isomorphic to one
515 + another. In other words,it is possible to apply calculus on
516 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
517 + defined as a pair $(M, \omega)$ which consisting of a
518 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
519 + bilinear symplectic form, $\omega$. A symplectic form on a vector
520 + space $V$ is a function $\omega(x, y)$ which satisfies
521 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
522 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
523 + $\omega(x, x) = 0$. Cross product operation in vector field is an
524 + example of symplectic form.
525 +
526 + One of the motivations to study \emph{symplectic manifold} in
527 + Hamiltonian Mechanics is that a symplectic manifold can represent
528 + all possible configurations of the system and the phase space of the
529 + system can be described by it's cotangent bundle. Every symplectic
530 + manifold is even dimensional. For instance, in Hamilton equations,
531 + coordinate and momentum always appear in pairs.
532 +
533 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
534 + \[
535 + f : M \rightarrow N
536 + \]
537 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
538 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
539 + Canonical transformation is an example of symplectomorphism in
540 + classical mechanics.
541 +
542 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
543 +
544 + For a ordinary differential system defined as
545 + \begin{equation}
546 + \dot x = f(x)
547 + \end{equation}
548 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
549 + \begin{equation}
550 + f(r) = J\nabla _x H(r).
551 + \end{equation}
552 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
553 + matrix
554 + \begin{equation}
555 + J = \left( {\begin{array}{*{20}c}
556 +   0 & I  \\
557 +   { - I} & 0  \\
558 + \end{array}} \right)
559 + \label{introEquation:canonicalMatrix}
560 + \end{equation}
561 + where $I$ is an identity matrix. Using this notation, Hamiltonian
562 + system can be rewritten as,
563 + \begin{equation}
564 + \frac{d}{{dt}}x = J\nabla _x H(x)
565 + \label{introEquation:compactHamiltonian}
566 + \end{equation}In this case, $f$ is
567 + called a \emph{Hamiltonian vector field}.
568 +
569 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
570 + \begin{equation}
571 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
572 + \end{equation}
573 + The most obvious change being that matrix $J$ now depends on $x$.
574 + The free rigid body is an example of Poisson system (actually a
575 + Lie-Poisson system) with Hamiltonian function of angular kinetic
576 + energy.
577 + \begin{equation}
578 + J(\pi ) = \left( {\begin{array}{*{20}c}
579 +   0 & {\pi _3 } & { - \pi _2 }  \\
580 +   { - \pi _3 } & 0 & {\pi _1 }  \\
581 +   {\pi _2 } & { - \pi _1 } & 0  \\
582 + \end{array}} \right)
583 + \end{equation}
584 +
585 + \begin{equation}
586 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 + \end{equation}
589 +
590 + \subsection{\label{introSection:exactFlow}Exact Flow}
591 +
592 + Let $x(t)$ be the exact solution of the ODE system,
593 + \begin{equation}
594 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
595 + \end{equation}
596 + The exact flow(solution) $\varphi_\tau$ is defined by
597 + \[
598 + x(t+\tau) =\varphi_\tau(x(t))
599 + \]
600 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
601 + space to itself. The flow has the continuous group property,
602 + \begin{equation}
603 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
604 + + \tau _2 } .
605 + \end{equation}
606 + In particular,
607 + \begin{equation}
608 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
609 + \end{equation}
610 + Therefore, the exact flow is self-adjoint,
611 + \begin{equation}
612 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
613 + \end{equation}
614 + The exact flow can also be written in terms of the of an operator,
615 + \begin{equation}
616 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
617 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
618 + \label{introEquation:exponentialOperator}
619 + \end{equation}
620 +
621 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
622 + Instead, we use a approximate map, $\psi_\tau$, which is usually
623 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
624 + the Taylor series of $\psi_\tau$ agree to order $p$,
625 + \begin{equation}
626 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
627 + \end{equation}
628 +
629 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
630 +
631 + The hidden geometric properties of ODE and its flow play important
632 + roles in numerical studies. Many of them can be found in systems
633 + which occur naturally in applications.
634 +
635 + Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
636 + a \emph{symplectic} flow if it satisfies,
637 + \begin{equation}
638 + '\varphi^T J '\varphi = J.
639 + \end{equation}
640 + According to Liouville's theorem, the symplectic volume is invariant
641 + under a Hamiltonian flow, which is the basis for classical
642 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
643 + field on a symplectic manifold can be shown to be a
644 + symplectomorphism. As to the Poisson system,
645 + \begin{equation}
646 + '\varphi ^T J '\varphi  = J \circ \varphi
647 + \end{equation}
648 + is the property must be preserved by the integrator.
649 +
650 + It is possible to construct a \emph{volume-preserving} flow for a
651 + source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
652 + \det d\varphi  = 1$. One can show easily that a symplectic flow will
653 + be volume-preserving.
654 +
655 + Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
656 + will result in a new system,
657 + \[
658 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
659 + \]
660 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
661 + In other words, the flow of this vector field is reversible if and
662 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
663 +
664 + When designing any numerical methods, one should always try to
665 + preserve the structural properties of the original ODE and its flow.
666 +
667 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
668 + A lot of well established and very effective numerical methods have
669 + been successful precisely because of their symplecticities even
670 + though this fact was not recognized when they were first
671 + constructed. The most famous example is leapfrog methods in
672 + molecular dynamics. In general, symplectic integrators can be
673 + constructed using one of four different methods.
674 + \begin{enumerate}
675 + \item Generating functions
676 + \item Variational methods
677 + \item Runge-Kutta methods
678 + \item Splitting methods
679 + \end{enumerate}
680 +
681 + Generating function tends to lead to methods which are cumbersome
682 + and difficult to use. In dissipative systems, variational methods
683 + can capture the decay of energy accurately. Since their
684 + geometrically unstable nature against non-Hamiltonian perturbations,
685 + ordinary implicit Runge-Kutta methods are not suitable for
686 + Hamiltonian system. Recently, various high-order explicit
687 + Runge--Kutta methods have been developed to overcome this
688 + instability \cite{}. However, due to computational penalty involved
689 + in implementing the Runge-Kutta methods, they do not attract too
690 + much attention from Molecular Dynamics community. Instead, splitting
691 + have been widely accepted since they exploit natural decompositions
692 + of the system\cite{Tuckerman92}.
693 +
694 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
695 +
696 + The main idea behind splitting methods is to decompose the discrete
697 + $\varphi_h$ as a composition of simpler flows,
698 + \begin{equation}
699 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
700 + \varphi _{h_n }
701 + \label{introEquation:FlowDecomposition}
702 + \end{equation}
703 + where each of the sub-flow is chosen such that each represent a
704 + simpler integration of the system.
705 +
706 + Suppose that a Hamiltonian system takes the form,
707 + \[
708 + H = H_1 + H_2.
709 + \]
710 + Here, $H_1$ and $H_2$ may represent different physical processes of
711 + the system. For instance, they may relate to kinetic and potential
712 + energy respectively, which is a natural decomposition of the
713 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
714 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
715 + order is then given by the Lie-Trotter formula
716 + \begin{equation}
717 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
718 + \label{introEquation:firstOrderSplitting}
719 + \end{equation}
720 + where $\varphi _h$ is the result of applying the corresponding
721 + continuous $\varphi _i$ over a time $h$. By definition, as
722 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
723 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
724 + It is easy to show that any composition of symplectic flows yields a
725 + symplectic map,
726 + \begin{equation}
727 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
728 + '\phi ' = \phi '^T J\phi ' = J,
729 + \label{introEquation:SymplecticFlowComposition}
730 + \end{equation}
731 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
732 + splitting in this context automatically generates a symplectic map.
733 +
734 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
735 + introduces local errors proportional to $h^2$, while Strang
736 + splitting gives a second-order decomposition,
737 + \begin{equation}
738 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
739 + _{1,h/2} ,
740 + \label{introEqaution:secondOrderSplitting}
741 + \end{equation}
742 + which has a local error proportional to $h^3$. Sprang splitting's
743 + popularity in molecular simulation community attribute to its
744 + symmetric property,
745 + \begin{equation}
746 + \varphi _h^{ - 1} = \varphi _{ - h}.
747 + \lable{introEquation:timeReversible}
748 + \end{equation}
749 +
750 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
751 + The classical equation for a system consisting of interacting
752 + particles can be written in Hamiltonian form,
753 + \[
754 + H = T + V
755 + \]
756 + where $T$ is the kinetic energy and $V$ is the potential energy.
757 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
758 + obtains the following:
759 + \begin{align}
760 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
761 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
762 + \label{introEquation:Lp10a} \\%
763 + %
764 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
765 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
766 + \label{introEquation:Lp10b}
767 + \end{align}
768 + where $F(t)$ is the force at time $t$. This integration scheme is
769 + known as \emph{velocity verlet} which is
770 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
771 + time-reversible(\ref{introEquation:timeReversible}) and
772 + volume-preserving (\ref{introEquation:volumePreserving}). These
773 + geometric properties attribute to its long-time stability and its
774 + popularity in the community. However, the most commonly used
775 + velocity verlet integration scheme is written as below,
776 + \begin{align}
777 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
778 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
779 + %
780 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
781 +    \label{introEquation:Lp9b}\\%
782 + %
783 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
784 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
785 + \end{align}
786 + From the preceding splitting, one can see that the integration of
787 + the equations of motion would follow:
788 + \begin{enumerate}
789 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
790 +
791 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
792 +
793 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
794 +
795 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
796 + \end{enumerate}
797 +
798 + Simply switching the order of splitting and composing, a new
799 + integrator, the \emph{position verlet} integrator, can be generated,
800 + \begin{align}
801 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
802 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
803 + \label{introEquation:positionVerlet1} \\%
804 + %
805 + q(\Delta t) = q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
806 + q(\Delta t)} \right]. %
807 + \label{introEquation:positionVerlet1}
808 + \end{align}
809 +
810 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
811 +
812 + Baker-Campbell-Hausdorff formula can be used to determine the local
813 + error of splitting method in terms of commutator of the
814 + operators(\ref{introEquation:exponentialOperator}) associated with
815 + the sub-flow. For operators $hX$ and $hY$ which are associate to
816 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
817 + \begin{equation}
818 + \exp (hX + hY) = \exp (hZ)
819 + \end{equation}
820 + where
821 + \begin{equation}
822 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
823 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
824 + \end{equation}
825 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
826 + \[
827 + [X,Y] = XY - YX .
828 + \]
829 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
830 + can obtain
831 + \begin{eqnarray}
832 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
833 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 +
834 + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 +  \ldots )
835 + \end{eqnarray}
836 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
837 + error of Spring splitting is proportional to $h^3$. The same
838 + procedure can be applied to general splitting,  of the form
839 + \begin{equation}
840 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
841 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
842 + \end{equation}
843 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
844 + order method. Yoshida proposed an elegant way to compose higher
845 + order methods based on symmetric splitting. Given a symmetric second
846 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
847 + method can be constructed by composing,
848 + \[
849 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
850 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
851 + \]
852 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
853 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
854 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
855 + \begin{equation}
856 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
857 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
858 + \end{equation}
859 + , if the weights are chosen as
860 + \[
861 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
862 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
863 + \]
864 +
865   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
866  
867   As a special discipline of molecular modeling, Molecular dynamics
# Line 297 | Line 888 | Applications of dynamics of rigid bodies.
888  
889   \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
890  
300 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
301
891   \section{\label{introSection:correlationFunctions}Correlation Functions}
892  
893   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
894  
895 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
896 +
897   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
898  
899 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
899 > \begin{equation}
900 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
901 > \label{introEquation:bathGLE}
902 > \end{equation}
903 > where $H_B$ is harmonic bath Hamiltonian,
904 > \[
905 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
906 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
907 > \]
908 > and $\Delta U$ is bilinear system-bath coupling,
909 > \[
910 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
911 > \]
912 > Completing the square,
913 > \[
914 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
915 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
916 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
917 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
918 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
919 > \]
920 > and putting it back into Eq.~\ref{introEquation:bathGLE},
921 > \[
922 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
923 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
924 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
925 > w_\alpha ^2 }}x} \right)^2 } \right\}}
926 > \]
927 > where
928 > \[
929 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
930 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
931 > \]
932 > Since the first two terms of the new Hamiltonian depend only on the
933 > system coordinates, we can get the equations of motion for
934 > Generalized Langevin Dynamics by Hamilton's equations
935 > \ref{introEquation:motionHamiltonianCoordinate,
936 > introEquation:motionHamiltonianMomentum},
937 > \begin{align}
938 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
939 >       &= m\ddot x
940 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
941 > \label{introEquation:Lp5}
942 > \end{align}
943 > , and
944 > \begin{align}
945 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
946 >                &= m\ddot x_\alpha
947 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
948 > \end{align}
949 >
950 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
951 >
952 > \[
953 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
954 > \]
955 >
956 > \[
957 > L(x + y) = L(x) + L(y)
958 > \]
959 >
960 > \[
961 > L(ax) = aL(x)
962 > \]
963 >
964 > \[
965 > L(\dot x) = pL(x) - px(0)
966 > \]
967 >
968 > \[
969 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
970 > \]
971 >
972 > \[
973 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
974 > \]
975 >
976 > Some relatively important transformation,
977 > \[
978 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
979 > \]
980 >
981 > \[
982 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
983 > \]
984 >
985 > \[
986 > L(1) = \frac{1}{p}
987 > \]
988 >
989 > First, the bath coordinates,
990 > \[
991 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
992 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
993 > }}L(x)
994 > \]
995 > \[
996 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
997 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
998 > \]
999 > Then, the system coordinates,
1000 > \begin{align}
1001 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1002 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1003 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1004 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1005 > }}\omega _\alpha ^2 L(x)} \right\}}
1006 > %
1007 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1008 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1009 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1010 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1011 > \end{align}
1012 > Then, the inverse transform,
1013 >
1014 > \begin{align}
1015 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1016 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1017 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1018 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1019 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1020 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1021 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1022 > %
1023 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1024 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1025 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1026 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1027 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1028 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1029 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1030 > (\omega _\alpha  t)} \right\}}
1031 > \end{align}
1032 >
1033 > \begin{equation}
1034 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1035 > (t)\dot x(t - \tau )d\tau }  + R(t)
1036 > \label{introEuqation:GeneralizedLangevinDynamics}
1037 > \end{equation}
1038 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1039 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1040 > \[
1041 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1042 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1043 > \]
1044 > For an infinite harmonic bath, we can use the spectral density and
1045 > an integral over frequencies.
1046 >
1047 > \[
1048 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1049 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1050 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1051 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1052 > \]
1053 > The random forces depend only on initial conditions.
1054 >
1055 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1056 > So we can define a new set of coordinates,
1057 > \[
1058 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1059 > ^2 }}x(0)
1060 > \]
1061 > This makes
1062 > \[
1063 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1064 > \]
1065 > And since the $q$ coordinates are harmonic oscillators,
1066 > \[
1067 > \begin{array}{l}
1068 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1069 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1070 > \end{array}
1071 > \]
1072 >
1073 > \begin{align}
1074 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1075 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1076 > (t)q_\beta  (0)} \right\rangle } }
1077 > %
1078 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1079 > \right\rangle \cos (\omega _\alpha  t)}
1080 > %
1081 > &= kT\xi (t)
1082 > \end{align}
1083 >
1084 > \begin{equation}
1085 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1086 > \label{introEquation:secondFluctuationDissipation}
1087 > \end{equation}
1088 >
1089 > \section{\label{introSection:hydroynamics}Hydrodynamics}
1090 >
1091 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1092 > \subsection{\label{introSection:analyticalApproach}Analytical
1093 > Approach}
1094 >
1095 > \subsection{\label{introSection:approximationApproach}Approximation
1096 > Approach}
1097 >
1098 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1099 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines