ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2697 by tim, Fri Apr 7 05:03:54 2006 UTC vs.
Revision 2942 by tim, Mon Jul 17 20:54:17 2006 UTC

# Line 3 | Line 3 | Closely related to Classical Mechanics, Molecular Dyna
3   \section{\label{introSection:classicalMechanics}Classical
4   Mechanics}
5  
6 < Closely related to Classical Mechanics, Molecular Dynamics
7 < simulations are carried out by integrating the equations of motion
8 < for a given system of particles. There are three fundamental ideas
9 < behind classical mechanics. Firstly, One can determine the state of
10 < a mechanical system at any time of interest; Secondly, all the
11 < mechanical properties of the system at that time can be determined
12 < by combining the knowledge of the properties of the system with the
13 < specification of this state; Finally, the specification of the state
14 < when further combine with the laws of mechanics will also be
15 < sufficient to predict the future behavior of the system.
6 > Using equations of motion derived from Classical Mechanics,
7 > Molecular Dynamics simulations are carried out by integrating the
8 > equations of motion for a given system of particles. There are three
9 > fundamental ideas behind classical mechanics. Firstly, one can
10 > determine the state of a mechanical system at any time of interest;
11 > Secondly, all the mechanical properties of the system at that time
12 > can be determined by combining the knowledge of the properties of
13 > the system with the specification of this state; Finally, the
14 > specification of the state when further combined with the laws of
15 > mechanics will also be sufficient to predict the future behavior of
16 > the system.
17  
18   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
19   The discovery of Newton's three laws of mechanics which govern the
20   motion of particles is the foundation of the classical mechanics.
21 < Newton¡¯s first law defines a class of inertial frames. Inertial
21 > Newton's first law defines a class of inertial frames. Inertial
22   frames are reference frames where a particle not interacting with
23   other bodies will move with constant speed in the same direction.
24 < With respect to inertial frames Newton¡¯s second law has the form
24 > With respect to inertial frames, Newton's second law has the form
25   \begin{equation}
26 < F = \frac {dp}{dt} = \frac {mv}{dt}
26 > F = \frac {dp}{dt} = \frac {mdv}{dt}
27   \label{introEquation:newtonSecondLaw}
28   \end{equation}
29   A point mass interacting with other bodies moves with the
30   acceleration along the direction of the force acting on it. Let
31 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
32 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
33 < Newton¡¯s third law states that
31 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
32 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
33 > Newton's third law states that
34   \begin{equation}
35 < F_ij = -F_ji
35 > F_{ij} = -F_{ji}.
36   \label{introEquation:newtonThirdLaw}
37   \end{equation}
37
38   Conservation laws of Newtonian Mechanics play very important roles
39   in solving mechanics problems. The linear momentum of a particle is
40   conserved if it is free or it experiences no force. The second
# Line 46 | Line 46 | N \equiv r \times F \label{introEquation:torqueDefinit
46   \end{equation}
47   The torque $\tau$ with respect to the same origin is defined to be
48   \begin{equation}
49 < N \equiv r \times F \label{introEquation:torqueDefinition}
49 > \tau \equiv r \times F \label{introEquation:torqueDefinition}
50   \end{equation}
51   Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52   \[
# Line 59 | Line 59 | thus,
59   \]
60   thus,
61   \begin{equation}
62 < \dot L = r \times \dot p = N
62 > \dot L = r \times \dot p = \tau
63   \end{equation}
64   If there are no external torques acting on a body, the angular
65   momentum of it is conserved. The last conservation theorem state
66 < that if all forces are conservative, Energy
67 < \begin{equation}E = T + V \label{introEquation:energyConservation}
66 > that if all forces are conservative, energy is conserved,
67 > \begin{equation}E = T + V. \label{introEquation:energyConservation}
68   \end{equation}
69 < is conserved. All of these conserved quantities are
70 < important factors to determine the quality of numerical integration
71 < scheme for rigid body \cite{Dullweber1997}.
69 > All of these conserved quantities are important factors to determine
70 > the quality of numerical integration schemes for rigid
71 > bodies.\cite{Dullweber1997}
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
75 < Newtonian Mechanics suffers from two important limitations: it
76 < describes their motion in special cartesian coordinate systems.
77 < Another limitation of Newtonian mechanics becomes obvious when we
78 < try to describe systems with large numbers of particles. It becomes
79 < very difficult to predict the properties of the system by carrying
80 < out calculations involving the each individual interaction between
81 < all the particles, even if we know all of the details of the
82 < interaction. In order to overcome some of the practical difficulties
83 < which arise in attempts to apply Newton's equation to complex
84 < system, alternative procedures may be developed.
75 > Newtonian Mechanics suffers from an important limitation: motion can
76 > only be described in cartesian coordinate systems which make it
77 > impossible to predict analytically the properties of the system even
78 > if we know all of the details of the interaction. In order to
79 > overcome some of the practical difficulties which arise in attempts
80 > to apply Newton's equation to complex systems, approximate numerical
81 > procedures may be developed.
82  
83 < \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
84 < Principle}
83 > \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
84 > Principle}}
85  
86   Hamilton introduced the dynamical principle upon which it is
87 < possible to base all of mechanics and, indeed, most of classical
88 < physics. Hamilton's Principle may be stated as follow,
89 <
90 < The actual trajectory, along which a dynamical system may move from
91 < one point to another within a specified time, is derived by finding
92 < the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
87 > possible to base all of mechanics and most of classical physics.
88 > Hamilton's Principle may be stated as follows: the trajectory, along
89 > which a dynamical system may move from one point to another within a
90 > specified time, is derived by finding the path which minimizes the
91 > time integral of the difference between the kinetic $K$, and
92 > potential energies $U$,
93   \begin{equation}
94 < \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
94 > \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0}.
95   \label{introEquation:halmitonianPrinciple1}
96   \end{equation}
101
97   For simple mechanical systems, where the forces acting on the
98 < different part are derivable from a potential and the velocities are
99 < small compared with that of light, the Lagrangian function $L$ can
100 < be define as the difference between the kinetic energy of the system
106 < and its potential energy,
98 > different parts are derivable from a potential, the Lagrangian
99 > function $L$ can be defined as the difference between the kinetic
100 > energy of the system and its potential energy,
101   \begin{equation}
102 < L \equiv K - U = L(q_i ,\dot q_i ) ,
102 > L \equiv K - U = L(q_i ,\dot q_i ).
103   \label{introEquation:lagrangianDef}
104   \end{equation}
105 < then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
105 > Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
106   \begin{equation}
107 < \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
107 > \delta \int_{t_1 }^{t_2 } {L dt = 0} .
108   \label{introEquation:halmitonianPrinciple2}
109   \end{equation}
110  
111 < \subsubsection{\label{introSection:equationOfMotionLagrangian}The
112 < Equations of Motion in Lagrangian Mechanics}
111 > \subsubsection{\label{introSection:equationOfMotionLagrangian}\textbf{The
112 > Equations of Motion in Lagrangian Mechanics}}
113  
114 < for a holonomic system of $f$ degrees of freedom, the equations of
115 < motion in the Lagrangian form is
114 > For a system of $f$ degrees of freedom, the equations of motion in
115 > the Lagrangian form is
116   \begin{equation}
117   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
118   \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
# Line 132 | Line 126 | independent of generalized velocities, the generalized
126   Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
127   introduced by William Rowan Hamilton in 1833 as a re-formulation of
128   classical mechanics. If the potential energy of a system is
129 < independent of generalized velocities, the generalized momenta can
136 < be defined as
129 > independent of velocities, the momenta can be defined as
130   \begin{equation}
131   p_i = \frac{\partial L}{\partial \dot q_i}
132   \label{introEquation:generalizedMomenta}
# Line 143 | Line 136 | p_i  = \frac{{\partial L}}{{\partial q_i }}
136   p_i  = \frac{{\partial L}}{{\partial q_i }}
137   \label{introEquation:generalizedMomentaDot}
138   \end{equation}
146
139   With the help of the generalized momenta, we may now define a new
140   quantity $H$ by the equation
141   \begin{equation}
# Line 151 | Line 143 | $L$ is the Lagrangian function for the system.
143   \label{introEquation:hamiltonianDefByLagrangian}
144   \end{equation}
145   where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
146 < $L$ is the Lagrangian function for the system.
147 <
156 < Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 < one can obtain
146 > $L$ is the Lagrangian function for the system. Differentiating
147 > Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, one can obtain
148   \begin{equation}
149   dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
150   \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
151   L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
152 < L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
152 > L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
153   \end{equation}
154 < Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
155 < second and fourth terms in the parentheses cancel. Therefore,
154 > Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
155 > and fourth terms in the parentheses cancel. Therefore,
156   Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
157   \begin{equation}
158   dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
159 < \right)}  - \frac{{\partial L}}{{\partial t}}dt
159 > \right)}  - \frac{{\partial L}}{{\partial t}}dt .
160   \label{introEquation:diffHamiltonian2}
161   \end{equation}
162   By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
163   find
164   \begin{equation}
165 < \frac{{\partial H}}{{\partial p_k }} = q_k
165 > \frac{{\partial H}}{{\partial p_k }} = \dot {q_k}
166   \label{introEquation:motionHamiltonianCoordinate}
167   \end{equation}
168   \begin{equation}
169 < \frac{{\partial H}}{{\partial q_k }} =  - p_k
169 > \frac{{\partial H}}{{\partial q_k }} =  - \dot {p_k}
170   \label{introEquation:motionHamiltonianMomentum}
171   \end{equation}
172   and
# Line 185 | Line 175 | t}}
175   t}}
176   \label{introEquation:motionHamiltonianTime}
177   \end{equation}
178 <
189 < Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
178 > where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
179   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
180   equation of motion. Due to their symmetrical formula, they are also
181 < known as the canonical equations of motions \cite{Goldstein01}.
181 > known as the canonical equations of motions.\cite{Goldstein2001}
182  
183   An important difference between Lagrangian approach and the
184   Hamiltonian approach is that the Lagrangian is considered to be a
185 < function of the generalized velocities $\dot q_i$ and the
186 < generalized coordinates $q_i$, while the Hamiltonian is considered
187 < to be a function of the generalized momenta $p_i$ and the conjugate
188 < generalized coordinate $q_i$. Hamiltonian Mechanics is more
189 < appropriate for application to statistical mechanics and quantum
190 < mechanics, since it treats the coordinate and its time derivative as
191 < independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
204 <
185 > function of the generalized velocities $\dot q_i$ and coordinates
186 > $q_i$, while the Hamiltonian is considered to be a function of the
187 > generalized momenta $p_i$ and the conjugate coordinates $q_i$.
188 > Hamiltonian Mechanics is more appropriate for application to
189 > statistical mechanics and quantum mechanics, since it treats the
190 > coordinate and its time derivative as independent variables and it
191 > only works with 1st-order differential equations.\cite{Marion1990}
192   In Newtonian Mechanics, a system described by conservative forces
193 < conserves the total energy \ref{introEquation:energyConservation}.
194 < It follows that Hamilton's equations of motion conserve the total
195 < Hamiltonian.
193 > conserves the total energy
194 > (Eq.~\ref{introEquation:energyConservation}). It follows that
195 > Hamilton's equations of motion conserve the total Hamiltonian
196   \begin{equation}
197   \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
198   H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
199   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
200   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
201   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
202 < q_i }}} \right) = 0}
216 < \label{introEquation:conserveHalmitonian}
202 > q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
203   \end{equation}
204  
219 When studying Hamiltonian system, it is more convenient to use
220 notation
221 \begin{equation}
222 r = r(q,p)^T
223 \end{equation}
224 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225 \begin{equation}
226 J = \left( {\begin{array}{*{20}c}
227   0 & I  \\
228   { - I} & 0  \\
229 \end{array}} \right)
230 \label{introEquation:canonicalMatrix}
231 \end{equation}
232 where $I$ is a $n \times n$ identity matrix and $J$ is a
233 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
234 can be rewritten as,
235 \begin{equation}
236 \frac{d}{{dt}}r = J\nabla _r H(r)
237 \label{introEquation:compactHamiltonian}
238 \end{equation}
239
205   \section{\label{introSection:statisticalMechanics}Statistical
206   Mechanics}
207  
208   The thermodynamic behaviors and properties of Molecular Dynamics
209   simulation are governed by the principle of Statistical Mechanics.
210   The following section will give a brief introduction to some of the
211 < Statistical Mechanics concepts presented in this dissertation.
211 > Statistical Mechanics concepts and theorems presented in this
212 > dissertation.
213  
214 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
214 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
215  
216 < \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
216 > Mathematically, phase space is the space which represents all
217 > possible states of a system. Each possible state of the system
218 > corresponds to one unique point in the phase space. For mechanical
219 > systems, the phase space usually consists of all possible values of
220 > position and momentum variables. Consider a dynamic system of $f$
221 > particles in a cartesian space, where each of the $6f$ coordinates
222 > and momenta is assigned to one of $6f$ mutually orthogonal axes, the
223 > phase space of this system is a $6f$ dimensional space. A point, $x
224 > =
225 > (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226 > \over q} _1 , \ldots
227 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228 > \over q} _f
229 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230 > \over p} _1  \ldots
231 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
232 > \over p} _f )$ , with a unique set of values of $6f$ coordinates and
233 > momenta is a phase space vector.
234 > %%%fix me
235  
236 < Various thermodynamic properties can be calculated from Molecular
237 < Dynamics simulation. By comparing experimental values with the
238 < calculated properties, one can determine the accuracy of the
239 < simulation and the quality of the underlying model. However, both of
240 < experiment and computer simulation are usually performed during a
257 < certain time interval and the measurements are averaged over a
258 < period of them which is different from the average behavior of
259 < many-body system in Statistical Mechanics. Fortunately, Ergodic
260 < Hypothesis is proposed to make a connection between time average and
261 < ensemble average. It states that time average and average over the
262 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
236 > In statistical mechanics, the condition of an ensemble at any time
237 > can be regarded as appropriately specified by the density $\rho$
238 > with which representative points are distributed over the phase
239 > space. The density distribution for an ensemble with $f$ degrees of
240 > freedom is defined as,
241   \begin{equation}
242 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
243 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
266 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
242 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
243 > \label{introEquation:densityDistribution}
244   \end{equation}
245 < where $\langle A \rangle_t$ is an equilibrium value of a physical
246 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
247 < function. If an observation is averaged over a sufficiently long
248 < time (longer than relaxation time), all accessible microstates in
249 < phase space are assumed to be equally probed, giving a properly
250 < weighted statistical average. This allows the researcher freedom of
251 < choice when deciding how best to measure a given observable. In case
252 < an ensemble averaged approach sounds most reasonable, the Monte
253 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
254 < system lends itself to a time averaging approach, the Molecular
255 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
256 < will be the best choice\cite{Frenkel1996}.
245 > Governed by the principles of mechanics, the phase points change
246 > their locations which changes the density at any time at phase
247 > space. Hence, the density distribution is also to be taken as a
248 > function of the time. The number of systems $\delta N$ at time $t$
249 > can be determined by,
250 > \begin{equation}
251 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
252 > \label{introEquation:deltaN}
253 > \end{equation}
254 > Assuming enough copies of the systems, we can sufficiently
255 > approximate $\delta N$ without introducing discontinuity when we go
256 > from one region in the phase space to another. By integrating over
257 > the whole phase space,
258 > \begin{equation}
259 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
260 > \label{introEquation:totalNumberSystem}
261 > \end{equation}
262 > gives us an expression for the total number of copies. Hence, the
263 > probability per unit volume in the phase space can be obtained by,
264 > \begin{equation}
265 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
266 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
267 > \label{introEquation:unitProbability}
268 > \end{equation}
269 > With the help of Eq.~\ref{introEquation:unitProbability} and the
270 > knowledge of the system, it is possible to calculate the average
271 > value of any desired quantity which depends on the coordinates and
272 > momenta of the system. Even when the dynamics of the real system are
273 > complex, or stochastic, or even discontinuous, the average
274 > properties of the ensemble of possibilities as a whole remain well
275 > defined. For a classical system in thermal equilibrium with its
276 > environment, the ensemble average of a mechanical quantity, $\langle
277 > A(q , p) \rangle_t$, takes the form of an integral over the phase
278 > space of the system,
279 > \begin{equation}
280 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
281 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
282 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
283 > \label{introEquation:ensembelAverage}
284 > \end{equation}
285  
286 + \subsection{\label{introSection:liouville}Liouville's theorem}
287 +
288 + Liouville's theorem is the foundation on which statistical mechanics
289 + rests. It describes the time evolution of the phase space
290 + distribution function. In order to calculate the rate of change of
291 + $\rho$, we begin from Eq.~\ref{introEquation:deltaN}. If we consider
292 + the two faces perpendicular to the $q_1$ axis, which are located at
293 + $q_1$ and $q_1 + \delta q_1$, the number of phase points leaving the
294 + opposite face is given by the expression,
295 + \begin{equation}
296 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
297 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
298 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
299 + \ldots \delta p_f .
300 + \end{equation}
301 + Summing all over the phase space, we obtain
302 + \begin{equation}
303 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
304 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
305 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
306 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
307 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
308 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
309 + \end{equation}
310 + Differentiating the equations of motion in Hamiltonian formalism
311 + (\ref{introEquation:motionHamiltonianCoordinate},
312 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
313 + \begin{equation}
314 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
315 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
316 + \end{equation}
317 + which cancels the first terms of the right hand side. Furthermore,
318 + dividing $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
319 + p_f $ in both sides, we can write out Liouville's theorem in a
320 + simple form,
321 + \begin{equation}
322 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
323 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
324 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
325 + \label{introEquation:liouvilleTheorem}
326 + \end{equation}
327 + Liouville's theorem states that the distribution function is
328 + constant along any trajectory in phase space. In classical
329 + statistical mechanics, since the number of system copies in an
330 + ensemble is huge and constant, we can assume the local density has
331 + no reason (other than classical mechanics) to change,
332 + \begin{equation}
333 + \frac{{\partial \rho }}{{\partial t}} = 0.
334 + \label{introEquation:stationary}
335 + \end{equation}
336 + In such stationary system, the density of distribution $\rho$ can be
337 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
338 + distribution,
339 + \begin{equation}
340 + \rho  \propto e^{ - \beta H}
341 + \label{introEquation:densityAndHamiltonian}
342 + \end{equation}
343 +
344 + \subsubsection{\label{introSection:phaseSpaceConservation}\textbf{Conservation of Phase Space}}
345 + Lets consider a region in the phase space,
346 + \begin{equation}
347 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
348 + \end{equation}
349 + If this region is small enough, the density $\rho$ can be regarded
350 + as uniform over the whole integral. Thus, the number of phase points
351 + inside this region is given by,
352 + \begin{equation}
353 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
354 + dp_1 } ..dp_f.
355 + \end{equation}
356 +
357 + \begin{equation}
358 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
359 + \frac{d}{{dt}}(\delta v) = 0.
360 + \end{equation}
361 + With the help of the stationary assumption
362 + (Eq.~\ref{introEquation:stationary}), we obtain the principle of
363 + \emph{conservation of volume in phase space},
364 + \begin{equation}
365 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
366 + ...dq_f dp_1 } ..dp_f  = 0.
367 + \label{introEquation:volumePreserving}
368 + \end{equation}
369 +
370 + \subsubsection{\label{introSection:liouvilleInOtherForms}\textbf{Liouville's Theorem in Other Forms}}
371 +
372 + Liouville's theorem can be expressed in a variety of different forms
373 + which are convenient within different contexts. For any two function
374 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
375 + bracket $\{F,G\}$ is defined as
376 + \begin{equation}
377 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
378 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
379 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
380 + q_i }}} \right)}.
381 + \label{introEquation:poissonBracket}
382 + \end{equation}
383 + Substituting equations of motion in Hamiltonian formalism
384 + (Eq.~\ref{introEquation:motionHamiltonianCoordinate} ,
385 + Eq.~\ref{introEquation:motionHamiltonianMomentum}) into
386 + (Eq.~\ref{introEquation:liouvilleTheorem}), we can rewrite
387 + Liouville's theorem using Poisson bracket notion,
388 + \begin{equation}
389 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
390 + {\rho ,H} \right\}.
391 + \label{introEquation:liouvilleTheromInPoissin}
392 + \end{equation}
393 + Moreover, the Liouville operator is defined as
394 + \begin{equation}
395 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
396 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
397 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
398 + \label{introEquation:liouvilleOperator}
399 + \end{equation}
400 + In terms of Liouville operator, Liouville's equation can also be
401 + expressed as
402 + \begin{equation}
403 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
404 + \label{introEquation:liouvilleTheoremInOperator}
405 + \end{equation}
406 + which can help define a propagator $\rho (t) = e^{-iLt} \rho (0)$.
407 + \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
408 +
409 + Various thermodynamic properties can be calculated from Molecular
410 + Dynamics simulation. By comparing experimental values with the
411 + calculated properties, one can determine the accuracy of the
412 + simulation and the quality of the underlying model. However, both
413 + experiments and computer simulations are usually performed during a
414 + certain time interval and the measurements are averaged over a
415 + period of time which is different from the average behavior of
416 + many-body system in Statistical Mechanics. Fortunately, the Ergodic
417 + Hypothesis makes a connection between time average and the ensemble
418 + average. It states that the time average and average over the
419 + statistical ensemble are identical:\cite{Frenkel1996, Leach2001}
420 + \begin{equation}
421 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
422 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
423 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
424 + \end{equation}
425 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
426 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
427 + distribution function. If an observation is averaged over a
428 + sufficiently long time (longer than the relaxation time), all
429 + accessible microstates in phase space are assumed to be equally
430 + probed, giving a properly weighted statistical average. This allows
431 + the researcher freedom of choice when deciding how best to measure a
432 + given observable. In case an ensemble averaged approach sounds most
433 + reasonable, the Monte Carlo methods\cite{Metropolis1949} can be
434 + utilized. Or if the system lends itself to a time averaging
435 + approach, the Molecular Dynamics techniques in
436 + Sec.~\ref{introSection:molecularDynamics} will be the best
437 + choice.\cite{Frenkel1996}
438 +
439   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
440 < A variety of numerical integrators were proposed to simulate the
441 < motions. They usually begin with an initial conditionals and move
442 < the objects in the direction governed by the differential equations.
443 < However, most of them ignore the hidden physical law contained
444 < within the equations. Since 1990, geometric integrators, which
445 < preserve various phase-flow invariants such as symplectic structure,
446 < volume and time reversal symmetry, are developed to address this
447 < issue. The velocity verlet method, which happens to be a simple
448 < example of symplectic integrator, continues to gain its popularity
449 < in molecular dynamics community. This fact can be partly explained
450 < by its geometric nature.
440 > A variety of numerical integrators have been proposed to simulate
441 > the motions of atoms in MD simulation. They usually begin with
442 > initial conditions and move the objects in the direction governed by
443 > the differential equations. However, most of them ignore the hidden
444 > physical laws contained within the equations. Since 1990, geometric
445 > integrators, which preserve various phase-flow invariants such as
446 > symplectic structure, volume and time reversal symmetry, were
447 > developed to address this issue.\cite{Dullweber1997, McLachlan1998,
448 > Leimkuhler1999} The velocity Verlet method, which happens to be a
449 > simple example of symplectic integrator, continues to gain
450 > popularity in the molecular dynamics community. This fact can be
451 > partly explained by its geometric nature.
452  
453 < \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
454 < A \emph{manifold} is an abstract mathematical space. It locally
455 < looks like Euclidean space, but when viewed globally, it may have
456 < more complicate structure. A good example of manifold is the surface
457 < of Earth. It seems to be flat locally, but it is round if viewed as
458 < a whole. A \emph{differentiable manifold} (also known as
459 < \emph{smooth manifold}) is a manifold with an open cover in which
460 < the covering neighborhoods are all smoothly isomorphic to one
461 < another. In other words,it is possible to apply calculus on
462 < \emph{differentiable manifold}. A \emph{symplectic manifold} is
304 < defined as a pair $(M, \omega)$ which consisting of a
305 < \emph{differentiable manifold} $M$ and a close, non-degenerated,
453 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
454 > A \emph{manifold} is an abstract mathematical space. It looks
455 > locally like Euclidean space, but when viewed globally, it may have
456 > more complicated structure. A good example of manifold is the
457 > surface of Earth. It seems to be flat locally, but it is round if
458 > viewed as a whole. A \emph{differentiable manifold} (also known as
459 > \emph{smooth manifold}) is a manifold on which it is possible to
460 > apply calculus.\cite{Hirsch1997} A \emph{symplectic manifold} is
461 > defined as a pair $(M, \omega)$ which consists of a
462 > \emph{differentiable manifold} $M$ and a close, non-degenerate,
463   bilinear symplectic form, $\omega$. A symplectic form on a vector
464   space $V$ is a function $\omega(x, y)$ which satisfies
465   $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
466   \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
467 < $\omega(x, x) = 0$. Cross product operation in vector field is an
468 < example of symplectic form.
467 > $\omega(x, x) = 0$.\cite{McDuff1998} The cross product operation in
468 > vector field is an example of symplectic form. One of the
469 > motivations to study \emph{symplectic manifolds} in Hamiltonian
470 > Mechanics is that a symplectic manifold can represent all possible
471 > configurations of the system and the phase space of the system can
472 > be described by it's cotangent bundle.\cite{Jost2002} Every
473 > symplectic manifold is even dimensional. For instance, in Hamilton
474 > equations, coordinate and momentum always appear in pairs.
475  
476 < One of the motivations to study \emph{symplectic manifold} in
314 < Hamiltonian Mechanics is that a symplectic manifold can represent
315 < all possible configurations of the system and the phase space of the
316 < system can be described by it's cotangent bundle. Every symplectic
317 < manifold is even dimensional. For instance, in Hamilton equations,
318 < coordinate and momentum always appear in pairs.
476 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
477  
478 < Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
479 < \[
480 < f : M \rightarrow N
481 < \]
482 < is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
483 < the \emph{pullback} of $\eta$ under f is equal to $\omega$.
484 < Canonical transformation is an example of symplectomorphism in
485 < classical mechanics. According to Liouville's theorem, the
486 < Hamiltonian \emph{flow} or \emph{symplectomorphism} generated by the
487 < Hamiltonian vector filed preserves the volume form on the phase
488 < space, which is the basis of classical statistical mechanics.
478 > For an ordinary differential system defined as
479 > \begin{equation}
480 > \dot x = f(x)
481 > \end{equation}
482 > where $x = x(q,p)$, this system is a canonical Hamiltonian, if
483 > $f(x) = J\nabla _x H(x)$. Here, $H = H (q, p)$ is Hamiltonian
484 > function and $J$ is the skew-symmetric matrix
485 > \begin{equation}
486 > J = \left( {\begin{array}{*{20}c}
487 >   0 & I  \\
488 >   { - I} & 0  \\
489 > \end{array}} \right)
490 > \label{introEquation:canonicalMatrix}
491 > \end{equation}
492 > where $I$ is an identity matrix. Using this notation, Hamiltonian
493 > system can be rewritten as,
494 > \begin{equation}
495 > \frac{d}{{dt}}x = J\nabla _x H(x).
496 > \label{introEquation:compactHamiltonian}
497 > \end{equation}In this case, $f$ is
498 > called a \emph{Hamiltonian vector field}. Another generalization of
499 > Hamiltonian dynamics is Poisson Dynamics,\cite{Olver1986}
500 > \begin{equation}
501 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
502 > \end{equation}
503 > where the most obvious change being that matrix $J$ now depends on
504 > $x$.
505  
506 < \subsection{\label{introSection:exactFlow}The Exact Flow of ODE}
506 > \subsection{\label{introSection:exactFlow}Exact Propagator}
507  
508 < \subsection{\label{introSection:hamiltonianSplitting}Hamiltonian Splitting}
508 > Let $x(t)$ be the exact solution of the ODE
509 > system,
510 > \begin{equation}
511 > \frac{{dx}}{{dt}} = f(x), \label{introEquation:ODE}
512 > \end{equation} we can
513 > define its exact propagator $\varphi_\tau$:
514 > \[ x(t+\tau)
515 > =\varphi_\tau(x(t))
516 > \]
517 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
518 > space to itself. The propagator has the continuous group property,
519 > \begin{equation}
520 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
521 > + \tau _2 } .
522 > \end{equation}
523 > In particular,
524 > \begin{equation}
525 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
526 > \end{equation}
527 > Therefore, the exact propagator is self-adjoint,
528 > \begin{equation}
529 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
530 > \end{equation}
531 > The exact propagator can also be written as an operator,
532 > \begin{equation}
533 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
534 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
535 > \label{introEquation:exponentialOperator}
536 > \end{equation}
537 > In most cases, it is not easy to find the exact propagator
538 > $\varphi_\tau$. Instead, we use an approximate map, $\psi_\tau$,
539 > which is usually called an integrator. The order of an integrator
540 > $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
541 > order $p$,
542 > \begin{equation}
543 > \psi_\tau(x) = x + \tau f(x) + O(\tau^{p+1})
544 > \end{equation}
545  
546 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
546 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
547  
548 < As a special discipline of molecular modeling, Molecular dynamics
549 < has proven to be a powerful tool for studying the functions of
550 < biological systems, providing structural, thermodynamic and
551 < dynamical information.
552 <
343 < \subsection{\label{introSec:mdInit}Initialization}
344 <
345 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
346 <
347 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
348 <
349 < A rigid body is a body in which the distance between any two given
350 < points of a rigid body remains constant regardless of external
351 < forces exerted on it. A rigid body therefore conserves its shape
352 < during its motion.
353 <
354 < Applications of dynamics of rigid bodies.
355 <
356 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
357 <
358 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
359 <
360 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
361 <
362 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
363 <
364 < \section{\label{introSection:correlationFunctions}Correlation Functions}
365 <
366 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
367 <
368 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
369 <
370 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
371 <
548 > The hidden geometric properties\cite{Budd1999, Marsden1998} of an
549 > ODE and its propagator play important roles in numerical studies.
550 > Many of them can be found in systems which occur naturally in
551 > applications. Let $\varphi$ be the propagator of Hamiltonian vector
552 > field, $\varphi$ is a \emph{symplectic} propagator if it satisfies,
553   \begin{equation}
554 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
374 < \label{introEquation:bathGLE}
554 > {\varphi '}^T J \varphi ' = J.
555   \end{equation}
556 < where $H_B$ is harmonic bath Hamiltonian,
556 > According to Liouville's theorem, the symplectic volume is invariant
557 > under a Hamiltonian propagator, which is the basis for classical
558 > statistical mechanics. Furthermore, the propagator of a Hamiltonian
559 > vector field on a symplectic manifold can be shown to be a
560 > symplectomorphism. As to the Poisson system,
561 > \begin{equation}
562 > {\varphi '}^T J \varphi ' = J \circ \varphi
563 > \end{equation}
564 > is the property that must be preserved by the integrator. It is
565 > possible to construct a \emph{volume-preserving} propagator for a
566 > source free ODE ($ \nabla \cdot f = 0 $), if the propagator
567 > satisfies $ \det d\varphi  = 1$. One can show easily that a
568 > symplectic propagator will be volume-preserving. Changing the
569 > variables $y = h(x)$ in an ODE (Eq.~\ref{introEquation:ODE}) will
570 > result in a new system,
571   \[
572 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
379 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
572 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
573   \]
574 < and $\Delta U$ is bilinear system-bath coupling,
574 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
575 > In other words, the propagator of this vector field is reversible if
576 > and only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. A
577 > conserved quantity of a general differential function is a function
578 > $ G:R^{2d}  \to R^d $ which is constant for all solutions of the ODE
579 > $\frac{{dx}}{{dt}} = f(x)$ ,
580   \[
581 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
581 > \frac{{dG(x(t))}}{{dt}} = 0.
582   \]
583 < Completing the square,
583 > Using the chain rule, one may obtain,
584   \[
585 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
388 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
389 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
390 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
391 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
585 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \cdot \nabla G,
586   \]
587 < and putting it back into Eq.~\ref{introEquation:bathGLE},
587 > which is the condition for conserved quantities. For a canonical
588 > Hamiltonian system, the time evolution of an arbitrary smooth
589 > function $G$ is given by,
590 > \begin{eqnarray}
591 > \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \notag\\
592 >                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)).
593 > \label{introEquation:firstIntegral1}
594 > \end{eqnarray}
595 > Using poisson bracket notion, Eq.~\ref{introEquation:firstIntegral1}
596 > can be rewritten as
597   \[
598 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
396 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
397 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
398 < w_\alpha ^2 }}x} \right)^2 } \right\}}
598 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
599   \]
600 < where
600 > Therefore, the sufficient condition for $G$ to be a conserved
601 > quantity of a Hamiltonian system is $\left\{ {G,H} \right\} = 0.$ As
602 > is well known, the Hamiltonian (or energy) H of a Hamiltonian system
603 > is a conserved quantity, which is due to the fact $\{ H,H\}  = 0$.
604 > When designing any numerical methods, one should always try to
605 > preserve the structural properties of the original ODE and its
606 > propagator.
607 >
608 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
609 > A lot of well established and very effective numerical methods have
610 > been successful precisely because of their symplectic nature even
611 > though this fact was not recognized when they were first
612 > constructed. The most famous example is the Verlet-leapfrog method
613 > in molecular dynamics. In general, symplectic integrators can be
614 > constructed using one of four different methods.
615 > \begin{enumerate}
616 > \item Generating functions
617 > \item Variational methods
618 > \item Runge-Kutta methods
619 > \item Splitting methods
620 > \end{enumerate}
621 > Generating functions\cite{Channell1990} tend to lead to methods
622 > which are cumbersome and difficult to use. In dissipative systems,
623 > variational methods can capture the decay of energy
624 > accurately.\cite{Kane2000} Since they are geometrically unstable
625 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
626 > methods are not suitable for Hamiltonian
627 > system.\cite{Cartwright1992} Recently, various high-order explicit
628 > Runge-Kutta methods \cite{Owren1992,Chen2003} have been developed to
629 > overcome this instability. However, due to computational penalty
630 > involved in implementing the Runge-Kutta methods, they have not
631 > attracted much attention from the Molecular Dynamics community.
632 > Instead, splitting methods have been widely accepted since they
633 > exploit natural decompositions of the system.\cite{McLachlan1998,
634 > Tuckerman1992}
635 >
636 > \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
637 >
638 > The main idea behind splitting methods is to decompose the discrete
639 > $\varphi_h$ as a composition of simpler propagators,
640 > \begin{equation}
641 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
642 > \varphi _{h_n }
643 > \label{introEquation:FlowDecomposition}
644 > \end{equation}
645 > where each of the sub-propagator is chosen such that each represent
646 > a simpler integration of the system. Suppose that a Hamiltonian
647 > system takes the form,
648   \[
649 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
403 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
649 > H = H_1 + H_2.
650   \]
651 < Since the first two terms of the new Hamiltonian depend only on the
652 < system coordinates, we can get the equations of motion for
653 < Generalized Langevin Dynamics by Hamilton's equations
654 < \ref{introEquation:motionHamiltonianCoordinate,
655 < introEquation:motionHamiltonianMomentum},
651 > Here, $H_1$ and $H_2$ may represent different physical processes of
652 > the system. For instance, they may relate to kinetic and potential
653 > energy respectively, which is a natural decomposition of the
654 > problem. If $H_1$ and $H_2$ can be integrated using exact
655 > propagators $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a
656 > simple first order expression is then given by the Lie-Trotter
657 > formula\cite{Trotter1959}
658 > \begin{equation}
659 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
660 > \label{introEquation:firstOrderSplitting}
661 > \end{equation}
662 > where $\varphi _h$ is the result of applying the corresponding
663 > continuous $\varphi _i$ over a time $h$. By definition, as
664 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
665 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
666 > It is easy to show that any composition of symplectic propagators
667 > yields a symplectic map,
668 > \begin{equation}
669 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
670 > '\phi ' = \phi '^T J\phi ' = J,
671 > \label{introEquation:SymplecticFlowComposition}
672 > \end{equation}
673 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
674 > splitting in this context automatically generates a symplectic map.
675 > The Lie-Trotter
676 > splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
677 > local errors proportional to $h^2$, while the Strang splitting gives
678 > a second-order decomposition,\cite{Strang1968}
679 > \begin{equation}
680 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
681 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
682 > \end{equation}
683 > which has a local error proportional to $h^3$. The Strang
684 > splitting's popularity in molecular simulation community attribute
685 > to its symmetric property,
686 > \begin{equation}
687 > \varphi _h^{ - 1} = \varphi _{ - h}.
688 > \label{introEquation:timeReversible}
689 > \end{equation}
690 >
691 > \subsubsection{\label{introSection:exampleSplittingMethod}\textbf{Examples of the Splitting Method}}
692 > The classical equation for a system consisting of interacting
693 > particles can be written in Hamiltonian form,
694 > \[
695 > H = T + V
696 > \]
697 > where $T$ is the kinetic energy and $V$ is the potential energy.
698 > Setting $H_1 = T, H_2 = V$ and applying the Strang splitting, one
699 > obtains the following:
700   \begin{align}
701 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
702 <       &= m\ddot x
703 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
704 < \label{introEq:Lp5}
701 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
702 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
703 > \label{introEquation:Lp10a} \\%
704 > %
705 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
706 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
707 > \label{introEquation:Lp10b}
708   \end{align}
709 < , and
709 > where $F(t)$ is the force at time $t$. This integration scheme is
710 > known as \emph{velocity verlet} which is
711 > symplectic(Eq.~\ref{introEquation:SymplecticFlowComposition}),
712 > time-reversible(Eq.~\ref{introEquation:timeReversible}) and
713 > volume-preserving (Eq.~\ref{introEquation:volumePreserving}). These
714 > geometric properties attribute to its long-time stability and its
715 > popularity in the community. However, the most commonly used
716 > velocity verlet integration scheme is written as below,
717   \begin{align}
718 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
719 <                &= m\ddot x_\alpha
720 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
718 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
719 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
720 > %
721 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
722 >    \label{introEquation:Lp9b}\\%
723 > %
724 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
725 >    \frac{\Delta t}{2m}\, F[q(t)]. \label{introEquation:Lp9c}
726   \end{align}
727 + From the preceding splitting, one can see that the integration of
728 + the equations of motion would follow:
729 + \begin{enumerate}
730 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
731  
732 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
732 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
733  
734 < \[
426 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
427 < \]
734 > \item Evaluate the forces at the new positions, $q(\Delta t)$, and use the new forces to complete the velocity move.
735  
736 < \[
737 < L(x + y) = L(x) + L(y)
738 < \]
736 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
737 > \end{enumerate}
738 > By simply switching the order of the propagators in the splitting
739 > and composing a new integrator, the \emph{position verlet}
740 > integrator, can be generated,
741 > \begin{align}
742 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
743 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
744 > \label{introEquation:positionVerlet1} \\%
745 > %
746 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
747 > q(\Delta t)} \right]. %
748 > \label{introEquation:positionVerlet2}
749 > \end{align}
750  
751 < \[
434 < L(ax) = aL(x)
435 < \]
751 > \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
752  
753 + The Baker-Campbell-Hausdorff formula\cite{Gilmore1974} can be used
754 + to determine the local error of a splitting method in terms of the
755 + commutator of the
756 + operators(Eq.~\ref{introEquation:exponentialOperator}) associated
757 + with the sub-propagator. For operators $hX$ and $hY$ which are
758 + associated with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we
759 + have
760 + \begin{equation}
761 + \exp (hX + hY) = \exp (hZ)
762 + \end{equation}
763 + where
764 + \begin{equation}
765 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
766 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
767 + \end{equation}
768 + Here, $[X,Y]$ is the commutator of operator $X$ and $Y$ given by
769   \[
770 < L(\dot x) = pL(x) - px(0)
770 > [X,Y] = XY - YX .
771   \]
772 <
772 > Applying the Baker-Campbell-Hausdorff formula\cite{Varadarajan1974}
773 > to the Strang splitting, we can obtain
774 > \begin{eqnarray*}
775 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
776 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
777 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots
778 >                                   ).
779 > \end{eqnarray*}
780 > Since $ [X,Y] + [Y,X] = 0$ and $ [X,X] = 0$, the dominant local
781 > error of Strang splitting is proportional to $h^3$. The same
782 > procedure can be applied to a general splitting of the form
783 > \begin{equation}
784 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
785 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
786 > \end{equation}
787 > A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
788 > order methods. Yoshida proposed an elegant way to compose higher
789 > order methods based on symmetric splitting.\cite{Yoshida1990} Given
790 > a symmetric second order base method $ \varphi _h^{(2)} $, a
791 > fourth-order symmetric method can be constructed by composing,
792   \[
793 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
793 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
794 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
795   \]
796 <
796 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
797 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
798 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
799 > \begin{equation}
800 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
801 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)},
802 > \end{equation}
803 > if the weights are chosen as
804   \[
805 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
805 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
806 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
807   \]
808  
809 < Some relatively important transformation,
450 < \[
451 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
452 < \]
809 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
810  
811 + As one of the principal tools of molecular modeling, Molecular
812 + dynamics has proven to be a powerful tool for studying the functions
813 + of biological systems, providing structural, thermodynamic and
814 + dynamical information. The basic idea of molecular dynamics is that
815 + macroscopic properties are related to microscopic behavior and
816 + microscopic behavior can be calculated from the trajectories in
817 + simulations. For instance, instantaneous temperature of a
818 + Hamiltonian system of $N$ particles can be measured by
819   \[
820 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
820 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
821   \]
822 <
823 < \[
824 < L(1) = \frac{1}{p}
460 < \]
461 <
462 < First, the bath coordinates,
463 < \[
464 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
465 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
466 < }}L(x)
467 < \]
468 < \[
469 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
470 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
471 < \]
472 < Then, the system coordinates,
473 < \begin{align}
474 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
475 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
476 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
477 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
478 < }}\omega _\alpha ^2 L(x)} \right\}}
479 < %
480 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
481 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
482 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
483 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
484 < \end{align}
485 < Then, the inverse transform,
822 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
823 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
824 > the Boltzman constant.
825  
826 < \begin{align}
827 < m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
828 < \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
829 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
830 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
831 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
832 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
833 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
834 < %
835 < &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
836 < {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
837 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
838 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
839 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
840 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
841 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
842 < (\omega _\alpha  t)} \right\}}
843 < \end{align}
826 > A typical molecular dynamics run consists of three essential steps:
827 > \begin{enumerate}
828 >  \item Initialization
829 >    \begin{enumerate}
830 >    \item Preliminary preparation
831 >    \item Minimization
832 >    \item Heating
833 >    \item Equilibration
834 >    \end{enumerate}
835 >  \item Production
836 >  \item Analysis
837 > \end{enumerate}
838 > These three individual steps will be covered in the following
839 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
840 > initialization of a simulation. Sec.~\ref{introSection:production}
841 > discusses issues of production runs.
842 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
843 > analysis of trajectories.
844  
845 + \subsection{\label{introSec:initialSystemSettings}Initialization}
846 +
847 + \subsubsection{\textbf{Preliminary preparation}}
848 +
849 + When selecting the starting structure of a molecule for molecular
850 + simulation, one may retrieve its Cartesian coordinates from public
851 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
852 + thousands of crystal structures of molecules are discovered every
853 + year, many more remain unknown due to the difficulties of
854 + purification and crystallization. Even for molecules with known
855 + structures, some important information is missing. For example, a
856 + missing hydrogen atom which acts as donor in hydrogen bonding must
857 + be added. Moreover, in order to include electrostatic interactions,
858 + one may need to specify the partial charges for individual atoms.
859 + Under some circumstances, we may even need to prepare the system in
860 + a special configuration. For instance, when studying transport
861 + phenomenon in membrane systems, we may prepare the lipids in a
862 + bilayer structure instead of placing lipids randomly in solvent,
863 + since we are not interested in the slow self-aggregation process.
864 +
865 + \subsubsection{\textbf{Minimization}}
866 +
867 + It is quite possible that some of molecules in the system from
868 + preliminary preparation may be overlapping with each other. This
869 + close proximity leads to high initial potential energy which
870 + consequently jeopardizes any molecular dynamics simulations. To
871 + remove these steric overlaps, one typically performs energy
872 + minimization to find a more reasonable conformation. Several energy
873 + minimization methods have been developed to exploit the energy
874 + surface and to locate the local minimum. While converging slowly
875 + near the minimum, the steepest descent method is extremely robust when
876 + systems are strongly anharmonic. Thus, it is often used to refine
877 + structures from crystallographic data. Relying on the Hessian,
878 + advanced methods like Newton-Raphson converge rapidly to a local
879 + minimum, but become unstable if the energy surface is far from
880 + quadratic. Another factor that must be taken into account, when
881 + choosing energy minimization method, is the size of the system.
882 + Steepest descent and conjugate gradient can deal with models of any
883 + size. Because of the limits on computer memory to store the hessian
884 + matrix and the computing power needed to diagonalize these matrices,
885 + most Newton-Raphson methods can not be used with very large systems.
886 +
887 + \subsubsection{\textbf{Heating}}
888 +
889 + Typically, heating is performed by assigning random velocities
890 + according to a Maxwell-Boltzman distribution for a desired
891 + temperature. Beginning at a lower temperature and gradually
892 + increasing the temperature by assigning larger random velocities, we
893 + end up setting the temperature of the system to a final temperature
894 + at which the simulation will be conducted. In the heating phase, we
895 + should also keep the system from drifting or rotating as a whole. To
896 + do this, the net linear momentum and angular momentum of the system
897 + is shifted to zero after each resampling from the Maxwell -Boltzman
898 + distribution.
899 +
900 + \subsubsection{\textbf{Equilibration}}
901 +
902 + The purpose of equilibration is to allow the system to evolve
903 + spontaneously for a period of time and reach equilibrium. The
904 + procedure is continued until various statistical properties, such as
905 + temperature, pressure, energy, volume and other structural
906 + properties \textit{etc}, become independent of time. Strictly
907 + speaking, minimization and heating are not necessary, provided the
908 + equilibration process is long enough. However, these steps can serve
909 + as a mean to arrive at an equilibrated structure in an effective
910 + way.
911 +
912 + \subsection{\label{introSection:production}Production}
913 +
914 + The production run is the most important step of the simulation, in
915 + which the equilibrated structure is used as a starting point and the
916 + motions of the molecules are collected for later analysis. In order
917 + to capture the macroscopic properties of the system, the molecular
918 + dynamics simulation must be performed by sampling correctly and
919 + efficiently from the relevant thermodynamic ensemble.
920 +
921 + The most expensive part of a molecular dynamics simulation is the
922 + calculation of non-bonded forces, such as van der Waals force and
923 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
924 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
925 + which makes large simulations prohibitive in the absence of any
926 + algorithmic tricks. A natural approach to avoid system size issues
927 + is to represent the bulk behavior by a finite number of the
928 + particles. However, this approach will suffer from surface effects
929 + at the edges of the simulation. To offset this, \textit{Periodic
930 + boundary conditions} (see Fig.~\ref{introFig:pbc}) were developed to
931 + simulate bulk properties with a relatively small number of
932 + particles. In this method, the simulation box is replicated
933 + throughout space to form an infinite lattice. During the simulation,
934 + when a particle moves in the primary cell, its image in other cells
935 + move in exactly the same direction with exactly the same
936 + orientation. Thus, as a particle leaves the primary cell, one of its
937 + images will enter through the opposite face.
938 + \begin{figure}
939 + \centering
940 + \includegraphics[width=\linewidth]{pbc.eps}
941 + \caption[An illustration of periodic boundary conditions]{A 2-D
942 + illustration of periodic boundary conditions. As one particle leaves
943 + the left of the simulation box, an image of it enters the right.}
944 + \label{introFig:pbc}
945 + \end{figure}
946 +
947 + %cutoff and minimum image convention
948 + Another important technique to improve the efficiency of force
949 + evaluation is to apply spherical cutoffs where particles farther
950 + than a predetermined distance are not included in the
951 + calculation.\cite{Frenkel1996} The use of a cutoff radius will cause
952 + a discontinuity in the potential energy curve. Fortunately, one can
953 + shift a simple radial potential to ensure the potential curve go
954 + smoothly to zero at the cutoff radius. The cutoff strategy works
955 + well for Lennard-Jones interaction because of its short range
956 + nature. However, simply truncating the electrostatic interaction
957 + with the use of cutoffs has been shown to lead to severe artifacts
958 + in simulations. The Ewald summation, in which the slowly decaying
959 + Coulomb potential is transformed into direct and reciprocal sums
960 + with rapid and absolute convergence, has proved to minimize the
961 + periodicity artifacts in liquid simulations. Taking advantage of
962 + fast Fourier transform (FFT) techniques for calculating discrete
963 + Fourier transforms, the particle mesh-based
964 + methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
965 + $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
966 + \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
967 + which treats Coulombic interactions exactly at short range, and
968 + approximate the potential at long range through multipolar
969 + expansion. In spite of their wide acceptance at the molecular
970 + simulation community, these two methods are difficult to implement
971 + correctly and efficiently. Instead, we use a damped and
972 + charge-neutralized Coulomb potential method developed by Wolf and
973 + his coworkers.\cite{Wolf1999} The shifted Coulomb potential for
974 + particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
975   \begin{equation}
976 < m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
977 < (t)\dot x(t - \tau )d\tau }  + R(t)
978 < \label{introEuqation:GeneralizedLangevinDynamics}
976 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
977 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
978 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
979 > r_{ij})}{r_{ij}}\right\}, \label{introEquation:shiftedCoulomb}
980   \end{equation}
981 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
982 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
981 > where $\alpha$ is the convergence parameter. Due to the lack of
982 > inherent periodicity and rapid convergence,this method is extremely
983 > efficient and easy to implement.
984 > \begin{figure}
985 > \centering
986 > \includegraphics[width=\linewidth]{shifted_coulomb.eps}
987 > \caption[An illustration of shifted Coulomb potential]{An
988 > illustration of shifted Coulomb potential.}
989 > \label{introFigure:shiftedCoulomb}
990 > \end{figure}
991 >
992 > %multiple time step
993 >
994 > \subsection{\label{introSection:Analysis} Analysis}
995 >
996 > Recently, advanced visualization techniques have been applied to
997 > monitor the motions of molecules. Although the dynamics of the
998 > system can be described qualitatively from animation, quantitative
999 > trajectory analysis is more useful. According to the principles of
1000 > Statistical Mechanics in
1001 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1002 > thermodynamic properties, analyze fluctuations of structural
1003 > parameters, and investigate time-dependent processes of the molecule
1004 > from the trajectories.
1005 >
1006 > \subsubsection{\label{introSection:thermodynamicsProperties}\textbf{Thermodynamic Properties}}
1007 >
1008 > Thermodynamic properties, which can be expressed in terms of some
1009 > function of the coordinates and momenta of all particles in the
1010 > system, can be directly computed from molecular dynamics. The usual
1011 > way to measure the pressure is based on virial theorem of Clausius
1012 > which states that the virial is equal to $-3Nk_BT$. For a system
1013 > with forces between particles, the total virial, $W$, contains the
1014 > contribution from external pressure and interaction between the
1015 > particles:
1016   \[
1017 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1018 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1017 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1018 > f_{ij} } } \right\rangle
1019   \]
1020 < For an infinite harmonic bath, we can use the spectral density and
1021 < an integral over frequencies.
1020 > where $f_{ij}$ is the force between particle $i$ and $j$ at a
1021 > distance $r_{ij}$. Thus, the expression for the pressure is given
1022 > by:
1023 > \begin{equation}
1024 > P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1025 > < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1026 > \end{equation}
1027  
1028 + \subsubsection{\label{introSection:structuralProperties}\textbf{Structural Properties}}
1029 +
1030 + Structural Properties of a simple fluid can be described by a set of
1031 + distribution functions. Among these functions,the \emph{pair
1032 + distribution function}, also known as \emph{radial distribution
1033 + function}, is of most fundamental importance to liquid theory.
1034 + Experimentally, pair distribution functions can be gathered by
1035 + Fourier transforming raw data from a series of neutron diffraction
1036 + experiments and integrating over the surface
1037 + factor.\cite{Powles1973} The experimental results can serve as a
1038 + criterion to justify the correctness of a liquid model. Moreover,
1039 + various equilibrium thermodynamic and structural properties can also
1040 + be expressed in terms of the radial distribution
1041 + function.\cite{Allen1987} The pair distribution functions $g(r)$
1042 + gives the probability that a particle $i$ will be located at a
1043 + distance $r$ from a another particle $j$ in the system
1044 + \begin{equation}
1045 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1046 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
1047 + (r)}{\rho}.
1048 + \end{equation}
1049 + Note that the delta function can be replaced by a histogram in
1050 + computer simulation. Peaks in $g(r)$ represent solvent shells, and
1051 + the height of these peaks gradually decreases to 1 as the liquid of
1052 + large distance approaches the bulk density.
1053 +
1054 +
1055 + \subsubsection{\label{introSection:timeDependentProperties}\textbf{Time-dependent
1056 + Properties}}
1057 +
1058 + Time-dependent properties are usually calculated using \emph{time
1059 + correlation functions}, which correlate random variables $A$ and $B$
1060 + at two different times,
1061 + \begin{equation}
1062 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1063 + \label{introEquation:timeCorrelationFunction}
1064 + \end{equation}
1065 + If $A$ and $B$ refer to same variable, this kind of correlation
1066 + functions are called \emph{autocorrelation functions}. One typical example is the velocity autocorrelation
1067 + function which is directly related to transport properties of
1068 + molecular liquids:
1069 + \begin{equation}
1070 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1071 + \right\rangle } dt
1072 + \end{equation}
1073 + where $D$ is diffusion constant. Unlike the velocity autocorrelation
1074 + function, which is averaged over time origins and over all the
1075 + atoms, the dipole autocorrelation functions is calculated for the
1076 + entire system. The dipole autocorrelation function is given by:
1077 + \begin{equation}
1078 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1079 + \right\rangle
1080 + \end{equation}
1081 + Here $u_{tot}$ is the net dipole of the entire system and is given
1082 + by
1083 + \begin{equation}
1084 + u_{tot} (t) = \sum\limits_i {u_i (t)}.
1085 + \end{equation}
1086 + In principle, many time correlation functions can be related to
1087 + Fourier transforms of the infrared, Raman, and inelastic neutron
1088 + scattering spectra of molecular liquids. In practice, one can
1089 + extract the IR spectrum from the intensity of the molecular dipole
1090 + fluctuation at each frequency using the following relationship:
1091 + \begin{equation}
1092 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1093 + i2\pi vt} dt}.
1094 + \end{equation}
1095 +
1096 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1097 +
1098 + Rigid bodies are frequently involved in the modeling of different
1099 + areas, including engineering, physics and chemistry. For example,
1100 + missiles and vehicles are usually modeled by rigid bodies.  The
1101 + movement of the objects in 3D gaming engines or other physics
1102 + simulators is governed by rigid body dynamics. In molecular
1103 + simulations, rigid bodies are used to simplify protein-protein
1104 + docking studies.\cite{Gray2003}
1105 +
1106 + It is very important to develop stable and efficient methods to
1107 + integrate the equations of motion for orientational degrees of
1108 + freedom. Euler angles are the natural choice to describe the
1109 + rotational degrees of freedom. However, due to $\frac {1}{sin
1110 + \theta}$ singularities, the numerical integration of corresponding
1111 + equations of these motion is very inefficient and inaccurate.
1112 + Although an alternative integrator using multiple sets of Euler
1113 + angles can overcome this difficulty\cite{Barojas1973}, the
1114 + computational penalty and the loss of angular momentum conservation
1115 + still remain. A singularity-free representation utilizing
1116 + quaternions was developed by Evans in 1977.\cite{Evans1977}
1117 + Unfortunately, this approach used a nonseparable Hamiltonian
1118 + resulting from the quaternion representation, which prevented the
1119 + symplectic algorithm from being utilized. Another different approach
1120 + is to apply holonomic constraints to the atoms belonging to the
1121 + rigid body. Each atom moves independently under the normal forces
1122 + deriving from potential energy and constraint forces which are used
1123 + to guarantee the rigidness. However, due to their iterative nature,
1124 + the SHAKE and Rattle algorithms also converge very slowly when the
1125 + number of constraints increases.\cite{Ryckaert1977, Andersen1983}
1126 +
1127 + A break-through in geometric literature suggests that, in order to
1128 + develop a long-term integration scheme, one should preserve the
1129 + symplectic structure of the propagator. By introducing a conjugate
1130 + momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
1131 + equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
1132 + proposed to evolve the Hamiltonian system in a constraint manifold
1133 + by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1134 + An alternative method using the quaternion representation was
1135 + developed by Omelyan.\cite{Omelyan1998} However, both of these
1136 + methods are iterative and inefficient. In this section, we descibe a
1137 + symplectic Lie-Poisson integrator for rigid bodies developed by
1138 + Dullweber and his coworkers\cite{Dullweber1997} in depth.
1139 +
1140 + \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1141 + The Hamiltonian of a rigid body is given by
1142 + \begin{equation}
1143 + H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1144 + V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1145 + \label{introEquation:RBHamiltonian}
1146 + \end{equation}
1147 + Here, $q$ and $Q$  are the position vector and rotation matrix for
1148 + the rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ ,
1149 + and $J$, a diagonal matrix, is defined by
1150   \[
1151 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
522 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
523 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
524 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1151 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1152   \]
1153 < The random forces depend only on initial conditions.
1154 <
1155 < \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1156 < So we can define a new set of coordinates,
1153 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1154 > constrained Hamiltonian equation is subjected to a holonomic
1155 > constraint,
1156 > \begin{equation}
1157 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1158 > \end{equation}
1159 > which is used to ensure the rotation matrix's unitarity. Using
1160 > Eq.~\ref{introEquation:motionHamiltonianCoordinate} and Eq.~
1161 > \ref{introEquation:motionHamiltonianMomentum}, one can write down
1162 > the equations of motion,
1163 > \begin{eqnarray}
1164 > \frac{{dq}}{{dt}} & = & \frac{p}{m}, \label{introEquation:RBMotionPosition}\\
1165 > \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q), \label{introEquation:RBMotionMomentum}\\
1166 > \frac{{dQ}}{{dt}} & = & PJ^{ - 1},  \label{introEquation:RBMotionRotation}\\
1167 > \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1168 > \end{eqnarray}
1169 > Differentiating Eq.~\ref{introEquation:orthogonalConstraint} and
1170 > using Eq.~\ref{introEquation:RBMotionMomentum}, one may obtain,
1171 > \begin{equation}
1172 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1173 > \label{introEquation:RBFirstOrderConstraint}
1174 > \end{equation}
1175 > In general, there are two ways to satisfy the holonomic constraints.
1176 > We can use a constraint force provided by a Lagrange multiplier on
1177 > the normal manifold to keep the motion on the constraint space. Or
1178 > we can simply evolve the system on the constraint manifold. These
1179 > two methods have been proved to be equivalent. The holonomic
1180 > constraint and equations of motions define a constraint manifold for
1181 > rigid bodies
1182   \[
1183 < q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1184 < ^2 }}x(0)
1183 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1184 > \right\}.
1185   \]
1186 < This makes
1186 > Unfortunately, this constraint manifold is not $T^* SO(3)$ which is
1187 > a symplectic manifold on Lie rotation group $SO(3)$. However, it
1188 > turns out that under symplectic transformation, the cotangent space
1189 > and the phase space are diffeomorphic. By introducing
1190   \[
1191 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1191 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1192   \]
1193 < And since the $q$ coordinates are harmonic oscillators,
1193 > the mechanical system subjected to a holonomic constraint manifold $M$
1194 > can be re-formulated as a Hamiltonian system on the cotangent space
1195   \[
1196 < \begin{array}{l}
1197 < \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1198 < \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1196 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1197 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1198 > \]
1199 > For a body fixed vector $X_i$ with respect to the center of mass of
1200 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1201 > given as
1202 > \begin{equation}
1203 > X_i^{lab} = Q X_i + q.
1204 > \end{equation}
1205 > Therefore, potential energy $V(q,Q)$ is defined by
1206 > \[
1207 > V(q,Q) = V(Q X_0 + q).
1208 > \]
1209 > Hence, the force and torque are given by
1210 > \[
1211 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1212 > \]
1213 > and
1214 > \[
1215 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1216 > \]
1217 > respectively. As a common choice to describe the rotation dynamics
1218 > of the rigid body, the angular momentum on the body fixed frame $\Pi
1219 > = Q^t P$ is introduced to rewrite the equations of motion,
1220 > \begin{equation}
1221 > \begin{array}{l}
1222 > \dot \Pi  = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda,  \\
1223 > \dot Q  = Q\Pi {\rm{ }}J^{ - 1},  \\
1224   \end{array}
1225 + \label{introEqaution:RBMotionPI}
1226 + \end{equation}
1227 + as well as holonomic constraints $\Pi J^{ - 1}  + J^{ - 1} \Pi ^t  =
1228 + 0$ and $Q^T Q = 1$. For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a
1229 + matrix $\hat v \in so(3)^ \star$, the hat-map isomorphism,
1230 + \begin{equation}
1231 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1232 + {\begin{array}{*{20}c}
1233 +   0 & { - v_3 } & {v_2 }  \\
1234 +   {v_3 } & 0 & { - v_1 }  \\
1235 +   { - v_2 } & {v_1 } & 0  \\
1236 + \end{array}} \right),
1237 + \label{introEquation:hatmapIsomorphism}
1238 + \end{equation}
1239 + will let us associate the matrix products with traditional vector
1240 + operations
1241 + \[
1242 + \hat vu = v \times u.
1243   \]
1244 + Using Eq.~\ref{introEqaution:RBMotionPI}, one can construct a skew
1245 + matrix,
1246 + \begin{eqnarray}
1247 + (\dot \Pi  - \dot \Pi ^T )&= &(\Pi  - \Pi ^T )(J^{ - 1} \Pi  + \Pi J^{ - 1} ) \notag \\
1248 + & & + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]}  -
1249 + (\Lambda  - \Lambda ^T ). \label{introEquation:skewMatrixPI}
1250 + \end{eqnarray}
1251 + Since $\Lambda$ is symmetric, the last term of
1252 + Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1253 + Lagrange multiplier $\Lambda$ is absent from the equations of
1254 + motion. This unique property eliminates the requirement of
1255 + iterations which can not be avoided in other methods.\cite{Kol1997,
1256 + Omelyan1998} Applying the hat-map isomorphism, we obtain the
1257 + equation of motion for angular momentum in the body frame
1258 + \begin{equation}
1259 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1260 + F_i (r,Q)} \right) \times X_i }.
1261 + \label{introEquation:bodyAngularMotion}
1262 + \end{equation}
1263 + In the same manner, the equation of motion for rotation matrix is
1264 + given by
1265 + \[
1266 + \dot Q = Qskew(I^{ - 1} \pi ).
1267 + \]
1268  
1269 < \begin{align}
1270 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1271 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1272 < (t)q_\beta  (0)} \right\rangle } }
1269 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1270 > Lie-Poisson Integrator for Free Rigid Bodies}
1271 >
1272 > If there are no external forces exerted on the rigid body, the only
1273 > contribution to the rotational motion is from the kinetic energy
1274 > (the first term of \ref{introEquation:bodyAngularMotion}). The free
1275 > rigid body is an example of a Lie-Poisson system with Hamiltonian
1276 > function
1277 > \begin{equation}
1278 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1279 > \label{introEquation:rotationalKineticRB}
1280 > \end{equation}
1281 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1282 > Lie-Poisson structure matrix,
1283 > \begin{equation}
1284 > J(\pi ) = \left( {\begin{array}{*{20}c}
1285 >   0 & {\pi _3 } & { - \pi _2 }  \\
1286 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1287 >   {\pi _2 } & { - \pi _1 } & 0  \\
1288 > \end{array}} \right).
1289 > \end{equation}
1290 > Thus, the dynamics of free rigid body is governed by
1291 > \begin{equation}
1292 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi ).
1293 > \end{equation}
1294 > One may notice that each $T_i^r$ in
1295 > Eq.~\ref{introEquation:rotationalKineticRB} can be solved exactly.
1296 > For instance, the equations of motion due to $T_1^r$ are given by
1297 > \begin{equation}
1298 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1299 > \label{introEqaution:RBMotionSingleTerm}
1300 > \end{equation}
1301 > with
1302 > \[ R_1  = \left( {\begin{array}{*{20}c}
1303 >   0 & 0 & 0  \\
1304 >   0 & 0 & {\pi _1 }  \\
1305 >   0 & { - \pi _1 } & 0  \\
1306 > \end{array}} \right).
1307 > \]
1308 > The solutions of Eq.~\ref{introEqaution:RBMotionSingleTerm} is
1309 > \[
1310 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1311 > Q(0)e^{\Delta tR_1 }
1312 > \]
1313 > with
1314 > \[
1315 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1316 >   0 & 0 & 0  \\
1317 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1318 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1319 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1320 > \]
1321 > To reduce the cost of computing expensive functions in $e^{\Delta
1322 > tR_1 }$, we can use the Cayley transformation to obtain a
1323 > single-aixs propagator,
1324 > \begin{eqnarray*}
1325 > e^{\Delta tR_1 }  & \approx & (1 - \Delta tR_1 )^{ - 1} (1 + \Delta
1326 > tR_1 ) \\
1327   %
1328 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1329 < \right\rangle \cos (\omega _\alpha  t)}
1330 < %
1331 < &= kT\xi (t)
1332 < \end{align}
1328 > & \approx & \left( \begin{array}{ccc}
1329 > 1 & 0 & 0 \\
1330 > 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}  & -\frac{\theta}{1+
1331 > \theta^2 / 4} \\
1332 > 0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
1333 > \theta^2 / 4}
1334 > \end{array}
1335 > \right).
1336 > \end{eqnarray*}
1337 > The propagators for $T_2^r$ and $T_3^r$ can be found in the same
1338 > manner. In order to construct a second-order symplectic method, we
1339 > split the angular kinetic Hamiltonian function into five terms
1340 > \[
1341 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1342 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1343 > (\pi _1 ).
1344 > \]
1345 > By concatenating the propagators corresponding to these five terms,
1346 > we can obtain an symplectic integrator,
1347 > \[
1348 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1349 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1350 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1351 > _1 }.
1352 > \]
1353 > The non-canonical Lie-Poisson bracket $\{F, G\}$ of two functions $F(\pi )$ and $G(\pi )$ is defined by
1354 > \[
1355 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1356 > ).
1357 > \]
1358 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1359 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1360 > conserved quantity in Poisson system. We can easily verify that the
1361 > norm of the angular momentum, $\parallel \pi
1362 > \parallel$, is a \emph{Casimir}.\cite{McLachlan1993} Let $F(\pi ) = S(\frac{{\parallel
1363 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1364 > then by the chain rule
1365 > \[
1366 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1367 > }}{2})\pi.
1368 > \]
1369 > Thus, $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel
1370 > \pi
1371 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1372 > Lie-Poisson integrator is found to be both extremely efficient and
1373 > stable. These properties can be explained by the fact the small
1374 > angle approximation is used and the norm of the angular momentum is
1375 > conserved.
1376  
1377 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1378 + Splitting for Rigid Body}
1379 +
1380 + The Hamiltonian of rigid body can be separated in terms of kinetic
1381 + energy and potential energy, $H = T(p,\pi ) + V(q,Q)$. The equations
1382 + of motion corresponding to potential energy and kinetic energy are
1383 + listed in Table~\ref{introTable:rbEquations}.
1384 + \begin{table}
1385 + \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1386 + \label{introTable:rbEquations}
1387 + \begin{center}
1388 + \begin{tabular}{|l|l|}
1389 +  \hline
1390 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1391 +  Potential & Kinetic \\
1392 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1393 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1394 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1395 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1396 +  \hline
1397 + \end{tabular}
1398 + \end{center}
1399 + \end{table}
1400 + A second-order symplectic method is now obtained by the composition
1401 + of the position and velocity propagators,
1402 + \[
1403 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1404 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1405 + \]
1406 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1407 + sub-propagators which corresponding to force and torque
1408 + respectively,
1409 + \[
1410 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1411 + _{\Delta t/2,\tau }.
1412 + \]
1413 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1414 + $\circ \varphi _{\Delta t/2,\tau }$ commute, the composition order
1415 + inside $\varphi _{\Delta t/2,V}$ does not matter. Furthermore, the
1416 + kinetic energy can be separated to translational kinetic term, $T^t
1417 + (p)$, and rotational kinetic term, $T^r (\pi )$,
1418   \begin{equation}
1419 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
559 < \label{introEquation:secondFluctuationDissipation}
1419 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1420   \end{equation}
1421 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1422 + defined by Eq.~\ref{introEquation:rotationalKineticRB}. Therefore,
1423 + the corresponding propagators are given by
1424 + \[
1425 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1426 + _{\Delta t,T^r }.
1427 + \]
1428 + Finally, we obtain the overall symplectic propagators for freely
1429 + moving rigid bodies
1430 + \begin{eqnarray}
1431 + \varphi _{\Delta t}  &=& \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \notag\\
1432 +  & & \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \notag\\
1433 +  & & \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .
1434 + \label{introEquation:overallRBFlowMaps}
1435 + \end{eqnarray}
1436  
1437 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1437 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1438 > As an alternative to newtonian dynamics, Langevin dynamics, which
1439 > mimics a simple heat bath with stochastic and dissipative forces,
1440 > has been applied in a variety of studies. This section will review
1441 > the theory of Langevin dynamics. A brief derivation of the generalized
1442 > Langevin equation will be given first. Following that, we will
1443 > discuss the physical meaning of the terms appearing in the equation.
1444  
1445 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
565 < \subsection{\label{introSection:analyticalApproach}Analytical
566 < Approach}
1445 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1446  
1447 < \subsection{\label{introSection:approximationApproach}Approximation
1448 < Approach}
1447 > A harmonic bath model, in which an effective set of harmonic
1448 > oscillators are used to mimic the effect of a linearly responding
1449 > environment, has been widely used in quantum chemistry and
1450 > statistical mechanics. One of the successful applications of
1451 > Harmonic bath model is the derivation of the Generalized Langevin
1452 > Dynamics (GLE). Consider a system, in which the degree of
1453 > freedom $x$ is assumed to couple to the bath linearly, giving a
1454 > Hamiltonian of the form
1455 > \begin{equation}
1456 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1457 > \label{introEquation:bathGLE}.
1458 > \end{equation}
1459 > Here $p$ is a momentum conjugate to $x$, $m$ is the mass associated
1460 > with this degree of freedom, $H_B$ is a harmonic bath Hamiltonian,
1461 > \[
1462 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1463 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  x_\alpha ^2 }
1464 > \right\}}
1465 > \]
1466 > where the index $\alpha$ runs over all the bath degrees of freedom,
1467 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1468 > the harmonic bath masses, and $\Delta U$ is a bilinear system-bath
1469 > coupling,
1470 > \[
1471 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1472 > \]
1473 > where $g_\alpha$ are the coupling constants between the bath
1474 > coordinates ($x_ \alpha$) and the system coordinate ($x$).
1475 > Introducing
1476 > \[
1477 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1478 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1479 > \]
1480 > and combining the last two terms in Eq.~\ref{introEquation:bathGLE}, we may rewrite the Harmonic bath Hamiltonian as
1481 > \[
1482 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1483 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1484 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1485 > w_\alpha ^2 }}x} \right)^2 } \right\}}.
1486 > \]
1487 > Since the first two terms of the new Hamiltonian depend only on the
1488 > system coordinates, we can get the equations of motion for
1489 > Generalized Langevin Dynamics by Hamilton's equations,
1490 > \begin{equation}
1491 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1492 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1493 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1494 > \label{introEquation:coorMotionGLE}
1495 > \end{equation}
1496 > and
1497 > \begin{equation}
1498 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1499 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1500 > \label{introEquation:bathMotionGLE}
1501 > \end{equation}
1502 > In order to derive an equation for $x$, the dynamics of the bath
1503 > variables $x_\alpha$ must be solved exactly first. As an integral
1504 > transform which is particularly useful in solving linear ordinary
1505 > differential equations,the Laplace transform is the appropriate tool
1506 > to solve this problem. The basic idea is to transform the difficult
1507 > differential equations into simple algebra problems which can be
1508 > solved easily. Then, by applying the inverse Laplace transform, we
1509 > can retrieve the solutions of the original problems. Let $f(t)$ be a
1510 > function defined on $ [0,\infty ) $, the Laplace transform of $f(t)$
1511 > is a new function defined as
1512 > \[
1513 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1514 > \]
1515 > where  $p$ is real and  $L$ is called the Laplace Transform
1516 > Operator. Below are some important properties of the Laplace transform
1517 > \begin{eqnarray*}
1518 > L(x + y)  & = & L(x) + L(y) \\
1519 > L(ax)     & = & aL(x) \\
1520 > L(\dot x) & = & pL(x) - px(0) \\
1521 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1522 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1523 > \end{eqnarray*}
1524 > Applying the Laplace transform to the bath coordinates, we obtain
1525 > \begin{eqnarray*}
1526 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x), \\
1527 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}. \\
1528 > \end{eqnarray*}
1529 > In the same way, the system coordinates become
1530 > \begin{eqnarray*}
1531 > mL(\ddot x) & = &
1532 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1533 >  & & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}}.
1534 > \end{eqnarray*}
1535 > With the help of some relatively important inverse Laplace
1536 > transformations:
1537 > \[
1538 > \begin{array}{c}
1539 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1540 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1541 > L(1) = \frac{1}{p} \\
1542 > \end{array}
1543 > \]
1544 > we obtain
1545 > \begin{eqnarray*}
1546 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1547 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1548 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1549 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1550 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1551 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1552 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1553 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}\\
1554 > %
1555 > & = & -
1556 > \frac{{\partial W(x)}}{{\partial x}} - \int_0^t {\sum\limits_{\alpha
1557 > = 1}^N {\left( { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha
1558 > ^2 }}} \right)\cos (\omega _\alpha
1559 > t)\dot x(t - \tau )d} \tau }  \\
1560 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1561 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1562 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1563 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1564 > \end{eqnarray*}
1565 > Introducing a \emph{dynamic friction kernel}
1566 > \begin{equation}
1567 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1568 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1569 > \label{introEquation:dynamicFrictionKernelDefinition}
1570 > \end{equation}
1571 > and \emph{a random force}
1572 > \begin{equation}
1573 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1574 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1575 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1576 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1577 > \label{introEquation:randomForceDefinition}
1578 > \end{equation}
1579 > the equation of motion can be rewritten as
1580 > \begin{equation}
1581 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1582 > (t)\dot x(t - \tau )d\tau }  + R(t)
1583 > \label{introEuqation:GeneralizedLangevinDynamics}
1584 > \end{equation}
1585 > which is known as the \emph{generalized Langevin equation} (GLE).
1586  
1587 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1588 < Body}
1587 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}\textbf{Random Force and Dynamic Friction Kernel}}
1588 >
1589 > One may notice that $R(t)$ depends only on initial conditions, which
1590 > implies it is completely deterministic within the context of a
1591 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1592 > uncorrelated to $x$ and $\dot x$, $\left\langle {x(t)R(t)}
1593 > \right\rangle  = 0, \left\langle {\dot x(t)R(t)} \right\rangle  =
1594 > 0.$ This property is what we expect from a truly random process. As
1595 > long as the model chosen for $R(t)$ was a gaussian distribution in
1596 > general, the stochastic nature of the GLE still remains.
1597 > %dynamic friction kernel
1598 > The convolution integral
1599 > \[
1600 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1601 > \]
1602 > depends on the entire history of the evolution of $x$, which implies
1603 > that the bath retains memory of previous motions. In other words,
1604 > the bath requires a finite time to respond to change in the motion
1605 > of the system. For a sluggish bath which responds slowly to changes
1606 > in the system coordinate, we may regard $\xi(t)$ as a constant
1607 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1608 > \[
1609 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1610 > \]
1611 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1612 > \[
1613 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1614 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1615 > \]
1616 > which can be used to describe the effect of dynamic caging in
1617 > viscous solvents. The other extreme is the bath that responds
1618 > infinitely quickly to motions in the system. Thus, $\xi (t)$ can be
1619 > taken as a $delta$ function in time:
1620 > \[
1621 > \xi (t) = 2\xi _0 \delta (t).
1622 > \]
1623 > Hence, the convolution integral becomes
1624 > \[
1625 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1626 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1627 > \]
1628 > and Eq.~\ref{introEuqation:GeneralizedLangevinDynamics} becomes
1629 > \begin{equation}
1630 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1631 > x(t) + R(t) \label{introEquation:LangevinEquation}
1632 > \end{equation}
1633 > which is known as the Langevin equation. The static friction
1634 > coefficient $\xi _0$ can either be calculated from spectral density
1635 > or be determined by Stokes' law for regular shaped particles. A
1636 > brief review on calculating friction tensors for arbitrary shaped
1637 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1638 >
1639 > \subsubsection{\label{introSection:secondFluctuationDissipation}\textbf{The Second Fluctuation Dissipation Theorem}}
1640 >
1641 > Defining a new set of coordinates
1642 > \[
1643 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1644 > ^2 }}x(0),
1645 > \]
1646 > we can rewrite $R(t)$ as
1647 > \[
1648 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1649 > \]
1650 > And since the $q$ coordinates are harmonic oscillators,
1651 > \begin{eqnarray*}
1652 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1653 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1654 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1655 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1656 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1657 >  & = &kT\xi (t)
1658 > \end{eqnarray*}
1659 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1660 > \begin{equation}
1661 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1662 > \label{introEquation:secondFluctuationDissipation},
1663 > \end{equation}
1664 > which acts as a constraint on the possible ways in which one can
1665 > model the random force and friction kernel.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines