ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2695 by tim, Thu Apr 6 04:07:57 2006 UTC vs.
Revision 2719 by tim, Tue Apr 18 22:38:19 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 63 | Line 63 | that if all forces are conservative, Energy $E = T + V
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy $E = T + V$ is
67 < conserved. All of these conserved quantities are important factors
68 < to determine the quality of numerical integration scheme for rigid
69 < body \cite{Dullweber1997}.
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 115 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 200 | Line 202 | When studying Hamiltonian system, it is more convenien
202   independent variables and it only works with 1st-order differential
203   equations\cite{Marion90}.
204  
205 < When studying Hamiltonian system, it is more convenient to use
206 < notation
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209   \begin{equation}
210 < r = r(q,p)^T
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
208 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 \begin{equation}
210 J = \left( {\begin{array}{*{20}c}
211   0 & I  \\
212   { - I} & 0  \\
213 \end{array}} \right)
214 \label{introEquation:canonicalMatrix}
215 \end{equation}
216 where $I$ is a $n \times n$ identity matrix and $J$ is a
217 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
218 can be rewritten as,
219 \begin{equation}
220 \frac{d}{{dt}}r = J\nabla _r H(r)
221 \label{introEquation:compactHamiltonian}
222 \end{equation}
217  
224 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 %Transformation}
226
227 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228
229 \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230
231 \subsection{\label{Construction of Symplectic Methods}}
232
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226 >
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 >
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381  
382 < \subsection{\label{introSection::ensemble}Ensemble and Phase Space}
382 > Liouville's theorem states that the distribution function is
383 > constant along any trajectory in phase space. In classical
384 > statistical mechanics, since the number of particles in the system
385 > is huge, we may be able to believe the system is stationary,
386 > \begin{equation}
387 > \frac{{\partial \rho }}{{\partial t}} = 0.
388 > \label{introEquation:stationary}
389 > \end{equation}
390 > In such stationary system, the density of distribution $\rho$ can be
391 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 > distribution,
393 > \begin{equation}
394 > \rho  \propto e^{ - \beta H}
395 > \label{introEquation:densityAndHamiltonian}
396 > \end{equation}
397  
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 254 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492 >
493 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 > A variety of numerical integrators were proposed to simulate the
495 > motions. They usually begin with an initial conditionals and move
496 > the objects in the direction governed by the differential equations.
497 > However, most of them ignore the hidden physical law contained
498 > within the equations. Since 1990, geometric integrators, which
499 > preserve various phase-flow invariants such as symplectic structure,
500 > volume and time reversal symmetry, are developed to address this
501 > issue. The velocity verlet method, which happens to be a simple
502 > example of symplectic integrator, continues to gain its popularity
503 > in molecular dynamics community. This fact can be partly explained
504 > by its geometric nature.
505 >
506 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 > A \emph{manifold} is an abstract mathematical space. It locally
508 > looks like Euclidean space, but when viewed globally, it may have
509 > more complicate structure. A good example of manifold is the surface
510 > of Earth. It seems to be flat locally, but it is round if viewed as
511 > a whole. A \emph{differentiable manifold} (also known as
512 > \emph{smooth manifold}) is a manifold with an open cover in which
513 > the covering neighborhoods are all smoothly isomorphic to one
514 > another. In other words,it is possible to apply calculus on
515 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 > defined as a pair $(M, \omega)$ which consisting of a
517 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 > bilinear symplectic form, $\omega$. A symplectic form on a vector
519 > space $V$ is a function $\omega(x, y)$ which satisfies
520 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 > $\omega(x, x) = 0$. Cross product operation in vector field is an
523 > example of symplectic form.
524 >
525 > One of the motivations to study \emph{symplectic manifold} in
526 > Hamiltonian Mechanics is that a symplectic manifold can represent
527 > all possible configurations of the system and the phase space of the
528 > system can be described by it's cotangent bundle. Every symplectic
529 > manifold is even dimensional. For instance, in Hamilton equations,
530 > coordinate and momentum always appear in pairs.
531 >
532 > Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 > \[
534 > f : M \rightarrow N
535 > \]
536 > is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 > the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 > Canonical transformation is an example of symplectomorphism in
539 > classical mechanics.
540 >
541 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 >
543 > For a ordinary differential system defined as
544 > \begin{equation}
545 > \dot x = f(x)
546 > \end{equation}
547 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 > \begin{equation}
549 > f(r) = J\nabla _x H(r).
550 > \end{equation}
551 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 > matrix
553 > \begin{equation}
554 > J = \left( {\begin{array}{*{20}c}
555 >   0 & I  \\
556 >   { - I} & 0  \\
557 > \end{array}} \right)
558 > \label{introEquation:canonicalMatrix}
559 > \end{equation}
560 > where $I$ is an identity matrix. Using this notation, Hamiltonian
561 > system can be rewritten as,
562 > \begin{equation}
563 > \frac{d}{{dt}}x = J\nabla _x H(x)
564 > \label{introEquation:compactHamiltonian}
565 > \end{equation}In this case, $f$ is
566 > called a \emph{Hamiltonian vector field}.
567 >
568 > Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 > \begin{equation}
570 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 > \end{equation}
572 > The most obvious change being that matrix $J$ now depends on $x$.
573 >
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575 >
576 > Let $x(t)$ be the exact solution of the ODE system,
577 > \begin{equation}
578 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579 > \end{equation}
580 > The exact flow(solution) $\varphi_\tau$ is defined by
581 > \[
582 > x(t+\tau) =\varphi_\tau(x(t))
583 > \]
584 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 > space to itself. The flow has the continuous group property,
586 > \begin{equation}
587 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 > + \tau _2 } .
589 > \end{equation}
590 > In particular,
591 > \begin{equation}
592 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 > \end{equation}
594 > Therefore, the exact flow is self-adjoint,
595 > \begin{equation}
596 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 > \end{equation}
598 > The exact flow can also be written in terms of the of an operator,
599 > \begin{equation}
600 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 > \label{introEquation:exponentialOperator}
603 > \end{equation}
604  
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611 + \end{equation}
612 +
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615 + The hidden geometric properties of ODE and its flow play important
616 + roles in numerical studies. Many of them can be found in systems
617 + which occur naturally in applications.
618 +
619 + Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 + a \emph{symplectic} flow if it satisfies,
621 + \begin{equation}
622 + {\varphi '}^T J \varphi ' = J.
623 + \end{equation}
624 + According to Liouville's theorem, the symplectic volume is invariant
625 + under a Hamiltonian flow, which is the basis for classical
626 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 + field on a symplectic manifold can be shown to be a
628 + symplectomorphism. As to the Poisson system,
629 + \begin{equation}
630 + {\varphi '}^T J \varphi ' = J \circ \varphi
631 + \end{equation}
632 + is the property must be preserved by the integrator.
633 +
634 + It is possible to construct a \emph{volume-preserving} flow for a
635 + source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 + \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 + be volume-preserving.
638 +
639 + Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 + will result in a new system,
641 + \[
642 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643 + \]
644 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645 + In other words, the flow of this vector field is reversible if and
646 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647 +
648 + A \emph{first integral}, or conserved quantity of a general
649 + differential function is a function $ G:R^{2d}  \to R^d $ which is
650 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 + \[
652 + \frac{{dG(x(t))}}{{dt}} = 0.
653 + \]
654 + Using chain rule, one may obtain,
655 + \[
656 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 + \]
658 + which is the condition for conserving \emph{first integral}. For a
659 + canonical Hamiltonian system, the time evolution of an arbitrary
660 + smooth function $G$ is given by,
661 + \begin{equation}
662 + \begin{array}{c}
663 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 + \end{array}
666 + \label{introEquation:firstIntegral1}
667 + \end{equation}
668 + Using poisson bracket notion, Equation
669 + \ref{introEquation:firstIntegral1} can be rewritten as
670 + \[
671 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 + \]
673 + Therefore, the sufficient condition for $G$ to be the \emph{first
674 + integral} of a Hamiltonian system is
675 + \[
676 + \left\{ {G,H} \right\} = 0.
677 + \]
678 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 + 0$.
681 +
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 + A lot of well established and very effective numerical methods have
688 + been successful precisely because of their symplecticities even
689 + though this fact was not recognized when they were first
690 + constructed. The most famous example is leapfrog methods in
691 + molecular dynamics. In general, symplectic integrators can be
692 + constructed using one of four different methods.
693 + \begin{enumerate}
694 + \item Generating functions
695 + \item Variational methods
696 + \item Runge-Kutta methods
697 + \item Splitting methods
698 + \end{enumerate}
699 +
700 + Generating function tends to lead to methods which are cumbersome
701 + and difficult to use. In dissipative systems, variational methods
702 + can capture the decay of energy accurately. Since their
703 + geometrically unstable nature against non-Hamiltonian perturbations,
704 + ordinary implicit Runge-Kutta methods are not suitable for
705 + Hamiltonian system. Recently, various high-order explicit
706 + Runge--Kutta methods have been developed to overcome this
707 + instability. However, due to computational penalty involved in
708 + implementing the Runge-Kutta methods, they do not attract too much
709 + attention from Molecular Dynamics community. Instead, splitting have
710 + been widely accepted since they exploit natural decompositions of
711 + the system\cite{Tuckerman92}.
712 +
713 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 +
715 + The main idea behind splitting methods is to decompose the discrete
716 + $\varphi_h$ as a composition of simpler flows,
717 + \begin{equation}
718 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 + \varphi _{h_n }
720 + \label{introEquation:FlowDecomposition}
721 + \end{equation}
722 + where each of the sub-flow is chosen such that each represent a
723 + simpler integration of the system.
724 +
725 + Suppose that a Hamiltonian system takes the form,
726 + \[
727 + H = H_1 + H_2.
728 + \]
729 + Here, $H_1$ and $H_2$ may represent different physical processes of
730 + the system. For instance, they may relate to kinetic and potential
731 + energy respectively, which is a natural decomposition of the
732 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 + order is then given by the Lie-Trotter formula
735 + \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 + '\phi ' = \phi '^T J\phi ' = J,
748 + \label{introEquation:SymplecticFlowComposition}
749 + \end{equation}
750 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 + splitting in this context automatically generates a symplectic map.
752 +
753 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 + introduces local errors proportional to $h^2$, while Strang
755 + splitting gives a second-order decomposition,
756 + \begin{equation}
757 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 + \end{equation}
760 + which has a local error proportional to $h^3$. Sprang splitting's
761 + popularity in molecular simulation community attribute to its
762 + symmetric property,
763 + \begin{equation}
764 + \varphi _h^{ - 1} = \varphi _{ - h}.
765 + \label{introEquation:timeReversible}
766 + \end{equation}
767 +
768 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 + The classical equation for a system consisting of interacting
770 + particles can be written in Hamiltonian form,
771 + \[
772 + H = T + V
773 + \]
774 + where $T$ is the kinetic energy and $V$ is the potential energy.
775 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 + obtains the following:
777 + \begin{align}
778 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 + \label{introEquation:Lp10a} \\%
781 + %
782 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 + \label{introEquation:Lp10b}
785 + \end{align}
786 + where $F(t)$ is the force at time $t$. This integration scheme is
787 + known as \emph{velocity verlet} which is
788 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 + time-reversible(\ref{introEquation:timeReversible}) and
790 + volume-preserving (\ref{introEquation:volumePreserving}). These
791 + geometric properties attribute to its long-time stability and its
792 + popularity in the community. However, the most commonly used
793 + velocity verlet integration scheme is written as below,
794 + \begin{align}
795 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 + %
798 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 +    \label{introEquation:Lp9b}\\%
800 + %
801 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 + \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808 +
809 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 +
811 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 +
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet2}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 + \[
845 + [X,Y] = XY - YX .
846 + \]
847 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 + can obtain
849 + \begin{eqnarray*}
850 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 + \ldots )
854 + \end{eqnarray*}
855 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 + error of Spring splitting is proportional to $h^3$. The same
857 + procedure can be applied to general splitting,  of the form
858 + \begin{equation}
859 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 + \end{equation}
862 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 + order method. Yoshida proposed an elegant way to compose higher
864 + order methods based on symmetric splitting. Given a symmetric second
865 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 + method can be constructed by composing,
867 + \[
868 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 + \]
871 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 + \begin{equation}
875 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 + \end{equation}
878 + , if the weights are chosen as
879 + \[
880 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 + \]
883 +
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886   As a special discipline of molecular modeling, Molecular dynamics
# Line 278 | Line 888 | dynamical information.
888   biological systems, providing structural, thermodynamic and
889   dynamical information.
890  
891 + One of the principal tools for modeling proteins, nucleic acids and
892 + their complexes. Stability of proteins Folding of proteins.
893 + Molecular recognition by:proteins, DNA, RNA, lipids, hormones STP,
894 + etc. Enzyme reactions Rational design of biologically active
895 + molecules (drug design) Small and large-scale conformational
896 + changes. determination and construction of 3D structures (homology,
897 + Xray diffraction, NMR) Dynamic processes such as ion transport in
898 + biological systems.
899 +
900 + Macroscopic properties are related to microscopic behavior.
901 +
902 + Time dependent (and independent) microscopic behavior of a molecule
903 + can be calculated by molecular dynamics simulations.
904 +
905   \subsection{\label{introSec:mdInit}Initialization}
906  
907 + \subsection{\label{introSec:forceEvaluation}Force Evaluation}
908 +
909   \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
910  
911   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
912  
913 < A rigid body is a body in which the distance between any two given
914 < points of a rigid body remains constant regardless of external
915 < forces exerted on it. A rigid body therefore conserves its shape
916 < during its motion.
913 > Rigid bodies are frequently involved in the modeling of different
914 > areas, from engineering, physics, to chemistry. For example,
915 > missiles and vehicle are usually modeled by rigid bodies.  The
916 > movement of the objects in 3D gaming engine or other physics
917 > simulator is governed by the rigid body dynamics. In molecular
918 > simulation, rigid body is used to simplify the model in
919 > protein-protein docking study{\cite{Gray03}}.
920  
921 < Applications of dynamics of rigid bodies.
921 > It is very important to develop stable and efficient methods to
922 > integrate the equations of motion of orientational degrees of
923 > freedom. Euler angles are the nature choice to describe the
924 > rotational degrees of freedom. However, due to its singularity, the
925 > numerical integration of corresponding equations of motion is very
926 > inefficient and inaccurate. Although an alternative integrator using
927 > different sets of Euler angles can overcome this difficulty\cite{},
928 > the computational penalty and the lost of angular momentum
929 > conservation still remain. A singularity free representation
930 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
931 > this approach suffer from the nonseparable Hamiltonian resulted from
932 > quaternion representation, which prevents the symplectic algorithm
933 > to be utilized. Another different approach is to apply holonomic
934 > constraints to the atoms belonging to the rigid body. Each atom
935 > moves independently under the normal forces deriving from potential
936 > energy and constraint forces which are used to guarantee the
937 > rigidness. However, due to their iterative nature, SHAKE and Rattle
938 > algorithm converge very slowly when the number of constraint
939 > increases.
940  
941 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
941 > The break through in geometric literature suggests that, in order to
942 > develop a long-term integration scheme, one should preserve the
943 > symplectic structure of the flow. Introducing conjugate momentum to
944 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
945 > symplectic integrator, RSHAKE, was proposed to evolve the
946 > Hamiltonian system in a constraint manifold by iteratively
947 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
948 > method using quaternion representation was developed by Omelyan.
949 > However, both of these methods are iterative and inefficient. In
950 > this section, we will present a symplectic Lie-Poisson integrator
951 > for rigid body developed by Dullweber and his
952 > coworkers\cite{Dullweber1997} in depth.
953  
954 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
954 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
955 > The motion of the rigid body is Hamiltonian with the Hamiltonian
956 > function
957 > \begin{equation}
958 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
959 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
960 > \label{introEquation:RBHamiltonian}
961 > \end{equation}
962 > Here, $q$ and $Q$  are the position and rotation matrix for the
963 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
964 > $J$, a diagonal matrix, is defined by
965 > \[
966 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
967 > \]
968 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
969 > constrained Hamiltonian equation subjects to a holonomic constraint,
970 > \begin{equation}
971 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
972 > \end{equation}
973 > which is used to ensure rotation matrix's orthogonality.
974 > Differentiating \ref{introEquation:orthogonalConstraint} and using
975 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
976 > \begin{equation}
977 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
978 > \label{introEquation:RBFirstOrderConstraint}
979 > \end{equation}
980  
981 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
981 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
982 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
983 > the equations of motion,
984 > \[
985 > \begin{array}{c}
986 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
987 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
988 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
989 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
990 > \end{array}
991 > \]
992  
993 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
993 > In general, there are two ways to satisfy the holonomic constraints.
994 > We can use constraint force provided by lagrange multiplier on the
995 > normal manifold to keep the motion on constraint space. Or we can
996 > simply evolve the system in constraint manifold. The two method are
997 > proved to be equivalent. The holonomic constraint and equations of
998 > motions define a constraint manifold for rigid body
999 > \[
1000 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1001 > \right\}.
1002 > \]
1003  
1004 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1004 > Unfortunately, this constraint manifold is not the cotangent bundle
1005 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1006 > transformation, the cotangent space and the phase space are
1007 > diffeomorphic. Introducing
1008 > \[
1009 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1010 > \]
1011 > the mechanical system subject to a holonomic constraint manifold $M$
1012 > can be re-formulated as a Hamiltonian system on the cotangent space
1013 > \[
1014 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1015 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1016 > \]
1017  
1018 + For a body fixed vector $X_i$ with respect to the center of mass of
1019 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1020 + given as
1021 + \begin{equation}
1022 + X_i^{lab} = Q X_i + q.
1023 + \end{equation}
1024 + Therefore, potential energy $V(q,Q)$ is defined by
1025 + \[
1026 + V(q,Q) = V(Q X_0 + q).
1027 + \]
1028 + Hence, the force and torque are given by
1029 + \[
1030 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1031 + \]
1032 + and
1033 + \[
1034 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1035 + \]
1036 + respectively.
1037 +
1038 + As a common choice to describe the rotation dynamics of the rigid
1039 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1040 + rewrite the equations of motion,
1041 + \begin{equation}
1042 + \begin{array}{l}
1043 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1044 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1045 + \end{array}
1046 + \label{introEqaution:RBMotionPI}
1047 + \end{equation}
1048 + , as well as holonomic constraints,
1049 + \[
1050 + \begin{array}{l}
1051 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1052 + Q^T Q = 1 \\
1053 + \end{array}
1054 + \]
1055 +
1056 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1057 + so(3)^ \star$, the hat-map isomorphism,
1058 + \begin{equation}
1059 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1060 + {\begin{array}{*{20}c}
1061 +   0 & { - v_3 } & {v_2 }  \\
1062 +   {v_3 } & 0 & { - v_1 }  \\
1063 +   { - v_2 } & {v_1 } & 0  \\
1064 + \end{array}} \right),
1065 + \label{introEquation:hatmapIsomorphism}
1066 + \end{equation}
1067 + will let us associate the matrix products with traditional vector
1068 + operations
1069 + \[
1070 + \hat vu = v \times u
1071 + \]
1072 +
1073 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1074 + matrix,
1075 + \begin{equation}
1076 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1077 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1078 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1079 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1080 + \end{equation}
1081 + Since $\Lambda$ is symmetric, the last term of Equation
1082 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1083 + multiplier $\Lambda$ is absent from the equations of motion. This
1084 + unique property eliminate the requirement of iterations which can
1085 + not be avoided in other methods\cite{}.
1086 +
1087 + Applying hat-map isomorphism, we obtain the equation of motion for
1088 + angular momentum on body frame
1089 + \begin{equation}
1090 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1091 + F_i (r,Q)} \right) \times X_i }.
1092 + \label{introEquation:bodyAngularMotion}
1093 + \end{equation}
1094 + In the same manner, the equation of motion for rotation matrix is
1095 + given by
1096 + \[
1097 + \dot Q = Qskew(I^{ - 1} \pi )
1098 + \]
1099 +
1100 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1101 + Lie-Poisson Integrator for Free Rigid Body}
1102 +
1103 + If there is not external forces exerted on the rigid body, the only
1104 + contribution to the rotational is from the kinetic potential (the
1105 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1106 + rigid body is an example of Lie-Poisson system with Hamiltonian
1107 + function
1108 + \begin{equation}
1109 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1110 + \label{introEquation:rotationalKineticRB}
1111 + \end{equation}
1112 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1113 + Lie-Poisson structure matrix,
1114 + \begin{equation}
1115 + J(\pi ) = \left( {\begin{array}{*{20}c}
1116 +   0 & {\pi _3 } & { - \pi _2 }  \\
1117 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1118 +   {\pi _2 } & { - \pi _1 } & 0  \\
1119 + \end{array}} \right)
1120 + \end{equation}
1121 + Thus, the dynamics of free rigid body is governed by
1122 + \begin{equation}
1123 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1124 + \end{equation}
1125 +
1126 + One may notice that each $T_i^r$ in Equation
1127 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1128 + instance, the equations of motion due to $T_1^r$ are given by
1129 + \begin{equation}
1130 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1131 + \label{introEqaution:RBMotionSingleTerm}
1132 + \end{equation}
1133 + where
1134 + \[ R_1  = \left( {\begin{array}{*{20}c}
1135 +   0 & 0 & 0  \\
1136 +   0 & 0 & {\pi _1 }  \\
1137 +   0 & { - \pi _1 } & 0  \\
1138 + \end{array}} \right).
1139 + \]
1140 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1141 + \[
1142 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1143 + Q(0)e^{\Delta tR_1 }
1144 + \]
1145 + with
1146 + \[
1147 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1148 +   0 & 0 & 0  \\
1149 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1150 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1151 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1152 + \]
1153 + To reduce the cost of computing expensive functions in $e^{\Delta
1154 + tR_1 }$, we can use Cayley transformation,
1155 + \[
1156 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1157 + )
1158 + \]
1159 +
1160 + The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1161 + manner.
1162 +
1163 + In order to construct a second-order symplectic method, we split the
1164 + angular kinetic Hamiltonian function can into five terms
1165 + \[
1166 + T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1167 + ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1168 + (\pi _1 )
1169 + \].
1170 + Concatenating flows corresponding to these five terms, we can obtain
1171 + an symplectic integrator,
1172 + \[
1173 + \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1174 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1175 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1176 + _1 }.
1177 + \]
1178 +
1179 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1180 + $F(\pi )$ and $G(\pi )$ is defined by
1181 + \[
1182 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1183 + )
1184 + \]
1185 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1186 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1187 + conserved quantity in Poisson system. We can easily verify that the
1188 + norm of the angular momentum, $\parallel \pi
1189 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1190 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1191 + then by the chain rule
1192 + \[
1193 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1194 + }}{2})\pi
1195 + \]
1196 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1197 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1198 + Lie-Poisson integrator is found to be extremely efficient and stable
1199 + which can be explained by the fact the small angle approximation is
1200 + used and the norm of the angular momentum is conserved.
1201 +
1202 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1203 + Splitting for Rigid Body}
1204 +
1205 + The Hamiltonian of rigid body can be separated in terms of kinetic
1206 + energy and potential energy,
1207 + \[
1208 + H = T(p,\pi ) + V(q,Q)
1209 + \]
1210 + The equations of motion corresponding to potential energy and
1211 + kinetic energy are listed in the below table,
1212 + \begin{center}
1213 + \begin{tabular}{|l|l|}
1214 +  \hline
1215 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1216 +  Potential & Kinetic \\
1217 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1218 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1219 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1220 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1221 +  \hline
1222 + \end{tabular}
1223 + \end{center}
1224 + A second-order symplectic method is now obtained by the composition
1225 + of the flow maps,
1226 + \[
1227 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1228 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1229 + \]
1230 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1231 + sub-flows which corresponding to force and torque respectively,
1232 + \[
1233 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1234 + _{\Delta t/2,\tau }.
1235 + \]
1236 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1237 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1238 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1239 +
1240 + Furthermore, kinetic potential can be separated to translational
1241 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1242 + \begin{equation}
1243 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1244 + \end{equation}
1245 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1246 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1247 + corresponding flow maps are given by
1248 + \[
1249 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1250 + _{\Delta t,T^r }.
1251 + \]
1252 + Finally, we obtain the overall symplectic flow maps for free moving
1253 + rigid body
1254 + \begin{equation}
1255 + \begin{array}{c}
1256 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1257 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1258 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1259 + \end{array}
1260 + \label{introEquation:overallRBFlowMaps}
1261 + \end{equation}
1262 +
1263   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1264 + As an alternative to newtonian dynamics, Langevin dynamics, which
1265 + mimics a simple heat bath with stochastic and dissipative forces,
1266 + has been applied in a variety of studies. This section will review
1267 + the theory of Langevin dynamics simulation. A brief derivation of
1268 + generalized Langevin equation will be given first. Follow that, we
1269 + will discuss the physical meaning of the terms appearing in the
1270 + equation as well as the calculation of friction tensor from
1271 + hydrodynamics theory.
1272  
1273 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1273 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1274  
1275 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
1275 > Harmonic bath model, in which an effective set of harmonic
1276 > oscillators are used to mimic the effect of a linearly responding
1277 > environment, has been widely used in quantum chemistry and
1278 > statistical mechanics. One of the successful applications of
1279 > Harmonic bath model is the derivation of Deriving Generalized
1280 > Langevin Dynamics. Lets consider a system, in which the degree of
1281 > freedom $x$ is assumed to couple to the bath linearly, giving a
1282 > Hamiltonian of the form
1283 > \begin{equation}
1284 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1285 > \label{introEquation:bathGLE}.
1286 > \end{equation}
1287 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1288 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1289 > \[
1290 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1291 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1292 > \right\}}
1293 > \]
1294 > where the index $\alpha$ runs over all the bath degrees of freedom,
1295 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1296 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1297 > coupling,
1298 > \[
1299 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1300 > \]
1301 > where $g_\alpha$ are the coupling constants between the bath and the
1302 > coordinate $x$. Introducing
1303 > \[
1304 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1305 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1306 > \] and combining the last two terms in Equation
1307 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1308 > Hamiltonian as
1309 > \[
1310 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1311 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1312 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1313 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1314 > \]
1315 > Since the first two terms of the new Hamiltonian depend only on the
1316 > system coordinates, we can get the equations of motion for
1317 > Generalized Langevin Dynamics by Hamilton's equations
1318 > \ref{introEquation:motionHamiltonianCoordinate,
1319 > introEquation:motionHamiltonianMomentum},
1320 > \begin{equation}
1321 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1322 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1323 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1324 > \label{introEquation:coorMotionGLE}
1325 > \end{equation}
1326 > and
1327 > \begin{equation}
1328 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1329 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1330 > \label{introEquation:bathMotionGLE}
1331 > \end{equation}
1332 >
1333 > In order to derive an equation for $x$, the dynamics of the bath
1334 > variables $x_\alpha$ must be solved exactly first. As an integral
1335 > transform which is particularly useful in solving linear ordinary
1336 > differential equations, Laplace transform is the appropriate tool to
1337 > solve this problem. The basic idea is to transform the difficult
1338 > differential equations into simple algebra problems which can be
1339 > solved easily. Then applying inverse Laplace transform, also known
1340 > as the Bromwich integral, we can retrieve the solutions of the
1341 > original problems.
1342 >
1343 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1344 > transform of f(t) is a new function defined as
1345 > \[
1346 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1347 > \]
1348 > where  $p$ is real and  $L$ is called the Laplace Transform
1349 > Operator. Below are some important properties of Laplace transform
1350 > \begin{equation}
1351 > \begin{array}{c}
1352 > L(x + y) = L(x) + L(y) \\
1353 > L(ax) = aL(x) \\
1354 > L(\dot x) = pL(x) - px(0) \\
1355 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1356 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1357 > \end{array}
1358 > \end{equation}
1359 >
1360 > Applying Laplace transform to the bath coordinates, we obtain
1361 > \[
1362 > \begin{array}{c}
1363 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1364 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1365 > \end{array}
1366 > \]
1367 > By the same way, the system coordinates become
1368 > \[
1369 > \begin{array}{c}
1370 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1371 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1372 > \end{array}
1373 > \]
1374 >
1375 > With the help of some relatively important inverse Laplace
1376 > transformations:
1377 > \[
1378 > \begin{array}{c}
1379 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1380 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1381 > L(1) = \frac{1}{p} \\
1382 > \end{array}
1383 > \]
1384 > , we obtain
1385 > \begin{align}
1386 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1387 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1388 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1389 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1390 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1391 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1392 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1393 > %
1394 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1395 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1396 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1397 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1398 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1399 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1400 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1401 > (\omega _\alpha  t)} \right\}}
1402 > \end{align}
1403 >
1404 > Introducing a \emph{dynamic friction kernel}
1405 > \begin{equation}
1406 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1407 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1408 > \label{introEquation:dynamicFrictionKernelDefinition}
1409 > \end{equation}
1410 > and \emph{a random force}
1411 > \begin{equation}
1412 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1413 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1414 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1415 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1416 > \label{introEquation:randomForceDefinition}
1417 > \end{equation}
1418 > the equation of motion can be rewritten as
1419 > \begin{equation}
1420 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1421 > (t)\dot x(t - \tau )d\tau }  + R(t)
1422 > \label{introEuqation:GeneralizedLangevinDynamics}
1423 > \end{equation}
1424 > which is known as the \emph{generalized Langevin equation}.
1425 >
1426 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1427 >
1428 > One may notice that $R(t)$ depends only on initial conditions, which
1429 > implies it is completely deterministic within the context of a
1430 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1431 > uncorrelated to $x$ and $\dot x$,
1432 > \[
1433 > \begin{array}{l}
1434 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1435 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1436 > \end{array}
1437 > \]
1438 > This property is what we expect from a truly random process. As long
1439 > as the model, which is gaussian distribution in general, chosen for
1440 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1441 > still remains.
1442 >
1443 > %dynamic friction kernel
1444 > The convolution integral
1445 > \[
1446 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1447 > \]
1448 > depends on the entire history of the evolution of $x$, which implies
1449 > that the bath retains memory of previous motions. In other words,
1450 > the bath requires a finite time to respond to change in the motion
1451 > of the system. For a sluggish bath which responds slowly to changes
1452 > in the system coordinate, we may regard $\xi(t)$ as a constant
1453 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1454 > \[
1455 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1456 > \]
1457 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1458 > \[
1459 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1460 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1461 > \]
1462 > which can be used to describe dynamic caging effect. The other
1463 > extreme is the bath that responds infinitely quickly to motions in
1464 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1465 > time:
1466 > \[
1467 > \xi (t) = 2\xi _0 \delta (t)
1468 > \]
1469 > Hence, the convolution integral becomes
1470 > \[
1471 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1472 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1473 > \]
1474 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1475 > \begin{equation}
1476 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1477 > x(t) + R(t) \label{introEquation:LangevinEquation}
1478 > \end{equation}
1479 > which is known as the Langevin equation. The static friction
1480 > coefficient $\xi _0$ can either be calculated from spectral density
1481 > or be determined by Stokes' law for regular shaped particles.A
1482 > briefly review on calculating friction tensor for arbitrary shaped
1483 > particles is given in section \ref{introSection:frictionTensor}.
1484 >
1485 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1486 >
1487 > Defining a new set of coordinates,
1488 > \[
1489 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1490 > ^2 }}x(0)
1491 > \],
1492 > we can rewrite $R(T)$ as
1493 > \[
1494 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1495 > \]
1496 > And since the $q$ coordinates are harmonic oscillators,
1497 > \[
1498 > \begin{array}{c}
1499 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1500 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1501 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1502 > \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1503 >  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1504 >  = kT\xi (t) \\
1505 > \end{array}
1506 > \]
1507 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1508 > \begin{equation}
1509 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1510 > \label{introEquation:secondFluctuationDissipation}.
1511 > \end{equation}
1512 > In effect, it acts as a constraint on the possible ways in which one
1513 > can model the random force and friction kernel.
1514 >
1515 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1516 > Theoretically, the friction kernel can be determined using velocity
1517 > autocorrelation function. However, this approach become impractical
1518 > when the system become more and more complicate. Instead, various
1519 > approaches based on hydrodynamics have been developed to calculate
1520 > the friction coefficients. The friction effect is isotropic in
1521 > Equation, \zeta can be taken as a scalar. In general, friction
1522 > tensor \Xi is a $6\times 6$ matrix given by
1523 > \[
1524 > \Xi  = \left( {\begin{array}{*{20}c}
1525 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1526 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1527 > \end{array}} \right).
1528 > \]
1529 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1530 > tensor and rotational resistance (friction) tensor respectively,
1531 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1532 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1533 > particle moves in a fluid, it may experience friction force or
1534 > torque along the opposite direction of the velocity or angular
1535 > velocity,
1536 > \[
1537 > \left( \begin{array}{l}
1538 > F_R  \\
1539 > \tau _R  \\
1540 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1541 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1542 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1543 > \end{array}} \right)\left( \begin{array}{l}
1544 > v \\
1545 > w \\
1546 > \end{array} \right)
1547 > \]
1548 > where $F_r$ is the friction force and $\tau _R$ is the friction
1549 > toque.
1550 >
1551 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1552 >
1553 > For a spherical particle, the translational and rotational friction
1554 > constant can be calculated from Stoke's law,
1555 > \[
1556 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1557 >   {6\pi \eta R} & 0 & 0  \\
1558 >   0 & {6\pi \eta R} & 0  \\
1559 >   0 & 0 & {6\pi \eta R}  \\
1560 > \end{array}} \right)
1561 > \]
1562 > and
1563 > \[
1564 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1565 >   {8\pi \eta R^3 } & 0 & 0  \\
1566 >   0 & {8\pi \eta R^3 } & 0  \\
1567 >   0 & 0 & {8\pi \eta R^3 }  \\
1568 > \end{array}} \right)
1569 > \]
1570 > where $\eta$ is the viscosity of the solvent and $R$ is the
1571 > hydrodynamics radius.
1572 >
1573 > Other non-spherical shape, such as cylinder and ellipsoid
1574 > \textit{etc}, are widely used as reference for developing new
1575 > hydrodynamics theory, because their properties can be calculated
1576 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1577 > also called a triaxial ellipsoid, which is given in Cartesian
1578 > coordinates by
1579 > \[
1580 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1581 > }} = 1
1582 > \]
1583 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1584 > due to the complexity of the elliptic integral, only the ellipsoid
1585 > with the restriction of two axes having to be equal, \textit{i.e.}
1586 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1587 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1588 > \[
1589 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1590 > } }}{b},
1591 > \]
1592 > and oblate,
1593 > \[
1594 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1595 > }}{a}
1596 > \],
1597 > one can write down the translational and rotational resistance
1598 > tensors
1599 > \[
1600 > \begin{array}{l}
1601 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1602 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1603 > \end{array},
1604 > \]
1605 > and
1606 > \[
1607 > \begin{array}{l}
1608 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1609 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1610 > \end{array}.
1611 > \]
1612 >
1613 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1614 >
1615 > Unlike spherical and other regular shaped molecules, there is not
1616 > analytical solution for friction tensor of any arbitrary shaped
1617 > rigid molecules. The ellipsoid of revolution model and general
1618 > triaxial ellipsoid model have been used to approximate the
1619 > hydrodynamic properties of rigid bodies. However, since the mapping
1620 > from all possible ellipsoidal space, $r$-space, to all possible
1621 > combination of rotational diffusion coefficients, $D$-space is not
1622 > unique\cite{Wegener79} as well as the intrinsic coupling between
1623 > translational and rotational motion of rigid body\cite{}, general
1624 > ellipsoid is not always suitable for modeling arbitrarily shaped
1625 > rigid molecule. A number of studies have been devoted to determine
1626 > the friction tensor for irregularly shaped rigid bodies using more
1627 > advanced method\cite{} where the molecule of interest was modeled by
1628 > combinations of spheres(beads)\cite{} and the hydrodynamics
1629 > properties of the molecule can be calculated using the hydrodynamic
1630 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1631 > immersed in a continuous medium. Due to hydrodynamics interaction,
1632 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1633 > unperturbed velocity $v_i$,
1634 > \[
1635 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1636 > \]
1637 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1638 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1639 > proportional to its ``net'' velocity
1640 > \begin{equation}
1641 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1642 > \label{introEquation:tensorExpression}
1643 > \end{equation}
1644 > This equation is the basis for deriving the hydrodynamic tensor. In
1645 > 1930, Oseen and Burgers gave a simple solution to Equation
1646 > \ref{introEquation:tensorExpression}
1647 > \begin{equation}
1648 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1649 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1650 > \label{introEquation:oseenTensor}
1651 > \end{equation}
1652 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1653 > A second order expression for element of different size was
1654 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1655 > la Torre and Bloomfield,
1656 > \begin{equation}
1657 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1658 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1659 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1660 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1661 > \label{introEquation:RPTensorNonOverlapped}
1662 > \end{equation}
1663 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1664 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1665 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1666 > overlapping beads with the same radius, $\sigma$, is given by
1667 > \begin{equation}
1668 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1669 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1670 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1671 > \label{introEquation:RPTensorOverlapped}
1672 > \end{equation}
1673 >
1674 > To calculate the resistance tensor at an arbitrary origin $O$, we
1675 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1676 > $B_{ij}$ blocks
1677 > \begin{equation}
1678 > B = \left( {\begin{array}{*{20}c}
1679 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1680 >    \vdots  &  \ddots  &  \vdots   \\
1681 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1682 > \end{array}} \right),
1683 > \end{equation}
1684 > where $B_{ij}$ is given by
1685 > \[
1686 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1687 > )T_{ij}
1688 > \]
1689 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1690 > $B$, we obtain
1691 >
1692 > \[
1693 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1694 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1695 >    \vdots  &  \ddots  &  \vdots   \\
1696 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1697 > \end{array}} \right)
1698 > \]
1699 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1700 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1701 > \[
1702 > U_i  = \left( {\begin{array}{*{20}c}
1703 >   0 & { - z_i } & {y_i }  \\
1704 >   {z_i } & 0 & { - x_i }  \\
1705 >   { - y_i } & {x_i } & 0  \\
1706 > \end{array}} \right)
1707 > \]
1708 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1709 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1710 > arbitrary origin $O$ can be written as
1711 > \begin{equation}
1712 > \begin{array}{l}
1713 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1714 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1715 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1716 > \end{array}
1717 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1718 > \end{equation}
1719 >
1720 > The resistance tensor depends on the origin to which they refer. The
1721 > proper location for applying friction force is the center of
1722 > resistance (reaction), at which the trace of rotational resistance
1723 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1724 > resistance is defined as an unique point of the rigid body at which
1725 > the translation-rotation coupling tensor are symmetric,
1726 > \begin{equation}
1727 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1728 > \label{introEquation:definitionCR}
1729 > \end{equation}
1730 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1731 > we can easily find out that the translational resistance tensor is
1732 > origin independent, while the rotational resistance tensor and
1733 > translation-rotation coupling resistance tensor depend on the
1734 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1735 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1736 > obtain the resistance tensor at $P$ by
1737 > \begin{equation}
1738 > \begin{array}{l}
1739 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1740 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1741 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1742 > \end{array}
1743 > \label{introEquation:resistanceTensorTransformation}
1744 > \end{equation}
1745 > where
1746 > \[
1747 > U_{OP}  = \left( {\begin{array}{*{20}c}
1748 >   0 & { - z_{OP} } & {y_{OP} }  \\
1749 >   {z_i } & 0 & { - x_{OP} }  \\
1750 >   { - y_{OP} } & {x_{OP} } & 0  \\
1751 > \end{array}} \right)
1752 > \]
1753 > Using Equations \ref{introEquation:definitionCR} and
1754 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1755 > the position of center of resistance,
1756 > \[
1757 > \left( \begin{array}{l}
1758 > x_{OR}  \\
1759 > y_{OR}  \\
1760 > z_{OR}  \\
1761 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1762 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1763 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1764 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1765 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1766 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1767 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1768 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1769 > \end{array} \right).
1770 > \]
1771 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1772 > joining center of resistance $R$ and origin $O$.
1773 >
1774 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines