ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2700 by tim, Tue Apr 11 03:38:09 2006 UTC vs.
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 394 | Line 393 | distribution,
393   \begin{equation}
394   \rho  \propto e^{ - \beta H}
395   \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422   \end{equation}
423  
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426   Liouville's theorem can be expresses in a variety of different forms
427   which are convenient within different contexts. For any two function
428   $F$ and $G$ of the coordinates and momenta of a system, the Poisson
# Line 431 | Line 458 | expressed as
458   \label{introEquation:liouvilleTheoremInOperator}
459   \end{equation}
460  
434
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 560 | Line 586 | H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \f
586   }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587   \end{equation}
588  
589 < \subsection{\label{introSection:geometricProperties}Geometric Properties}
589 > \subsection{\label{introSection:exactFlow}Exact Flow}
590 >
591   Let $x(t)$ be the exact solution of the ODE system,
592   \begin{equation}
593   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 570 | Line 597 | space to itself. In most cases, it is not easy to find
597   x(t+\tau) =\varphi_\tau(x(t))
598   \]
599   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
600 < space to itself. In most cases, it is not easy to find the exact
574 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
575 < which is usually called integrator. The order of an integrator
576 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
577 < order $p$,
600 > space to itself. The flow has the continuous group property,
601   \begin{equation}
602 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
603 + + \tau _2 } .
604 + \end{equation}
605 + In particular,
606 + \begin{equation}
607 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
608 + \end{equation}
609 + Therefore, the exact flow is self-adjoint,
610 + \begin{equation}
611 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
612 + \end{equation}
613 + The exact flow can also be written in terms of the of an operator,
614 + \begin{equation}
615 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
616 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
617 + \label{introEquation:exponentialOperator}
618 + \end{equation}
619 +
620 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
621 + Instead, we use a approximate map, $\psi_\tau$, which is usually
622 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
623 + the Taylor series of $\psi_\tau$ agree to order $p$,
624 + \begin{equation}
625   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
626   \end{equation}
627  
628 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
629 +
630   The hidden geometric properties of ODE and its flow play important
631 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
632 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
631 > roles in numerical studies. Many of them can be found in systems
632 > which occur naturally in applications.
633 >
634 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
635 > a \emph{symplectic} flow if it satisfies,
636   \begin{equation}
637 < '\varphi^T J '\varphi = J.
637 > {\varphi '}^T J \varphi ' = J.
638   \end{equation}
639   According to Liouville's theorem, the symplectic volume is invariant
640   under a Hamiltonian flow, which is the basis for classical
# Line 591 | Line 642 | symplectomorphism. As to the Poisson system,
642   field on a symplectic manifold can be shown to be a
643   symplectomorphism. As to the Poisson system,
644   \begin{equation}
645 < '\varphi ^T J '\varphi  = J \circ \varphi
645 > {\varphi '}^T J \varphi ' = J \circ \varphi
646   \end{equation}
647 < is the property must be preserved by the integrator. It is possible
648 < to construct a \emph{volume-preserving} flow for a source free($
649 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
650 < 1$. Changing the variables $y = h(x)$ in a
651 < ODE\ref{introEquation:ODE} will result in a new system,
647 > is the property must be preserved by the integrator.
648 >
649 > It is possible to construct a \emph{volume-preserving} flow for a
650 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
651 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
652 > be volume-preserving.
653 >
654 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
655 > will result in a new system,
656   \[
657   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
658   \]
659   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
660   In other words, the flow of this vector field is reversible if and
661 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
662 < designing any numerical methods, one should always try to preserve
663 < the structural properties of the original ODE and its flow.
661 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
662 >
663 > A \emph{first integral}, or conserved quantity of a general
664 > differential function is a function $ G:R^{2d}  \to R^d $ which is
665 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
666 > \[
667 > \frac{{dG(x(t))}}{{dt}} = 0.
668 > \]
669 > Using chain rule, one may obtain,
670 > \[
671 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
672 > \]
673 > which is the condition for conserving \emph{first integral}. For a
674 > canonical Hamiltonian system, the time evolution of an arbitrary
675 > smooth function $G$ is given by,
676 > \begin{equation}
677 > \begin{array}{c}
678 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
679 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
680 > \end{array}
681 > \label{introEquation:firstIntegral1}
682 > \end{equation}
683 > Using poisson bracket notion, Equation
684 > \ref{introEquation:firstIntegral1} can be rewritten as
685 > \[
686 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
687 > \]
688 > Therefore, the sufficient condition for $G$ to be the \emph{first
689 > integral} of a Hamiltonian system is
690 > \[
691 > \left\{ {G,H} \right\} = 0.
692 > \]
693 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
694 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
695 > 0$.
696  
697 +
698 + When designing any numerical methods, one should always try to
699 + preserve the structural properties of the original ODE and its flow.
700 +
701   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
702   A lot of well established and very effective numerical methods have
703   been successful precisely because of their symplecticities even
# Line 622 | Line 713 | and difficult to use\cite{}. In dissipative systems, v
713   \end{enumerate}
714  
715   Generating function tends to lead to methods which are cumbersome
716 < and difficult to use\cite{}. In dissipative systems, variational
717 < methods can capture the decay of energy accurately\cite{}. Since
718 < their geometrically unstable nature against non-Hamiltonian
719 < perturbations, ordinary implicit Runge-Kutta methods are not
720 < suitable for Hamiltonian system. Recently, various high-order
721 < explicit Runge--Kutta methods have been developed to overcome this
722 < instability \cite{}. However, due to computational penalty involved
723 < in implementing the Runge-Kutta methods, they do not attract too
724 < much attention from Molecular Dynamics community. Instead, splitting
725 < have been widely accepted since they exploit natural decompositions
726 < of the system\cite{Tuckerman92}. The main idea behind splitting
727 < methods is to decompose the discrete $\varphi_h$ as a composition of
728 < simpler flows,
716 > and difficult to use. In dissipative systems, variational methods
717 > can capture the decay of energy accurately. Since their
718 > geometrically unstable nature against non-Hamiltonian perturbations,
719 > ordinary implicit Runge-Kutta methods are not suitable for
720 > Hamiltonian system. Recently, various high-order explicit
721 > Runge--Kutta methods have been developed to overcome this
722 > instability. However, due to computational penalty involved in
723 > implementing the Runge-Kutta methods, they do not attract too much
724 > attention from Molecular Dynamics community. Instead, splitting have
725 > been widely accepted since they exploit natural decompositions of
726 > the system\cite{Tuckerman92}.
727 >
728 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
729 >
730 > The main idea behind splitting methods is to decompose the discrete
731 > $\varphi_h$ as a composition of simpler flows,
732   \begin{equation}
733   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
734   \varphi _{h_n }
735   \label{introEquation:FlowDecomposition}
736   \end{equation}
737   where each of the sub-flow is chosen such that each represent a
738 < simpler integration of the system. Let $\phi$ and $\psi$ both be
739 < symplectic maps, it is easy to show that any composition of
740 < symplectic flows yields a symplectic map,
738 > simpler integration of the system.
739 >
740 > Suppose that a Hamiltonian system takes the form,
741 > \[
742 > H = H_1 + H_2.
743 > \]
744 > Here, $H_1$ and $H_2$ may represent different physical processes of
745 > the system. For instance, they may relate to kinetic and potential
746 > energy respectively, which is a natural decomposition of the
747 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
748 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
749 > order is then given by the Lie-Trotter formula
750   \begin{equation}
751 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
752 + \label{introEquation:firstOrderSplitting}
753 + \end{equation}
754 + where $\varphi _h$ is the result of applying the corresponding
755 + continuous $\varphi _i$ over a time $h$. By definition, as
756 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
757 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
758 + It is easy to show that any composition of symplectic flows yields a
759 + symplectic map,
760 + \begin{equation}
761   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
762 < '\phi ' = \phi '^T J\phi ' = J.
762 > '\phi ' = \phi '^T J\phi ' = J,
763   \label{introEquation:SymplecticFlowComposition}
764   \end{equation}
765 < Suppose that a Hamiltonian system has a form with $H = T + V$
765 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
766 > splitting in this context automatically generates a symplectic map.
767  
768 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
769 + introduces local errors proportional to $h^2$, while Strang
770 + splitting gives a second-order decomposition,
771 + \begin{equation}
772 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
773 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
774 + \end{equation}
775 + which has a local error proportional to $h^3$. Sprang splitting's
776 + popularity in molecular simulation community attribute to its
777 + symmetric property,
778 + \begin{equation}
779 + \varphi _h^{ - 1} = \varphi _{ - h}.
780 + \label{introEquation:timeReversible}
781 + \end{equation}
782 +
783 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
784 + The classical equation for a system consisting of interacting
785 + particles can be written in Hamiltonian form,
786 + \[
787 + H = T + V
788 + \]
789 + where $T$ is the kinetic energy and $V$ is the potential energy.
790 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
791 + obtains the following:
792 + \begin{align}
793 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
794 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
795 + \label{introEquation:Lp10a} \\%
796 + %
797 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
798 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
799 + \label{introEquation:Lp10b}
800 + \end{align}
801 + where $F(t)$ is the force at time $t$. This integration scheme is
802 + known as \emph{velocity verlet} which is
803 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
804 + time-reversible(\ref{introEquation:timeReversible}) and
805 + volume-preserving (\ref{introEquation:volumePreserving}). These
806 + geometric properties attribute to its long-time stability and its
807 + popularity in the community. However, the most commonly used
808 + velocity verlet integration scheme is written as below,
809 + \begin{align}
810 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
811 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
812 + %
813 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
814 +    \label{introEquation:Lp9b}\\%
815 + %
816 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
817 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
818 + \end{align}
819 + From the preceding splitting, one can see that the integration of
820 + the equations of motion would follow:
821 + \begin{enumerate}
822 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
823 +
824 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
825 +
826 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
827 +
828 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
829 + \end{enumerate}
830 +
831 + Simply switching the order of splitting and composing, a new
832 + integrator, the \emph{position verlet} integrator, can be generated,
833 + \begin{align}
834 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
835 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
836 + \label{introEquation:positionVerlet1} \\%
837 + %
838 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
839 + q(\Delta t)} \right]. %
840 + \label{introEquation:positionVerlet1}
841 + \end{align}
842 +
843 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
844 +
845 + Baker-Campbell-Hausdorff formula can be used to determine the local
846 + error of splitting method in terms of commutator of the
847 + operators(\ref{introEquation:exponentialOperator}) associated with
848 + the sub-flow. For operators $hX$ and $hY$ which are associate to
849 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
850 + \begin{equation}
851 + \exp (hX + hY) = \exp (hZ)
852 + \end{equation}
853 + where
854 + \begin{equation}
855 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
856 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
857 + \end{equation}
858 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
859 + \[
860 + [X,Y] = XY - YX .
861 + \]
862 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
863 + can obtain
864 + \begin{eqnarray*}
865 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
866 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
867 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
868 + \ldots )
869 + \end{eqnarray*}
870 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
871 + error of Spring splitting is proportional to $h^3$. The same
872 + procedure can be applied to general splitting,  of the form
873 + \begin{equation}
874 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
875 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
876 + \end{equation}
877 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
878 + order method. Yoshida proposed an elegant way to compose higher
879 + order methods based on symmetric splitting. Given a symmetric second
880 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
881 + method can be constructed by composing,
882 + \[
883 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
884 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
885 + \]
886 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
887 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
888 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
889 + \begin{equation}
890 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
891 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
892 + \end{equation}
893 + , if the weights are chosen as
894 + \[
895 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
896 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
897 + \]
898 +
899   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
900  
901   As a special discipline of molecular modeling, Molecular dynamics
# Line 660 | Line 905 | dynamical information.
905  
906   \subsection{\label{introSec:mdInit}Initialization}
907  
908 + \subsection{\label{introSec:forceEvaluation}Force Evaluation}
909 +
910   \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
911  
912   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
913  
914 < A rigid body is a body in which the distance between any two given
915 < points of a rigid body remains constant regardless of external
916 < forces exerted on it. A rigid body therefore conserves its shape
917 < during its motion.
914 > Rigid bodies are frequently involved in the modeling of different
915 > areas, from engineering, physics, to chemistry. For example,
916 > missiles and vehicle are usually modeled by rigid bodies.  The
917 > movement of the objects in 3D gaming engine or other physics
918 > simulator is governed by the rigid body dynamics. In molecular
919 > simulation, rigid body is used to simplify the model in
920 > protein-protein docking study{\cite{Gray03}}.
921  
922 < Applications of dynamics of rigid bodies.
922 > It is very important to develop stable and efficient methods to
923 > integrate the equations of motion of orientational degrees of
924 > freedom. Euler angles are the nature choice to describe the
925 > rotational degrees of freedom. However, due to its singularity, the
926 > numerical integration of corresponding equations of motion is very
927 > inefficient and inaccurate. Although an alternative integrator using
928 > different sets of Euler angles can overcome this difficulty\cite{},
929 > the computational penalty and the lost of angular momentum
930 > conservation still remain. A singularity free representation
931 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
932 > this approach suffer from the nonseparable Hamiltonian resulted from
933 > quaternion representation, which prevents the symplectic algorithm
934 > to be utilized. Another different approach is to apply holonomic
935 > constraints to the atoms belonging to the rigid body. Each atom
936 > moves independently under the normal forces deriving from potential
937 > energy and constraint forces which are used to guarantee the
938 > rigidness. However, due to their iterative nature, SHAKE and Rattle
939 > algorithm converge very slowly when the number of constraint
940 > increases.
941  
942 + The break through in geometric literature suggests that, in order to
943 + develop a long-term integration scheme, one should preserve the
944 + symplectic structure of the flow. Introducing conjugate momentum to
945 + rotation matrix $A$ and re-formulating Hamiltonian's equation, a
946 + symplectic integrator, RSHAKE, was proposed to evolve the
947 + Hamiltonian system in a constraint manifold by iteratively
948 + satisfying the orthogonality constraint $A_t A = 1$. An alternative
949 + method using quaternion representation was developed by Omelyan.
950 + However, both of these methods are iterative and inefficient. In
951 + this section, we will present a symplectic Lie-Poisson integrator
952 + for rigid body developed by Dullweber and his coworkers\cite{}.
953 +
954   \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955  
956 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
956 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
957  
958 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
958 > \begin{equation}
959 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
960 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
961 > \label{introEquation:RBHamiltonian}
962 > \end{equation}
963 > Here, $q$ and $Q$  are the position and rotation matrix for the
964 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
965 > $J$, a diagonal matrix, is defined by
966 > \[
967 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
968 > \]
969 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
970 > constrained Hamiltonian equation subjects to a holonomic constraint,
971 > \begin{equation}
972 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
973 > \end{equation}
974 > which is used to ensure rotation matrix's orthogonality.
975 > Differentiating \ref{introEquation:orthogonalConstraint} and using
976 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
977 > \begin{equation}
978 > Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
979 > \label{introEquation:RBFirstOrderConstraint}
980 > \end{equation}
981  
982 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
982 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
983 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
984 > the equations of motion,
985 > \[
986 > \begin{array}{c}
987 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
988 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
989 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
990 > \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
991 > \end{array}
992 > \]
993  
682 \section{\label{introSection:correlationFunctions}Correlation Functions}
994  
995 + \[
996 + M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
997 + \right\} .
998 + \]
999 +
1000 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1001 +
1002 + \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1003 +
1004 +
1005   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006  
1007   \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
# Line 729 | Line 1050 | introEquation:motionHamiltonianMomentum},
1050   \dot p &=  - \frac{{\partial H}}{{\partial x}}
1051         &= m\ddot x
1052         &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1053 < \label{introEq:Lp5}
1053 > \label{introEquation:Lp5}
1054   \end{align}
1055   , and
1056   \begin{align}
# Line 888 | Line 1209 | Body}
1209  
1210   \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1211   Body}
1212 +
1213 + \section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines