ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2699 by tim, Mon Apr 10 05:35:55 2006 UTC vs.
Revision 2702 by tim, Wed Apr 12 03:37:46 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 117 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 221 | Line 221 | Statistical Mechanics concepts presented in this disse
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228  
229 + Mathematically, phase space is the space which represents all
230 + possible states. Each possible state of the system corresponds to
231 + one unique point in the phase space. For mechanical systems, the
232 + phase space usually consists of all possible values of position and
233 + momentum variables. Consider a dynamic system in a cartesian space,
234 + where each of the $6f$ coordinates and momenta is assigned to one of
235 + $6f$ mutually orthogonal axes, the phase space of this system is a
236 + $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 + \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 + momenta is a phase space vector.
239 +
240 + A microscopic state or microstate of a classical system is
241 + specification of the complete phase space vector of a system at any
242 + instant in time. An ensemble is defined as a collection of systems
243 + sharing one or more macroscopic characteristics but each being in a
244 + unique microstate. The complete ensemble is specified by giving all
245 + systems or microstates consistent with the common macroscopic
246 + characteristics of the ensemble. Although the state of each
247 + individual system in the ensemble could be precisely described at
248 + any instance in time by a suitable phase space vector, when using
249 + ensembles for statistical purposes, there is no need to maintain
250 + distinctions between individual systems, since the numbers of
251 + systems at any time in the different states which correspond to
252 + different regions of the phase space are more interesting. Moreover,
253 + in the point of view of statistical mechanics, one would prefer to
254 + use ensembles containing a large enough population of separate
255 + members so that the numbers of systems in such different states can
256 + be regarded as changing continuously as we traverse different
257 + regions of the phase space. The condition of an ensemble at any time
258 + can be regarded as appropriately specified by the density $\rho$
259 + with which representative points are distributed over the phase
260 + space. The density of distribution for an ensemble with $f$ degrees
261 + of freedom is defined as,
262 + \begin{equation}
263 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 + \label{introEquation:densityDistribution}
265 + \end{equation}
266 + Governed by the principles of mechanics, the phase points change
267 + their value which would change the density at any time at phase
268 + space. Hence, the density of distribution is also to be taken as a
269 + function of the time.
270 +
271 + The number of systems $\delta N$ at time $t$ can be determined by,
272 + \begin{equation}
273 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 + \label{introEquation:deltaN}
275 + \end{equation}
276 + Assuming a large enough population of systems are exploited, we can
277 + sufficiently approximate $\delta N$ without introducing
278 + discontinuity when we go from one region in the phase space to
279 + another. By integrating over the whole phase space,
280 + \begin{equation}
281 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 + \label{introEquation:totalNumberSystem}
283 + \end{equation}
284 + gives us an expression for the total number of the systems. Hence,
285 + the probability per unit in the phase space can be obtained by,
286 + \begin{equation}
287 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 + \label{introEquation:unitProbability}
290 + \end{equation}
291 + With the help of Equation(\ref{introEquation:unitProbability}) and
292 + the knowledge of the system, it is possible to calculate the average
293 + value of any desired quantity which depends on the coordinates and
294 + momenta of the system. Even when the dynamics of the real system is
295 + complex, or stochastic, or even discontinuous, the average
296 + properties of the ensemble of possibilities as a whole may still
297 + remain well defined. For a classical system in thermal equilibrium
298 + with its environment, the ensemble average of a mechanical quantity,
299 + $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 + phase space of the system,
301 + \begin{equation}
302 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 + \label{introEquation:ensembelAverage}
306 + \end{equation}
307 +
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS}
319 + \label{introEqaution:NVEPartition}.
320 + \end{equation}
321 + A canonical ensemble(NVT)is an ensemble of systems, each of which
322 + can share its energy with a large heat reservoir. The distribution
323 + of the total energy amongst the possible dynamical states is given
324 + by the partition function,
325 + \begin{equation}
326 + \Omega (N,V,T) = e^{ - \beta A}
327 + \label{introEquation:NVTPartition}
328 + \end{equation}
329 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
330 + TS$. Since most experiment are carried out under constant pressure
331 + condition, isothermal-isobaric ensemble(NPT) play a very important
332 + role in molecular simulation. The isothermal-isobaric ensemble allow
333 + the system to exchange energy with a heat bath of temperature $T$
334 + and to change the volume as well. Its partition function is given as
335 + \begin{equation}
336 + \Delta (N,P,T) =  - e^{\beta G}.
337 + \label{introEquation:NPTPartition}
338 + \end{equation}
339 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
340 +
341 + \subsection{\label{introSection:liouville}Liouville's theorem}
342 +
343 + The Liouville's theorem is the foundation on which statistical
344 + mechanics rests. It describes the time evolution of phase space
345 + distribution function. In order to calculate the rate of change of
346 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
347 + consider the two faces perpendicular to the $q_1$ axis, which are
348 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
349 + leaving the opposite face is given by the expression,
350 + \begin{equation}
351 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
352 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
353 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
354 + \ldots \delta p_f .
355 + \end{equation}
356 + Summing all over the phase space, we obtain
357 + \begin{equation}
358 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
359 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
360 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
361 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
362 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
363 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
364 + \end{equation}
365 + Differentiating the equations of motion in Hamiltonian formalism
366 + (\ref{introEquation:motionHamiltonianCoordinate},
367 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
368 + \begin{equation}
369 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
370 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
371 + \end{equation}
372 + which cancels the first terms of the right hand side. Furthermore,
373 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
374 + p_f $ in both sides, we can write out Liouville's theorem in a
375 + simple form,
376 + \begin{equation}
377 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
378 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
379 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
380 + \label{introEquation:liouvilleTheorem}
381 + \end{equation}
382 +
383 + Liouville's theorem states that the distribution function is
384 + constant along any trajectory in phase space. In classical
385 + statistical mechanics, since the number of particles in the system
386 + is huge, we may be able to believe the system is stationary,
387 + \begin{equation}
388 + \frac{{\partial \rho }}{{\partial t}} = 0.
389 + \label{introEquation:stationary}
390 + \end{equation}
391 + In such stationary system, the density of distribution $\rho$ can be
392 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
393 + distribution,
394 + \begin{equation}
395 + \rho  \propto e^{ - \beta H}
396 + \label{introEquation:densityAndHamiltonian}
397 + \end{equation}
398 +
399 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
400 + Lets consider a region in the phase space,
401 + \begin{equation}
402 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
403 + \end{equation}
404 + If this region is small enough, the density $\rho$ can be regarded
405 + as uniform over the whole phase space. Thus, the number of phase
406 + points inside this region is given by,
407 + \begin{equation}
408 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
409 + dp_1 } ..dp_f.
410 + \end{equation}
411 +
412 + \begin{equation}
413 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
414 + \frac{d}{{dt}}(\delta v) = 0.
415 + \end{equation}
416 + With the help of stationary assumption
417 + (\ref{introEquation:stationary}), we obtain the principle of the
418 + \emph{conservation of extension in phase space},
419 + \begin{equation}
420 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
421 + ...dq_f dp_1 } ..dp_f  = 0.
422 + \label{introEquation:volumePreserving}
423 + \end{equation}
424 +
425 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
426 +
427 + Liouville's theorem can be expresses in a variety of different forms
428 + which are convenient within different contexts. For any two function
429 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
430 + bracket ${F, G}$ is defined as
431 + \begin{equation}
432 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
433 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
434 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
435 + q_i }}} \right)}.
436 + \label{introEquation:poissonBracket}
437 + \end{equation}
438 + Substituting equations of motion in Hamiltonian formalism(
439 + \ref{introEquation:motionHamiltonianCoordinate} ,
440 + \ref{introEquation:motionHamiltonianMomentum} ) into
441 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
442 + theorem using Poisson bracket notion,
443 + \begin{equation}
444 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
445 + {\rho ,H} \right\}.
446 + \label{introEquation:liouvilleTheromInPoissin}
447 + \end{equation}
448 + Moreover, the Liouville operator is defined as
449 + \begin{equation}
450 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
451 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
452 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
453 + \label{introEquation:liouvilleOperator}
454 + \end{equation}
455 + In terms of Liouville operator, Liouville's equation can also be
456 + expressed as
457 + \begin{equation}
458 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
459 + \label{introEquation:liouvilleTheoremInOperator}
460 + \end{equation}
461 +
462   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
463  
464   Various thermodynamic properties can be calculated from Molecular
# Line 239 | Line 473 | statistical ensemble are identical \cite{Frenkel1996,
473   ensemble average. It states that time average and average over the
474   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
475   \begin{equation}
476 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
478 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
476 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
478 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
479   \end{equation}
480 < where $\langle A \rangle_t$ is an equilibrium value of a physical
481 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
482 < function. If an observation is averaged over a sufficiently long
483 < time (longer than relaxation time), all accessible microstates in
484 < phase space are assumed to be equally probed, giving a properly
485 < weighted statistical average. This allows the researcher freedom of
486 < choice when deciding how best to measure a given observable. In case
487 < an ensemble averaged approach sounds most reasonable, the Monte
488 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
489 < system lends itself to a time averaging approach, the Molecular
490 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
491 < will be the best choice\cite{Frenkel1996}.
480 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
481 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
482 > distribution function. If an observation is averaged over a
483 > sufficiently long time (longer than relaxation time), all accessible
484 > microstates in phase space are assumed to be equally probed, giving
485 > a properly weighted statistical average. This allows the researcher
486 > freedom of choice when deciding how best to measure a given
487 > observable. In case an ensemble averaged approach sounds most
488 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
489 > utilized. Or if the system lends itself to a time averaging
490 > approach, the Molecular Dynamics techniques in
491 > Sec.~\ref{introSection:molecularDynamics} will be the best
492 > choice\cite{Frenkel1996}.
493  
494   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
495   A variety of numerical integrators were proposed to simulate the
# Line 352 | Line 587 | H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \f
587   }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588   \end{equation}
589  
590 < \subsection{\label{introSection:geometricProperties}Geometric Properties}
590 > \subsection{\label{introSection:exactFlow}Exact Flow}
591 >
592   Let $x(t)$ be the exact solution of the ODE system,
593   \begin{equation}
594   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 362 | Line 598 | space to itself. In most cases, it is not easy to find
598   x(t+\tau) =\varphi_\tau(x(t))
599   \]
600   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
601 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
601 > space to itself. The flow has the continuous group property,
602   \begin{equation}
603 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
604 + + \tau _2 } .
605 + \end{equation}
606 + In particular,
607 + \begin{equation}
608 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
609 + \end{equation}
610 + Therefore, the exact flow is self-adjoint,
611 + \begin{equation}
612 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
613 + \end{equation}
614 + The exact flow can also be written in terms of the of an operator,
615 + \begin{equation}
616 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
617 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
618 + \label{introEquation:exponentialOperator}
619 + \end{equation}
620 +
621 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
622 + Instead, we use a approximate map, $\psi_\tau$, which is usually
623 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
624 + the Taylor series of $\psi_\tau$ agree to order $p$,
625 + \begin{equation}
626   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
627   \end{equation}
628  
629 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
630 +
631   The hidden geometric properties of ODE and its flow play important
632 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
633 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
632 > roles in numerical studies. Many of them can be found in systems
633 > which occur naturally in applications.
634 >
635 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
636 > a \emph{symplectic} flow if it satisfies,
637   \begin{equation}
638   '\varphi^T J '\varphi = J.
639   \end{equation}
# Line 385 | Line 645 | is the property must be preserved by the integrator. I
645   \begin{equation}
646   '\varphi ^T J '\varphi  = J \circ \varphi
647   \end{equation}
648 < is the property must be preserved by the integrator. It is possible
649 < to construct a \emph{volume-preserving} flow for a source free($
650 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
651 < 1$. Changing the variables $y = h(x)$ in a
652 < ODE\ref{introEquation:ODE} will result in a new system,
648 > is the property must be preserved by the integrator.
649 >
650 > It is possible to construct a \emph{volume-preserving} flow for a
651 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
652 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
653 > be volume-preserving.
654 >
655 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
656 > will result in a new system,
657   \[
658   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
659   \]
660   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
661   In other words, the flow of this vector field is reversible if and
662 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 < designing any numerical methods, one should always try to preserve
400 < the structural properties of the original ODE and its flow.
662 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
663  
664 + When designing any numerical methods, one should always try to
665 + preserve the structural properties of the original ODE and its flow.
666 +
667   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
668   A lot of well established and very effective numerical methods have
669   been successful precisely because of their symplecticities even
# Line 414 | Line 679 | and difficult to use\cite{}. In dissipative systems, v
679   \end{enumerate}
680  
681   Generating function tends to lead to methods which are cumbersome
682 < and difficult to use\cite{}. In dissipative systems, variational
683 < methods can capture the decay of energy accurately\cite{}. Since
684 < their geometrically unstable nature against non-Hamiltonian
685 < perturbations, ordinary implicit Runge-Kutta methods are not
686 < suitable for Hamiltonian system. Recently, various high-order
687 < explicit Runge--Kutta methods have been developed to overcome this
682 > and difficult to use. In dissipative systems, variational methods
683 > can capture the decay of energy accurately. Since their
684 > geometrically unstable nature against non-Hamiltonian perturbations,
685 > ordinary implicit Runge-Kutta methods are not suitable for
686 > Hamiltonian system. Recently, various high-order explicit
687 > Runge--Kutta methods have been developed to overcome this
688   instability \cite{}. However, due to computational penalty involved
689   in implementing the Runge-Kutta methods, they do not attract too
690   much attention from Molecular Dynamics community. Instead, splitting
691   have been widely accepted since they exploit natural decompositions
692 < of the system\cite{Tuckerman92}. The main idea behind splitting
693 < methods is to decompose the discrete $\varphi_h$ as a composition of
694 < simpler flows,
692 > of the system\cite{Tuckerman92}.
693 >
694 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
695 >
696 > The main idea behind splitting methods is to decompose the discrete
697 > $\varphi_h$ as a composition of simpler flows,
698   \begin{equation}
699   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
700   \varphi _{h_n }
701   \label{introEquation:FlowDecomposition}
702   \end{equation}
703   where each of the sub-flow is chosen such that each represent a
704 < simpler integration of the system. Let $\phi$ and $\psi$ both be
705 < symplectic maps, it is easy to show that any composition of
706 < symplectic flows yields a symplectic map,
704 > simpler integration of the system.
705 >
706 > Suppose that a Hamiltonian system takes the form,
707 > \[
708 > H = H_1 + H_2.
709 > \]
710 > Here, $H_1$ and $H_2$ may represent different physical processes of
711 > the system. For instance, they may relate to kinetic and potential
712 > energy respectively, which is a natural decomposition of the
713 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
714 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
715 > order is then given by the Lie-Trotter formula
716   \begin{equation}
717 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
718 + \label{introEquation:firstOrderSplitting}
719 + \end{equation}
720 + where $\varphi _h$ is the result of applying the corresponding
721 + continuous $\varphi _i$ over a time $h$. By definition, as
722 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
723 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
724 + It is easy to show that any composition of symplectic flows yields a
725 + symplectic map,
726 + \begin{equation}
727   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
728 < '\phi ' = \phi '^T J\phi ' = J.
728 > '\phi ' = \phi '^T J\phi ' = J,
729   \label{introEquation:SymplecticFlowComposition}
730   \end{equation}
731 < Suppose that a Hamiltonian system has a form with $H = T + V$
731 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
732 > splitting in this context automatically generates a symplectic map.
733  
734 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
735 + introduces local errors proportional to $h^2$, while Strang
736 + splitting gives a second-order decomposition,
737 + \begin{equation}
738 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
739 + _{1,h/2} ,
740 + \label{introEqaution:secondOrderSplitting}
741 + \end{equation}
742 + which has a local error proportional to $h^3$. Sprang splitting's
743 + popularity in molecular simulation community attribute to its
744 + symmetric property,
745 + \begin{equation}
746 + \varphi _h^{ - 1} = \varphi _{ - h}.
747 + \lable{introEquation:timeReversible}
748 + \end{equation}
749  
750 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
751 + The classical equation for a system consisting of interacting
752 + particles can be written in Hamiltonian form,
753 + \[
754 + H = T + V
755 + \]
756 + where $T$ is the kinetic energy and $V$ is the potential energy.
757 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
758 + obtains the following:
759 + \begin{align}
760 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
761 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
762 + \label{introEquation:Lp10a} \\%
763 + %
764 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
765 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
766 + \label{introEquation:Lp10b}
767 + \end{align}
768 + where $F(t)$ is the force at time $t$. This integration scheme is
769 + known as \emph{velocity verlet} which is
770 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
771 + time-reversible(\ref{introEquation:timeReversible}) and
772 + volume-preserving (\ref{introEquation:volumePreserving}). These
773 + geometric properties attribute to its long-time stability and its
774 + popularity in the community. However, the most commonly used
775 + velocity verlet integration scheme is written as below,
776 + \begin{align}
777 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
778 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
779 + %
780 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
781 +    \label{introEquation:Lp9b}\\%
782 + %
783 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
784 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
785 + \end{align}
786 + From the preceding splitting, one can see that the integration of
787 + the equations of motion would follow:
788 + \begin{enumerate}
789 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
790  
791 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
792 +
793 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
794 +
795 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
796 + \end{enumerate}
797 +
798 + Simply switching the order of splitting and composing, a new
799 + integrator, the \emph{position verlet} integrator, can be generated,
800 + \begin{align}
801 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
802 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
803 + \label{introEquation:positionVerlet1} \\%
804 + %
805 + q(\Delta t) = q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
806 + q(\Delta t)} \right]. %
807 + \label{introEquation:positionVerlet1}
808 + \end{align}
809 +
810 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
811 +
812 + Baker-Campbell-Hausdorff formula can be used to determine the local
813 + error of splitting method in terms of commutator of the
814 + operators(\ref{introEquation:exponentialOperator}) associated with
815 + the sub-flow. For operators $hX$ and $hY$ which are associate to
816 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
817 + \begin{equation}
818 + \exp (hX + hY) = \exp (hZ)
819 + \end{equation}
820 + where
821 + \begin{equation}
822 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
823 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
824 + \end{equation}
825 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
826 + \[
827 + [X,Y] = XY - YX .
828 + \]
829 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
830 + can obtain
831 + \begin{eqnarray}
832 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
833 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 +
834 + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 +  \ldots )
835 + \end{eqnarray}
836 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
837 + error of Spring splitting is proportional to $h^3$. The same
838 + procedure can be applied to general splitting,  of the form
839 + \begin{equation}
840 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
841 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
842 + \end{equation}
843 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
844 + order method. Yoshida proposed an elegant way to compose higher
845 + order methods based on symmetric splitting. Given a symmetric second
846 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
847 + method can be constructed by composing,
848 + \[
849 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
850 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
851 + \]
852 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
853 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
854 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
855 + \begin{equation}
856 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
857 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
858 + \end{equation}
859 + , if the weights are chosen as
860 + \[
861 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
862 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
863 + \]
864 +
865   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
866  
867   As a special discipline of molecular modeling, Molecular dynamics
# Line 471 | Line 888 | Applications of dynamics of rigid bodies.
888  
889   \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
890  
474 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
475
891   \section{\label{introSection:correlationFunctions}Correlation Functions}
892  
893   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
# Line 523 | Line 938 | introEquation:motionHamiltonianMomentum},
938   \dot p &=  - \frac{{\partial H}}{{\partial x}}
939         &= m\ddot x
940         &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
941 < \label{introEq:Lp5}
941 > \label{introEquation:Lp5}
942   \end{align}
943   , and
944   \begin{align}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines